CrossWorks for ARM Reference Manual

Version: 4.10.9.2024031101.56016

Copyright 1997-2024 Rowley Associates Ltd.

CrossWorks for ARM Reference Manual

CrossWorks for ARM Reference Manual Contents

Contents

Introduction 33
What is CrossWorks? 34

What we don't tell you 36
Activating your product 37

Text conventions 39
Additional resources 41
Release notes 42
CrossStudio Tutorial 79
Activating CrossWorks 81
Managing support packages 83
Creating a project 86
Managing files in a project 92
Setting project options 96
Building projects 98
Exploring projects 101

Using the debugger 112
Low-level debugging 118
Debugging externally built applications 122
CrossStudio User Guide 127
CrossStudio standard layout 128

Menu bar 129

Title bar 130

Status bar 131

CrossStudio help and assistance

Creating and managing projects

Building your application

Using source control

Package management

Exploring your application

CrossWorks for ARM Reference Manual

Editing workspace

Contents

133

Docking windows

134

Dashboard

135

136

138

139

Solutions and projects

142

Creating a project

Adding existing files to a project

143

Adding new files to a project

144

Removing a file, folder, project, or project link

145

146

Creating variants using configurations

148

Project properties

150

Configurations and property values

152
154

Project macros

Dependencies and build order

156

Precompile Header File support

157

Linking and section placement

158

161

Source control capabilities

162

Configuring source-control providers

163

Connecting to the source-control system

File source-control status

164

165

166

Source-control operations

Adding files to source control

167

Updating files

168

Committing files

169

Reverting files

170

Locking files

171

Unlocking files

172

173

Removing files from source control

174

Showing differences between files

Source-control properties

175

Subversion provider

176

CVS provider

178

180

184

Project explorer

185

Source navigator window

References window

190
192

193

Symbol browser window

CrossWorks for ARM Reference Manual Contents

Stack usage window 198
Memory usage window 199
Bookmarks window 202

Code Outline Window 203
Analyzing Source Code 204
Editing your code 205
Basic editing 206
Moving the insertion point 207

Adding text 209

Deleting text 210

Using the clipboard 211

Undo and redo 212

Drag and drop 213

Searching 214

Advanced editing 215
Indenting source code 216

Commenting out sections of code 218

Adjusting letter case 219

Using bookmarks 220

Find and Replace window 222
Clipboard Ring window 224
Mouse-click accelerators 226
Regular expressions 228
Debugging windows 230
Locals window 230
Globals window 232
Watch window 234
Register window 237
Memory window 240
Breakpoints window 244

Call Stack window 248
Threads window 251
Execution Profile window 255
Execution Trace window 256
Debug file search editor 257
Debug Terminal window 259
Debug Immediate window 260
Breakpoint expressions 261
Debug expressions 262
Utility windows 263
Output window 263

CrossWorks for ARM Reference Manual

Command-line options

-D (Define macro)

Uninstalling CrossWorks for ARM

Uninstalling from macOS

Uninstalling from Linux

ARM target support

Target startup code

Startup code
Section Placement

Project configurations

Target script file

Program loading

Debug Capabilities

Trace Capabilities

Target interfaces

Generic Target Interface

Contents

Properties window 264
Targets window 265
Terminal emulator window 269

Script Console window 270
Downloads window 271

Latest News window 272

273

274

-noclang (Disable Clang support) 275
-noload (Disable loading of last project) 276
-packagesdir (Specify packages directory) 277
-permit-multiple-studio-instances (Permit multiple studio instances) 278
-rootuserdir (Set the root user data directory) 279
-save-settings-off (Disable saving of environment settings) 280
-set-setting (Set environment setting) 281
-templatesfile (Set project templates path) 282
283

Uninstalling from Windows 283
284

285

287

289

291

294

296

299

303

304

307

311

ARM Simulator target interface 313
Amontec JTAGkey Target Interface 314
CMSIS-DAP Target Interface 316
CrossConnect Target Interface 318
Generic FT2232 Target Interface 320
323

Olimex ARM-USB-OCD Target Interface 324
Kinetis OSJTAG Target Interface 326
P&E UNIT Interface DLL Target Interface 327
Segger J-Link Target Interface 328
330

Stellaris ICDI Target Interface

CrossWorks for ARM Reference Manual Contents
ST-LINK Target Interface 331
ST-LINK/V2 Target Interface 332
Macraigor Wiggler (20 and 14 pin) Target Interface 333

Using an external ARM GCC toolchain 335

C Library User Guide 337
Floating point 338

Multithreading 339
Thread safety in the CrossWorks library 340
Implementing mutual exclusion in the C library 341

Input and output 343
Customizing putchar 344

Locales 349
Unicode, ISO 10646, and wide characters 350
Multi-byte characters 351
The standard C and POSIX locales 352
Additional locales in source form 353
Installing a locale 354
Setting a locale directly 356

Complete API reference 357
<assert.h> 359

__assert 360
assert 361
<complex.h> 362
cabs 364
cabsf 365
cacos 366
cacosf 367
cacosh 368
cacoshf 369
carg 370
cargf 371
casin 372
casinf 373
casinh 374
casinhf 375
catan 376
catanf 377
catanh 378
catanhf 379
ccos 380
ccosf 381

CrossWorks for ARM Reference Manual Contents

ccosh 382
ccoshf 383
cexp 384
cexpf 385
cimag 386
cimagf 387
clog 388
clogf 389
conj 390
conjf 391
cpow 392
cpowf 393
cproj 394
cprojf 395
creal 396
crealf 397
csin 398
csinf 399
csinh 400
csinhf 401
csqrt 402
csqrtf 403
ctan 404
ctanf 405
ctanh 406
ctanhf 407
<ctype.h> 408
isalnum 410
isalnum_| 411
isalpha 412
isalpha_|l 413
isblank 414
isblank_| 415
iscntrl 416
iscntrl_I 417
isdigit 418
isdigit_| 419
isgraph 420
isgraph_I 421
islower 422
islower_| 423

CrossWorks for ARM Reference Manual Contents

isprint 424
isprint_| 425
ispunct 426
ispunct_| 427
isspace 428
isspace_| 429
isupper 430
isupper_| 431
isxdigit 432
isxdigit_lI 433
tolower 434
tolower_| 435
toupper 436
toupper_| 437
<debugio.h> 438
debug_abort 441
debug_break 442
debug_clearerr 443
debug_clock 444
debug_enabled 445
debug_evaluate 446
debug_exit 447
debug_fclose 448
debug_feof 449
debug_ferror 450
debug_fflush 451
debug_fgetc 452
debug_fgetpos 453
debug_fgets 454
debug_filesize 455
debug_fopen 456
debug_fprintf 457
debug_fprintf_c 458
debug_fputc 459
debug_fputs 460
debug_fread 461
debug_freopen 462
debug_fscanf 463
debug_fscanf_c 464
debug_fseek 465
debug_fsetpos 466

CrossWorks for ARM Reference Manual Contents

debug_ftell 467
debug_fwrite 468
debug_getargs 469
debug_getch 470
debug_getchar 471
debug_getd 472
debug_getenv 473
debug_getf 474
debug_geti 475
debug_getl 476
debug_getll 477
debug_gets 478
debug_getu 479
debug_getul 480
debug_getull 481
debug_kbhit 482
debug_loadsymbols 483
debug_perror 484
debug_printf 485
debug_printf_c 486
debug_putchar 487
debug_puts 488
debug_remove 489
debug_rename 490
debug_rewind 491
debug_runtime_error 492
debug_scanf 493
debug_scanf ¢ 494
debug_system 495
debug_time 496
debug_tmpfile 497
debug_tmpnam 498
debug_ungetc 499
debug_unloadsymbols 500
debug_vfprintf 501
debug_vfscanf 502
debug_vprintf 503
debug_vscanf 504
<errno.h> 505
EDOM 506
EILSEQ 507

10

CrossWorks for ARM Reference Manual Contents

EINVAL 508
ENOMEM 509
ERANGE 510
errno 511
<float.h> 512
DBL_DIG 513
DBL_EPSILON 514
DBL_MANT_DIG 515
DBL_MAX 516
DBL_MAX_10_EXP 517
DBL_MAX_EXP 518
DBL_MIN 519
DBL_MIN_10_EXP 520
DBL_MIN_EXP 521
DECIMAL_DIG 522
FLT_DIG 523
FLT_EPSILON 524
FLT_EVAL_METHOD 525
FLT_MANT_DIG 526
FLT_MAX 527
FLT_MAX_10_EXP 528
FLT_MAX_EXP 529
FLT_MIN 530
FLT_MIN_10_EXP 531
FLT_MIN_EXP 532
FLT_RADIX 533
FLT_ROUNDS 534
<intrinsics.h> 535
__breakpoint 541
_cdp 542
__cdp2 543
__clrex 544
_dz 545
__dbg 546
__disable_fiq 547
__disable_interrupt 548
_ disable_irq 549
__dmb 550
__dsb 551
__enable_fiq 552

__enable_interrupt 553

11

CrossWorks for ARM Reference Manual
Contents

__enable_irq
__fabs e
__fabsf .
__fma o
__fmaf o
__get_APSR .
__get_BASEPRI .
__get_CONTROL o
__get_CPSR o
__get_FAULTMASK o
__get_PRIMASK -
__isb .
__Idc e
__ldc2 o
__ldc2_noidx o
__Idc2l .
__ldc2l_noidx o
__ldc_noidx o
__lIdcl o
__ldcl_noidx o
__ldrbt o
__Idrex e
__ldrexb e
__ldrexd .
__ldrexh o
__ldrht e
__ldrsbt o
__ldrsht o
__ldrt o
__mcr o
__mcr2 o
__mcrr o
__mcrr2 o
__mrc o
__mrc2 o
__mrrc o
__mrrc2 o
o 590
- 591
- 592
o 593
594

12

CrossWorks for ARM Reference Manual Contents

__gaddi16 595
__gadd8 596
__qasx 597
__qdadd 598
__qdbl 599
__qdsub 600
__gflag 601
__qsax 602
__qgsub 603
__qsub16 604
__qsub8 605
__rbit 606
__rev 607
__revlé 608
__revsh 609
__rintn 610
__rintnf 611
__sadd16 612
__sadd8 613
__sasx 614
__sel 615
__set_APSR 616
__set_BASEPRI 617
__set_CONTROL 618
__set_CPSR 619
__set_FAULTMASK 620
__set_PRIMASK 621
__sev 622
__shadd16 623
__shadd8 624
__shasx 625
__shsax 626
__shsub16 627
__shsub8 628
__smlabb 629
__smlabt 630
__smlad 631
__smladx 632
__smlalbb 633
__smlalbt 634
__smlald 635

13

CrossWorks for ARM Reference Manual Contents

__smlaldx 636
__smlaltb 637
__smilaltt 638
__smlatb 639
__smlatt 640
__smlawb 641
__smlawt 642
__smisd 643
__smlisdx 644
__smilsld 645
__smlsldx 646
__smuad 647
__smuadx 648
__smulbb 649
__smulbt 650
__smultb 651
__smultt 652
__smulwb 653
__smulwt 654
__smusd 655
__smusdx 656
__sqrt 657
__sqrtf 658
__ssat 659
__ssat16 660
__ssax 661
__ssub16 662
__ssub8 663
__stc 664
__stc2 665
__ste2l 666
__stc_noidx 667
__stcl 668
__strbt 669
_ strex 670
__strexb 671
__strexd 672
__strexh 673
__strht 674
_strt 675
__swp 676

14

CrossWorks for ARM Reference Manual Contents

__swpb 677
__sxtab16 678
__sxtb16 679
__uaddi16 680
__uadd8 681
__uasx 682
__ubhaddi6 683
__uhadds8 684
__ubhasx 685
__uhsax 686
__uhsub16 687
__uhsub8 688
__uqgaddi1é 689
__uqgadd8 690
__ugasx 691
__ugsax 692
__uqgsub16 693
__uqsub8 694
__usad8 695
__usad8a 696
__usat 697
__usatl1eé 698
__usax 699
__usub8 700
__uxtab16 701
__uxtb16 702
__wfe 703
_ wfi 704
__yield 705
<is0646.h> 706
and 707
and_eq 708
bitand 709
bitor 710
compl 711
not 712
not_eq 713
or 714
or_eq 715
xor 716
xor_eq 717

15

CrossWorks for ARM Reference Manual Contents

<itm.h> 718
ITM_base 719
ITM_channel_enabled 720
ITM_send_byte 721
ITM_send_half_word 722
ITM_send_pc 723
ITM_send_word 724

<libarm.h> 725
libarm_dcc_read 726
libarm_dcc_write 727
libarm_disable_fiq 728
libarm_disable_irq 729
libarm_disable_irq_fiq 730
libarm_enable_fiq 731
libarm_enable_irq 732
libarm_enable_irqg_fiq 733
libarm_get_cpsr 734
libarm_isr_disable_irq 735
libarm_isr_enable_irq 736
libarm_mmu_flat_initialise_level_1_table 737
libarm_mmu_flat_initialise_level_2_small_page_table 738
libarm_mmu_flat_set_level_1_cacheable_region 739
libarm_mmu_flat_set_level_2_small_page_cacheable_region 740
libarm_restore_irq_fiq 741
libarm_run_dcc_port_server 742
libarm_set_cpsr 743
libarm_set_fiq 744
libarm_set_irq 745

<limits.h> 746
CHAR_BIT 747
CHAR_MAX 748
CHAR_MIN 749
INT_MAX 750
INT_MIN 751
LLONG_MAX 752
LLONG_MIN 753
LONG_MAX 754
LONG_MIN 755
MB_LEN_MAX 756
SCHAR_MAX 757
SCHAR_MIN 758

16

CrossWorks for ARM Reference Manual Contents

SHRT_MAX 759
SHRT_MIN 760
UCHAR_MAX 761
UINT_MAX 762
ULLONG_MAX 763
ULONG_MAX 764
USHRT_MAX 765
<locale.h> 766
Iconv 767
localeconv 769
setlocale 770
<math.h> 771
acos 775
acosf 776
acosh 777
acoshf 778
asin 779
asinf 780
asinh 781
asinhf 782
atan 783
atan2 784
atan2f 785
atanf 786
atanh 787
atanhf 788
cbrt 789
cbrtf 790
ceil 791
ceilf 792
copysign 793
copysignf 794
cos 795
cosf 796
cosh 797
coshf 798
erf 799
erfc 800
erfcf 801
erff 802
exp 803

17

CrossWorks for ARM Reference Manual Contents

exp2 804
exp2f 805
expf 806
expm1 807
expmif 808
fabs 809
fabsf 810
fdim 811
fdimf 812
floor 813
floorf 814
fma 815
fmaf 816
fmax 817
fmaxf 818
fmin 819
fminf 820
fmod 821
fmodf 822
fpclassify 823
frexp 824
frexpf 825
hypot 826
hypotf 827
ilogb 828
ilogbf 829
isfinite 830
isgreater 831
isgreaterequal 832
isinf 833
isless 834
islessequal 835
islessgreater 836
isnan 837
isnormal 838
isunordered 839
Idexp 840
Idexpf 841
Igamma 842
Igammaf 843
llrint 844

18

CrossWorks for ARM Reference Manual Contents

llrintf 845
llround 846
liroundf 847
log 848
log10 849
log10f 850
log1p 851
log1pf 852
log2 853
log2f 854
logb 855
logbf 856
logf 857
Irint 858
Irintf 859
Iround 860
Iroundf 861
modf 862
modff 863
nearbyint 864
nearbyintf 865
nextafter 866
nextafterf 867
pow 868
powf 869
remainder 870
remainderf 871
remquo 872
remquof 873
rint 874
rintf 875
round 876
roundf 877
scalbln 878
scalbinf 879
scalbn 880
scalbnf 881
signbit 882
sin 883
sinf 884
sinh 885

19

CrossWorks for ARM Reference Manual Contents

sinhf 886
sqrt 887
sqrtf 888
tan 889
tanf 890
tanh 891
tanhf 892
tgamma 893
tgammaf 894
trunc 895
truncf 896
<setjmp.h> 897
longjmp 898
setjmp 899
<stdarg.h> 900
va_arg 901
va_copy 902
va_end 903
va_start 904
<stddef.h> 905
NULL 906
max_align_t 907
offsetof 908
ptrdiff_t 909
size_t 910
<stdio.h> 911
getchar 912
gets 913
printf 914
putchar 919
puts 920
scanf 921
snprintf 925
sprintf 926
sscanf 927
vprintf 928
vscanf 929
vsnprintf 930
vsprintf 931
vsscanf 932
<stdlib.h> 933

20

CrossWorks for ARM Reference Manual Contents

EXIT_FAILURE 935
EXIT_SUCCESS 936
MB_CUR_MAX 937
RAND_MAX 938
abs 939
atexit 940
atof 941
atoi 942
atol 943
atoll 944
bsearch 945
calloc 946
div 947
div_t 948
exit 949
free 950
itoa 951
labs 952
Idiv 953
Idiv_t 954
llabs 955
lidiv 956
lidiv_t 957
litoa 958
Itoa 959
malloc 960
mblen 961
mblen_| 962
mbstowcs 963
mbstowcs_| 964
mbtowc 965
mbtowc_| 966
qgsort 967
rand 968
realloc 969
srand 970
strtod 971
strtof 972
strtol 973
strtoll 975
strtoul 977

21

Contents
CrossWorks for ARM Reference Manual

979
strtoull -
ulltoa -
ultoa .
utoa -

<string.h> o
memccpy .
memchr -
memcmp o
memcpy o
memcpy_fast .
memmove 992
mempcpy .
memset o
strcasecmp >
strcasestr "
strcat "
strchr o
strcmp -
e 1000
strcspn 100
strdup o
strerror 100
strlcat o
stricpy 100"
strlen 1008
strncasecmp 1006
strncasestr o
strncat 1008
strnchr 100
strncmp b
strncpy o
strndup o
strnlen o
strnstr o
strpbrk o
strrchr o
strsep o
strspn o
strstr o
strtok o
strtok_r

22

CrossWorks for ARM Reference Manual Contents

<time.h> 1022
asctime 1023
asctime_r 1024
clock t 1025
ctime 1026
ctime_r 1027
difftime 1028
gmtime 1029
gmtime_r 1030
localtime 1031
localtime_r 1032
mktime 1033
strftime 1034
time_t 1036
tm 1037

<wchar.h> 1038
WCHAR_MAX 1040
WCHAR_MIN 1041
WEOF 1042
btowc 1043
btowc_| 1044
mbrlen 1045
mbrlen_| 1046
mbrtowc 1047
mbrtowc_| 1048
mbsrtowcs 1049
mbsrtowcs_| 1050
msbinit 1051
wchar_t 1052
wcrtomb 1053
wcrtomb_| 1054
wcscat 1055
wcschr 1056
wcsemp 1057
wcescpy 1058
wcesespn 1059
wcesdup 1060
wcslen 1061
wcsncat 1062
wcesnchr 1063
wcesnemp 1064

23

CrossWorks for ARM Reference Manual Contents

wcesncpy 1065
wcsnlen 1066
wcsnstr 1067
wcspbrk 1068
wcsrchr 1069
wcesspn 1070
wcsstr 1071
wcstok 1072
wcstok_r 1073
wctob 1074
wctob_| 1075
wint_t 1076
wmemccpy 1077
wmemchr 1078
wmememp 1079
wmemcpy 1080
wmemmove 1081
wmempcpy 1082
wmemset 1083
wstrsep 1084
<wctype.h> 1085
iswalnum 1087
iswalnum_| 1088
iswalpha 1089
iswalpha_l 1090
iswblank 1091
iswblank_| 1092
iswentrl 1093
iswentrl_| 1094
iswctype 1095
iswctype_| 1096
iswdigit 1097
iswdigit_lI 1098
iswgraph 1099
iswgraph_| 1100
iswlower 1101
iswlower_| 1102
iswprint 1103
iswprint_lI 1104
iswpunct 1105
iswpunct_| 1106

24

CrossWorks for ARM Reference Manual Contents

iswspace 1107
iswspace_| 1108
iswupper 1109
iswupper_| 1110
iswxdigit 1111
iswxdigit_| 1112
towctrans 1113
towctrans_| 1114
towlower 1115
towlower _| 1116
towupper 1117
towupper_| 1118
wctrans 1119
wctrans_| 1120
wctype 1121
<xlocale.h> 1122
duplocale 1123
freelocale 1124
localeconv_| 1125
newlocale 1126

C++ Library User Guide 1127
Standard template library 1129
Subset API reference 1130
<new> - memory allocation 1131
operator delete 1132
operator new 1133
set_new_handler 1134
LIBMEM User Guide 1135
Using the LIBMEM library 1136
Light version of LIBMEM 1139
Writing LIBMEM drivers 1140
LIBMEM loader library 1144
Complete API reference 1145
<libmem.h> 1146
LIBMEM_ADDRESS_IN_RANGE 1151
LIBMEM_ADDRESS_IS_ALIGNED 1152
LIBMEM_ALIGNED_ADDRESS 1153
LIBMEM_CFI_CMDSET_AMD_EXTENDED 1154
LIBMEM_CFI_CMDSET_AMD_STANDARD 1155
LIBMEM_CFI_CMDSET_INTEL_EXTENDED 1156
LIBMEM_CFI_CMDSET_INTEL_STANDARD 1157

25

CrossWorks for ARM Reference Manual Contents

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED
LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD
LIBMEM_CFI_CMDSET_NONE
LIBMEM_CFI_CMDSET_RESERVED
LIBMEM_CFI_CMDSET_SST_PAGE_WRITE
LIBMEM_CFI_CMDSET_WINBOND_STANDARD
LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITESccccceserusvesennes
LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD ...
LIBMEM_INLINE
LIBMEM_KB
LIBMEM_MB
LIBMEM_RANGE_OCCLUDES_RANGE
LIBMEM_RANGE_OVERLAPS_RANGE
LIBMEM_RANGE_WITHIN_RANGE
LIBMEM_STATUS_CFI_ERROR
LIBMEM_STATUS_ERROR
LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW
LIBMEM_STATUS_INVALID_DEVICE
LIBMEM_STATUS_INVALID_PARAMETER
LIBMEM_STATUS_INVALID_RANGE
LIBMEM_STATUS_INVALID_WIDTH
LIBMEM_STATUS_LOCKED
LIBMEM_STATUS_NOT_IMPLEMENTED
LIBMEM_STATUS_NO_DRIVER
LIBMEM_STATUS_SUCCESS
LIBMEM_STATUS_TIMEOUT
LIBMEM_VERSION_NUMBER

_libmem_driver_functions_t

_libmem_driver_handle_t

_libmem_driver_paged_write_ctrlblk_t

_libmem_ext_driver_functions_t

_libmem_flash_info_t

_libmem_geometry_t

_libmem_sector_info_t

libmem_busy_handler_fn

libmem_busy_handler_fn_t

libmem_cfi_get_info

libmem_crc32

libmem_crc32_direct

libmem_driver_crc32_fn_t

libmem_driver_erase fn_t

26

1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

CrossWorks for ARM Reference Manual Contents

libmem_driver_fill_fn_t 1199
libmem_driver_flush_fn_t 1200
libmem_driver_inrange_fn_t 1201
libmem_driver_lock _fn_t 1202
libmem_driver_page_write_fn_t 1203
libmem_driver_paged_write 1204
libmem_driver_paged_write_fill 1205
libmem_driver_paged_write_flush 1206
libmem_driver_paged_write_init 1207
libmem_driver_read _fn_t 1208
libmem_driver_unlock_fn_t 1209
libmem_driver_write_fn_t 1210
libmem_drivers 1211
libmem_enable_timeouts 1212
libmem_erase 1213
libmem_erase_all 1214
libmem_fill 1215
libmem_flush 1216
libmem_foreach_driver 1217
libmem_foreach_driver_fn_t 1218
libmem_foreach_sector 1219
libmem_foreach_sector_fn_t 1220
libmem_foreach_sector_in_range 1221
libmem_foreach_sector_in_range_ex 1222
libmem_get_driver 1223
libmem_get_driver_sector_size 1224
libmem_get_geometry_size 1225
libmem_get_number_of_regions 1226
libmem_get_number_of_sectors 1227
libmem_get_sector_info 1228
libmem_get_sector_number 1229
libmem_get_sector_size 1230
libmem_get_ticks 1231
libmem_get_ticks_fn 1232
libmem_get_ticks_fn_t 1233
libmem_lock 1234
libmem_lock_all 1235
libmem_read 1236
libmem_register_am29f200b_driver 1237
libmem_register_am29f200t_driver 1238
libmem_register_am29f400bb_driver 1239

27

CrossWorks for ARM Reference Manual Contents
libmem_register_am29f400bt_driver 1240
libmem_register_am29fxxx_driver 1241
libmem_register_am29lv010b_driver 1242
libmem_register_cfi_0001_16_driver 1243
libmem_register_cfi_0001_8_driver 1244
libmem_register_cfi_0002_16_driver 1245
libmem_register_cfi_0002_8_driver 1246
libmem_register_cfi_0003_16_driver 1247
libmem_register_cfi_0003_8_driver 1248
libmem_register_cfi_amd_driver 1249
libmem_register_cfi_driver 1251
libmem_register_cfi_intel_driver 1252
libmem_register_driver 1254
libmem_register_ram_driver 1255
libmem_register_sst39xFx00A_16_driver 1256
libmem_register_st_m28w320cb_driver 1257
libmem_register_st_m28w320ct_driver 1258
libmem_set_busy_handler 1259
libmem_ticks_per_second 1260
libmem_unlock 1261
libmem_unlock_all 1262
libmem_write 1263

<libmem_loader.h> 1264
LIBMEM_LOADER_VERSION_NUMBER 1265
LIBMEM_RPC_LOADER_FLAG_PARAM 1266
LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE 1267
LIBMEM_RPC_LOADER_MAGIC_NUMBER 1268
LIBMEM_RPC_LOADER_OPTION_HOST_ERASE 1269
LIBMEM_RPC_LOADER_OPTION_HOST_WRITE 1270
libmem_rpc_loader_exit 1271
libmem_rpc_loader_start 1273
libmem_rpc_loader_start_ex 1275

Utilities Reference 1277

Command-Line Compiler 1278

File Naming 1278

Compilation 1278

Linking 1279

Target Selection 1280

Advanced 1280

Options 1280

Command-Line Project Builder 1287

28

CrossWorks for ARM Reference Manual Contents

Building with a CrossStudio project file 1288
Building without a CrossStudio project file 1290
Command-line options 1291
-batch (Batch build) 1292
-config (Select build configuration) 1293

-clean (Remove output files) 1294

-D (Define macro) 1295

-echo (Show command lines) 1296

-file (Build a named file) 1297
-packagesdir (Specify packages directory) 1298
-project (Specify project to build) 1299
-property (Set project property) 1300
-rebuild (Always rebuild) 1301

-show (Dry run, don't execute) 1302
-solution (Specify solution to build) 1303
-studiodir (Specify CrossStudio directory) 1304
-template (Specify project template) 1305

-time (Time the build) 1306
-threadnum (Specify number of build threads) 1307

-type (Specify project type) 1308
-verbose (Show build information) 1309
Command-Line Simulator 1310
Example 1310
Usage 1311
Command-Line Project Download and Debug 1313
Command line debugging 1315
Managing breakpoints 1316
Displaying state 1319
Locating the current context 1321
Controlling execution 1323
Support packages 1324
Command-line options 1325
-break (Stop execution at symbol) 1326
-config (Specify build configuration) 1327
-connection (Specify connection) 1328
-debug (Enter command line debugging) 1329
-eraseall (Erase all flash memory) 1330
-filetype (Specify load file type) 1331

-help (Display help) 1332
-listfiletypes (Display supported load file types) 1333
-listprojectprops (Display all project properties) 1334

29

CrossWorks for ARM Reference Manual Contents

-listprops (Display target properties) 1335
-listtargets (Display supported target interfaces) 1336
-loadaddress (Set load address) 1337
-loader (Specify loader configuration) 1338
-nodifferential (Inhibit differential download) 1339
-nodisconnect (Inhibit target disconnection) 1340
-nodownload (Inhibit download) 1341
-noverify (Inhibit verification) 1342
-packagesdir (Specify package directory) 1343
-project (Specify project name) 1344

-quiet (Be silent) 1345

-reset (Reset only) 1346
-script (Execute debug script) 1347

-serve (Run semihosting server) 1348
-setprop (Set target interface property) 1349
-solution (Specify solution file) 1350
-studiodir (Specify Studio directory) 1351
-target (Specify target interface) 1352
-verbose (Display additional status) 1353
Command-Line Scripting 1354
Command-line options 1355
-define (Define global variable) 1356

-help (Show usage) 1357

-load (Load script file) 1358
-define (Verbose output) 1359
CrossScript classes 1360
Example uses 1361
Embed 1362
Header file generator 1363
Using the header generator 1364
Command line options 1365
-regbaseoffsets (Use offsets from peripheral base) 1366
-nobitfields (Inhibit bitfield macros) 1367
Linker script file generator 1368
Command-line options 1369
-check-section-overflow 1370
-check-segment-overflow 1371
-disable-missing-runin-error 1372
-memory-map-macros 1373
-no-check-unplaced-sections 1374
-no-ctors 1375

30

CrossWorks for ARM Reference Manual Contents

-no-dtors 1376
-section-placement-file 1377
-section-placement-macros 1378

-symbols 1379

Package generator 1380
Package manager 1382
Appendices 1385
Technical 1386
File formats 1386
Memory Map file format 1387

Section Placement file format 1389

Project file format 1391

Project Templates file format 1392

Property Groups file format 1394

Package Description file format 1396

External Tools file format 1400

Debugger Type Interpretation file format 1403

Environment Options 1405
Building Environment Options 1405

Debugging Environment Options 1407

IDE Environment Options 1410
Programming Language Environment Options 1416

Source Control Environment Options 1420

Text Editor Environment Options 1422

Windows Environment Options 1434

Project Options 1447

Code Options 1447

Debug Options 1475

Macros 1486
System Macros 1486

Build Macros 1489

Script classes 1494
BinaryFile 1494

CWSys 1495

Debug 1496

ElfFile 1498
Targetinterface 1499

WScript 1504

31

CrossWorks for ARM Reference Manual Contents

32

CrossWorks for ARM Reference Manual Introduction

Introduction

This guide is divided into a number of sections:

Introduction
Covers installing CrossWorks on your machine and verifying that it operates correctly, followed by a brief
guide to the operation of the CrossStudio integrated development environment, debugger, and other
software supplied in the product.

CrossStudio Tutorial
Describes how to get started with CrossStudio and runs through all the steps from creating a project to
debugging it on hardware.

CrossStudio User Guide
Contains information on how to use the CrossStudio development environment to manage your projects,
build, and debug your applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in CrossWorks.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

Target interfaces
Contains a description of the support for programming ARM microcontrollers.

33

CrossWorks for ARM Reference Manual Introduction

What is CrossWorks?

CrossWorks for ARM is a complete C/C++ development system for ARM and Cortex, microcontrollers and

microprocessors that runs on Windows, Mac OS and Linux.

C/C++ Compiler

CrossWorks comes with pre-built versions of both GCC and Clang/LLVM C and C++ compilers and assemblers.
The GNU linker and librarian are also supplied to enable you to immediately begin developing applications for
ARM.

CrossWorks C Library

CrossWorks for ARM has its own royalty-free ANSI and ISO C compliant C library that has been specifically
designed for use within embedded systems.

CrossWorks C++ Library

CrossWorks for ARM supplies a C++ library that implements STL containers, exceptions and RTTI.

CrossStudio IDE

CrossStudio for ARM is a streamlined integrated development environment for building, testing, and deploying
your applications. CrossStudio provides:

Source Code Editor:A powerful source code editor with multi-level undo and redo, makes editing your
code a breeze.

Project System:A complete project system organizes your source code and build rules.

Build System:With a single key press you can build all your applications in a solution, ready for them to be
loaded onto a target microcontroller.

Debugger and Flash Programming:You can download your programs directly into Flash and debug them
seamlessly from within the IDE using a wide range of target interfaces.

Help system:The built-in help system provides context-sensitive help and a complete reference to the
CrossStudio IDE and tools.

Core Simulator:As well as providing cross-compilation technology, CrossWorks provides a PC-based
fully functional simulation of the target microcontroller core so you can debug parts of your application
without waiting for hardware.

34

CrossWorks for ARM Reference Manual Introduction

CrossWorks Tools

CrossWorks for ARM supplies command line tools that enable you to build your application on the command
line and flash it to the target board using the same project file that the IDE uses.

35

CrossWorks for ARM Reference Manual Introduction

What we don't tell you

This documentation does not attempt to teach the C or assembly language programming; rather, you should
seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides
These are must-have books for any C programmer:

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,
Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANSI C (1990 version).

Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood
Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your
national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

http://www.arm.com/Documentation.

GNU compiler collection
For the latest GCC documentation go to:

http://gcc.gnu.org/.

LLVM/Clang

For the latest LLVM/Clang documentation to to:

http://www.llvm.org

36

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/
http://www.llvm.org

CrossWorks for ARM Reference Manual Introduction

Activating your product

Each copy of CrossWorks must be licensed and registered before it can be used. Each time you purchase a
CrossWorks license, you, as a single user, can use CrossWorks on the computers you need to develop and deploy
your application. This covers the usual scenario of using both a laptop and desktop and, optionally, a laboratory

computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To activate your software for

evaluation, follow these instructions:

Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.
Run the CrossStudio application.

Choose Tools > License Manager.

Click "Evaluate CrossWorks". If you have a default mailer, click the By Mail button.

Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

If you don't have a default mailer, select the text underneath "Activation request”.

Send the registration key to the e-mail address license@rowley.co.uk.
By return you will receive an activation key. To activate CrossWorks for evaluation, do the following:

Run the CrossStudio application.

Choose Tools > License Manager.

Click Activate CrossWorks.

Type in or paste the returned activation key into the dialog and click Install License.

If you need more time to evaluate CrossWorks, simply request a new evaluation key when the issued one expires

or is about to expire.

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a distributor, you will be issued a

Product Key which uniquely identifies your purchase

To permanently activate your software:

Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.
Run the CrossStudio application.

Choose Tools > License Manager.

Click "Request Activation After Purchasing". If you have a default mailer, click the By Mail button.

37

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.
If you don't have a default mailer, select the text underneath "Activation request”.

Send the registration key to the e-mail address license@rowley.co.uk.
By return you will receive an activation key. Then, complete the activation process:

Run the CrossStudio application.

Choose Tools > License Manager.

Click Activate CrossWorks.

Type in or paste the returned activation key into the dialog and click Install License.

As CrossWorks is licensed per developer, you can install the software on any computer that you use such as a
desktop, laptop, and laboratory computer, but on each of these you must go through activation using your

issued product key.

38

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often
see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see
references to the Standard toolbar which is positioned at the top of the CrossStudio window, just below the
menu bar on Windows and Linux.

When you are directed to select an item from a menu in CrossStudio, we use the form menu-name > item-name.
For instance, File > Save means that you need to click the File menu in the menu bar and then select the Save

item. This form extends to items in sub-menus, so File > Open With Binary Editor has the obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. CrossStudio uses

standard Windows and Mac OS keyboard accelerators wherever possible.

Windows and Linux have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P means that
you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that you should
hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are (command), (option), (control), and (shift). Generally there is a one-
to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is, Alt is, and Shift is .
CrossStudio on Mac OS has its own set of unique key sequences using (control) that have no direct Windows
equivalent.

CrossStudio on Windows and Linux also uses key chords to expand the set of accelerators. Key chords are key
sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means that you should
type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by Ctrl+Z. Mac OS
does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the
computer: for example, pieces of C text, commands to the operating system, or responses from the computer.
In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:
hcl source-file
This means that the command consists of:

The word hdl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

39

CrossWorks for ARM Reference Manual Introduction

Whenever commands to and responses from the computer are mixed in the same example, the commands
(i.e. the items which you enter) will be presentedi n t hi s t ypef ace.For example, here is a dialog with the
computer using the format of the compilation command given above:

c:\ code\ exanpl es>hcl -v nyprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the
computer responds with the rest.

40

CrossWorks for ARM Reference Manual Introduction

Additional resources

With software as complex as CrossWorks, it's almost inevitable that you will need assistance at some point. Along
with the documentation that comes with CrossWorks for ARM, there are a variety of other resources you can use
to find out more.

CrossWorks for ARM website

http://www.rowley.co.uk/arm/index.htm

Support

If you need some help working with CrossWorks, or if something you consider a bug, go to:
http://rowley.zendesk.com/

You can subscribe to our RSS newsfeed here:

http://www.rowley.co.uk/rss.xml

Suggestions

If you have any comments or suggestions regarding the software or documentation, you can make suggestions
on our suggestion forum:

https://rowley.zendesk.com/forums/171704-Suggestions

Finding your way around

CrossStudio is a complex program in many ways, but we have tried to simplify it so that it's easy to use. It's very
easy to get started and CrossStudio scales well to complex multi-programmer projects that need to manage

large code bases and the inevitable software variants.

In the tutorial you were presented with a whistle-stop tour of CrossStudio to get you up and running. Here we

dig deeper into the corners of CrossStudio so you can get the best from it.

141

http://www.rowley.co.uk/arm/index.htm
http://rowley.zendesk.com/
http://www.rowley.co.uk/rss.xml
https://rowley.zendesk.com/forums/171704-Suggestions

CrossWorks for ARM Reference Manual Introduction

Release notes

Version 4.10.9

Build

Add support for assembly file dependencies with .incbin directives.

Fix use of Memory Segments in preference to Memory Map Files in linker script generation.

Debug

Add Continue All Execution and Break All debug buttons.
Fixed download and debug when using FT4232H based target interface devices.
Add Stop All to breakpoint properties.

Editor

Fixed incremental find always starting from the beginning of the file.

Fixed Text Editor > Visual Appearance > Mate Match Off Screen option.

IDE

Fixed sporadic failures when checking CrossKey licenses (Linux only).

Version 4.10.8

Build

Fixed undefining __clang__ when used with clang-tidy.

Debug

Fixed data breakpoint support for Cortex-M33 devices.

Version 4.10.7

Build

Changed default Warning Level to Level 2.

Fixed __cxa_throw and __cxa_rethrow corrupting callee save registers.

42

CrossWorks for ARM Reference Manual Introduction

Fixed restoring saved VFP registers on __cxa_throw and __cxa_rethrow.

Debug

Add max command line option to instruction set simulator.

Fixed debugger bitfield display of compiler generated DW_AT_data_bit_offset debug info.

Add Don't to debugger Start From Entry Point Symbol which doesn't start execution.

Fixed connecting to multi-drop SWD targets from a multi-core project using CrossConnect Neo, CMSIS-
DAP and FTDI target interfaces.

IDE

Frame buffer window now supports non-word aligned frame widths.
Fixed incorrect positioning of combo box menus on multi display systems where the displays have been
positioned at different offsets (Linux only).

Outline window now refreshes if file being viewed is reloaded.

Version 4.10.6

Build

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 12.3.Rel1 source release.

Debug

Fixed errors when reconnecting to CrossConnect Neo.

Editor

Added Edit > Folding > Collapse Level n Folds menu commands.

IDE

Fixed editor not locating cursor in the centre of the screen when selecting a result in the find window and
the cursor is off screen.

Fixed crash on startup when running on macOS Sonoma.

Version 4.10.5

Build

Updated the LLVM/Clang tools build to use the 16.0.5 source release.
Add support for C++ 20 modules.

43

CrossWorks for ARM Reference Manual Introduction

Add support for a single project precompiled header file.

Add support for -Oz with gcc compilers.

Add None (do not supply) to project properties.

Add gcc compatible argument processing to command-line compiler driver.

Add Add Property Group Options property to disable supplying property group preprocessor defines.

Debug

Fixed debugger incorrectly accessing VBAR register on Cortex-R devices.

Fixed ST-Link Connect With Reset.

Fixed Targetinterface.setDebuglnterfaceProperty() when used with ST-Link/J-Link.
Fixed ST-Link connection with firmware upgraded by ST-LinkUpgrade v3.12.3

Add J-Link APB access with Cortex-M devices (STM32H DBGMCU).

Fixed target mismatch warning when used with J-Link with Built-in Flash Loader used.

Add -count and -trace options to command-line simulator.

Editor

IDE

Fixed incorrect movement of multi-line cursor when cursor is below a collapsed fold.

String list property editor now removes text formatting when pasting.

Find and replace window now opens editor when locating to a match found in a project file.

Variable, disassembly and memory window address colors can now be customized using the Address
color scheme entry.

Fixed incorrect positioning of popup menus on multi display systems where the displays have been

positioned at different offsets (Linux only).

System Requirements

Linux versions now require GLIBC 2.27 and CXXABI 1.3.11 or later.

Version 4.10.4

Debug

Added CrossConnect Neo support to Windows arm64 version.

Editor

Fixed Edit > Format command using incorrect start directory for .clang-format file search.
Fixed cursor positioning when moving cursor by mouse click on Linux.

C/C++ syntax highlighter now highlights arm_neon.h and arm_mve.h types.

44

CrossWorks for ARM Reference Manual Introduction

Only one editor will now be opened if the same file is opened from multiple linked locations.

Fixed opening of files when using the source file navigation operations.

Version 4.10.3

Build

Updated the LLVM/Clang tools build to use the 16.0.0 source release.

Add support for aligned_alloc.

The debugio library will not be linked when Debug I/0 Implementation is set to None.
Add linker property Treat Libraries As Object Files.

Debug

Added CrossConnect Neo SWO support.
Fixed SWO prescaler calculation.
Add Use Built-in TRACE support target property to SEGGER J-Link target.

Fixed CrossLoad usage of loader files.

Editor

IDE

Syntax colorer now colors single line doxygen style comments.

Fixed syntax colorer ignoring the end of a multiline doxygen style comment when it comes after an
incomplete command.

Fixed delete key deleting incorrect text if auto indenting is enabled, there is only whitespace to the left of
the cursor and the whitespace contains tab characters.

Added Text Editor > Save > Format On Save environment option.

The Edit > Format command no longer saves the editor contents prior to running the formatter.

Fixed code completion and code outline window not treating a .h file as a C++ file when used in a C++
project.

Variable, register and memory window value colors can now be customized using the Value and Value
Changed color scheme entries.

Project file is sorted with case insensitivity.

Version 4.10.2

Editor

Added smart indenting for XML files.

45

CrossWorks for ARM Reference Manual Introduction

IDE

Added Languages > XML environment options.
Delete key now unindents when auto indenting is enabled.
Added preprocessor directive folding.

Fixed opening the frame buffer window's context menu when another window is focused.

Fixed crash when updating packages and a third party package is installed.

Version 4.10.1

Build

Updated the LLVM/Clang tools build to use the 15.0.7 source release.
Add -no-ctors and -no-dtors to mkid.

Debug

Fixed single stepping of V8.1-M loop instructions.
Fixed Debug | Step Over not doing build up to date check.
Fixed not loading the target loader when Default Loader was the empty string.

Fixed J-Link debug setting device type multiple times.

Editor

IDE

Added EditToggleHeaderCodeFile command (Ctrl+K,Ctrl+0O).
Fixed delimiter matching when there is a string or character literal containing an escaped backslash
character between the delimiters.

Added save and copy commands to frame buffer window.
Fixed find strings not being added to history when operation is started from outside of the find and
replace window.

Fixed invalid characters in target property values causing errors when loading target window settings.

Version 4.10.0

Build

Add support for importing CMSIS project description files.

Rebuild of Externally Built projects will now run the clean command before the build command.

46

CrossWorks for ARM Reference Manual Introduction

Add language specific preprocessor properties.

Add language specific include files preprocessor properties.

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 12.2.Rel1 source release.
Updated the LLVM/Clang tools build to use the 15.0.6 source release.

Add ARMv8.1-M Mainline library builds.

Add stdnoreturn.h header file and __noreturn macro.

Debug

IDE

Add support for multiple loader configurations.
Add support for STLDR flash loaders.
Fixed ST-Link access to STM32H7 APB-AP.

Find and replace window will now replace in files not currently being edited.

Fixed multiple "Project modified externally" dialogs when project has been modified externally and an
editor has been modified.

Fixed the dashboard window's list of recent projects not being immediately updated when a new project
is created or a non-existent project is loaded.

Fixed crash when upgrading from a package version that has been removed from the package repository.
The package upgrade button now automatically selects the latest package versions in the package
manager.

Added support for ARGB32, RGB32, RGB888, RGB565, RGB666, RGB555, RGB444 and monochrome
formats to frame buffer window.

Added auto-refresh, auto-evaluate, zoom and pixel information tooltip to frame buffer window.

Fixed clipping of project window columns when using dark theme.

Version 4.9.1

Build

Add support for 0X hexadecimal prefix in debug expressions.

Add "Supply Input Character Set" and "Supply Execution Character Set" project properties.

An error is now displayed when Code > Linker > Check For Memory Section Overflow is enabled and the
section size is not a multiple of the section alignment.

Fix C++ exception catching.

Fixed section renaming when using Clang compiler.

Editor

Fixed editor scrolling to the end of the file when Edit > Format inserts lines.

47

CrossWorks for ARM Reference Manual Introduction

Version 4.9.0

What's New

Build

Numerous enhancements to the editor including code folding and split screen editing.
Native 64-bit ARM Windows, Linux and macOS versions.

Improved appearance on high DPI monitors.

Faster builds.

Enhanced support for UNICODE directory paths and file names.

Package versions can now be selected in package manager.

Command line package manager.

Improved user interface themes and color scheme customization.

New look dashboard window.

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 11.3.Rel1 source release.
Updated the LLVM/Clang tools build to use the 15.0.4 source release.

Added Analyze Command project properties.

Added Color Diagnostics and Show Caret project properties to control diagnostic output.
Added Stack Sizes project property which when enabled displays stack sizes in object/elf file

disassembly.

Debug

IDE

Added support for Dwarf-5 debug format.

Fixed use of floating point format in debug_scanf.

Fixed simulator clearing the execution trace on debug go.
Execution trace window now locates to the last entry by default.

Fixed executing Kinetis target script from CrossLoad

Stack usage window now has Go To Call Site action.
Code outline and source navigator windows now have Show Function Arguments option.

Fixed graying of inactive code for header and assembly code files.

Version 4.8.8

Build

Fixed Source Navigator/Analyze command lines for libcxx projects.

48

CrossWorks for ARM Reference Manual Introduction

Fixed use of "Unwind Tables" with clang compiler.

Debug

Fixed error accessing registers when using DAPLink interfaces in Bulk/WinUSB interface mode.
Improved detection of Bulk/WinUSB CMSIS-DAP interfaces.

Added CMSIS-DAP > USB > HID Report Length target property.

Fixed CMSIS-DAP interface locking up when connecting to some Xplained Pro boards from Linux and
macOS.

Version 4.8.7

Build

Fixed quoted zero length command line arguments being discarded when spawning processes.
The macro S(SEGMENT_SIZE_REMAINING) can now be used in section placement size attributes.
Added Code > Linker > Check For Memory Section Overflow project property.

Debug

Fixed Targetinterface.setDeviceTypeProperty with J-Link target interface.

Version 4.8.6

Build

Fixed supplying Linker Script files twice for External GCC projects.

Debug

Fixed crash when displaying static const member data of the same type as the class that it is declared in.

IDE

Fixed crash importing IAR projects.

Version 4.8.5

Build

Added "Generate Listing File" project property.

49

CrossWorks for ARM Reference Manual Introduction

Fixed mkld support for end_symbol in memory segments.
Fixed Clean executing pre/post build commands.
Updated the LLVM/Clang tools build to use the 13.0.1 source release.

Debug

Fixed display of FP registers for Cortex-M33 using J-Link target interface.

Editor

Fixed crash using Edit > Selection > Increase Line Endent when virtual space is enabled and a block of
text is selected extending past the end of the file.
Fixed syntax coloring of integer literals containing single quote separators.

C/C++ syntax highlighter now highlights stdint.h types.

IDE

Fixed the 'Flat Search Result Output' checkbox in the find and replace window's settings dropdown not

showing the current state.

Version 4.8.4

Build

Add macro $(MemorySegments) to link pre/post build commands.

The macro $(LibExt) is now available for External GCC link commands.

Debug

The macro $(MemorySegments) is now the default memory simulation parameter.

Editor

Improved performance of delimiter matching when editing a large file.

IDE
Fixed paste keyboard accelerator being handled by editor when focused in the find in files dialog (macOS
only).
Added support for CrossKey USB license key.

Installer

Fixed Linux file association.

50

CrossWorks for ARM Reference Manual Introduction

Version 4.8.3

Build

Updated the LLVM/Clang tools build to use the 13.0.0 source release.
Updated the GCC/BINUTILS tools build to use the GNU ARM Embedded Toolchain 10.3-2021.10 source
release.

Debug

Added support for CMSIS-DAP v2.

Fixed size display of unsized arrays in variables display.

Display C file level statics and C++ static members in globals window.

Added support for SWD multi-drop with CrossConnect, CMSIS-DAP and FTDI target interfaces.

Editor

Fixed tab characters not being inserted when in block selection mode.
Fixed positioning of cursor when carrying out a block insertion past the end of a line and the Use Tabs
option is set to Yes.

Editor now syntax colors files with .html file extensions.

IDE

Fixed problem reading the environment.xml file on certain systems.
Project Explorer context menu action Save Solution As... now generates a sorted project file.
The Set Active Project dialog now initially selects the current active project.

Version 4.8.2

Build

Fixed removing of project output files when project items are removed/added/excluded.
Updated the GCC/BINUTILS tools build to use the GNU ARM Embedded Toolchain 10.3-2021.07 source
release.

Debug

Display secure/non-secure MSPLIM, PSPLIM in CPU register group.
Fixed crash when displaying libcxx containers.
Fixed simulated pkhbt, pkhtb instructions.

Fixed variable view tooltip truncating uint64_t decimal values to 19 digits.

51

CrossWorks for ARM Reference Manual Introduction

Fixed crash when passing a null format pointer to debug_vprintf, debug_vfprintf, debug_vscanf and

debug_vfscanf functions.

Editor

IDE

Fixed syntax coloring of numerical escape codes.
Fixed syntax coloring of #include filenames.
Fixed incorrect indentation when inserting a tab character before another tab character.

Fixed the find in files dialog not remembering the "Search In" selection between sessions.

Fixed the find in files dialog not enabling the find button under certain circumstances.

Fixed font selection when using macOS 12 (Monterey) BETA.

The project explorer's build configuration combo box now displays the configuration name as the tooltip
if the configuration name is wider than the combo box.

The build configuration search now matches on each word rather than the entire string.

Assembly code syntax colorer now colors FIXME, ATTENTION and Lint comment tags.

Package manager groups can now be collapsed and expanded.

Double clicking in terminal windows now selects words.

Added BuildLinkProject command (Ctrl+P, K).

Added OpenLinkerMapFile command (Ctrl+P, M).

Added "Show Labels In Disassembly" and "Show Source In Disassembly" environment options to
disassembly window context menu.

Fixed project window keyboard accelerators not being enabled and disabled correctly when selecting
project nodes.

Fixed manual package installation not selecting all dependee packages for installation.

Fixed display of find and replace window results containing tabs.

Version 4.8.1

Build

Fixed BinaryFile.pokeUint32() script function ignoring the littleEndian option.

Add support for ARMv8.1-M architecture and Cortex-M55 processor.

The build macro $(RellnputDir) is set to dot for files that are not relative to the project.
Fixed 'dot moved backwards' linker warning when placing 'run in' sections.

Add project property Compile C Files As C++.

Add project property Enable Use Of __cxa_atexit.

Add project property Vector Extension for ARMv8.1-M architecture projects.

Set the compiler property Use Builtins default to Yes.

52

CrossWorks for ARM Reference Manual Introduction

Updated the LLVM/Clang tools build to use the 12.0.1 source release.

Debug

Changing the PC value in the registers window will now updated the debugger windows.
The registers window splits up the cfbp register group into individual registers.

Copy text selection in the memory window now copies the exact text to the clipboard.
Fixed syntax coloring of disassembly when visible whitespace option is enabled.

Add support for ITM_RxBuffer/ITM_RXBUFFER_EMPTY for target input.

Add simulator support for FPv5 vrint/vcvt instructions.

Editor

IDE

Fixed syntax coloring of XML comments.

Fixed incorrect syntax coloring of certain C/C++ comments containing ampersand characters.

Fixed syntax coloring of XML documents when visible whitespace option is enabled.

Fixed highlighting of text containing tab characters.

Fixed highlighting of text containing whitespace characters when visible whitespace option is enabled..
Fixed syntax coloring of single line comments started with the '@’ character in ARM assembly code.
The editor now supports highlighting of C/C++ raw string literals.

Improved graying of inactive code on lines containing C preprocessor directives.

Fixed duplicated " or < characters when selecting #include code suggestions.

Scroll wheel can now be used while selecting text with the mouse.

Auto-indentation now uses the indentation level of the last non-empty line if enter is pressed on an
empty line.

Go to definition and declaration operations now highlight the symbol being searched for.

Fixed the previous horizontal scroll position not being correctly restored when opening a solution and
the editor is not docked in the default dock site.

Fixed the previous cursor column position not being restored when opening a solution.

C/C++ syntax coloring is now applied to files with no extension.

Added "String", "String Delimiter", "String Escape", "XML Delimiter", "Spelling Error", "Line Number" and
"Line Number Highlight" to customizable color scheme.

Added EditDeleteLine command (Ctrl+Shift+L).

Fixed text appearing behind editor scroll bars when using dark theme.

Project Explorer context menu action Convert to Regular Folder now operates recursively and can
subsequently be modified like a regular folder.

Fixed edit actions (cut, copy etc) on project nodes in Project Explorer.

Fixed Code Outline window not updating when editor is saved.

Manual package installation now warns of package dependency errors when the depdendee package is

unknown to the package system.

53

CrossWorks for ARM Reference Manual Introduction

Added Export to Text Editor to debug terminal.

Line editor now scrolls when cursor reaches button or status message rather than removing it.

Fixed file selector combo box not moving file list if parent window is moved.

Fixed file selector combo box keeping file list on top of all windows.

Fixed selecting of files from the file selector combo box file list when using the mouse.

Find dialogs now preserve the state of the show options button.

Fixed drag and drop of files on macOS.

Fixed crash after closing disassembly window.

Fixed crash when using find in files to search in the current document and there is no editor currently
focused.

Build log can now handle colored compiler diagnostics.

Floating point registers will now be displayed in floating point format when Decimal format is selected.
Manual package install now removes existing version of package if already installed.

Improved appearance of macOS combo box dropdowns containing icons.

Fixed external tools not appearing when the match element is omitted from the tool definition in external
tools file.

Fixed crash when carrying out clipboard operations on files located in output files folder.

Fixed display of tab characters in terminal emulator window.

Fixed property values in project explorer not updating when modified using dark theme.

The selected folder in the find and replace window is now persistent between sessions.

Opening the new project wizard while debugging now shows the "Stop debugging?" prompt.

Fixed editor grouping C/C++ source and header files together in the "Single Title Button For All
Documents" file selection menu.

Version 4.8.0

Build
The build macros $(RellnputDir) and $(RelinputPath) are now defined for project level build commands.
Fixed section renaming when using clang compiler.
Escape; in exported build commands on Linux/macOS.
Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 10-2020-q4-major
source release.
Replace Run Static Code Analyzer with Analyze action on project explorer context menu.
clang-tidy now used for Static Code Analyzer, checks are specified in project property Clang Tidy
Checks.
Add project property Analyze After Compile to enable the analyzer to run when a source file is compiled.
Debug

Fixed simulator setting carry flag on thumb2 register shifted Isls, Isrs, asrs and rors instructions.

54

CrossWorks for ARM Reference Manual Introduction

Add support for displaying double precision registers d16-d31 with J-Link target interface.
Added 64-bit view to memory window.
Add support in registers window to display double precision registers in various NEON formats.

Add debug support for restrict types.

IDE

Debug terminal no longer erases line if the line been output ends with "\r\rin".

Version 4.7.3

Build

rtti can now be used without exceptions enabled.

Fixed crash when adding files to project folder with no project node selected.

Updated the LLVM/Clang tools build to use the 11.0.0 source release.

Fixed clang/segger-cc compiler option for Merge Globals.

Add Disable Function Inlining option to code generation options.

Optimization levels 0-4 are now supplied to the llvm LTO compiler.

Add Linker Search Path option to linker options.

Fixed double counting of initialized data size statistic in project explorer.

Fixed lock up when removing Externally Built projects that have the Clean Command property set.
Debug support added to gcc LTO built executables.

Fixed gcc LTO support for C++ programs that have the same symbol defined multiple times.

Fixed llvm LTO support discarding weak symbol definitions.

Debug

Fixed NaN detection in simulator.

Improved disassembly window's update speed when scrolling.

Fixed umaal implementation in simulator.

Fixed Debugger > Restrict Memory Access using ELF file to determine target address ranges.
Improved type interpretation for STLPort, libstdc++ and added support for libc++.

Added debug_evaluate to debuglO.

Add support for .debug_macinfo debug sections.

Fixed exception when running CrossLoad with expired license support period.

Editor

Fixed matching of delimiters that are within strings.

Fixed tab characters not being used for auto indentation when tabs are enabled.

55

CrossWorks for ARM Reference Manual Introduction

Fixed loading of files from a file system that does not support file locking (Windows only).

IDE

Fixed opening of package source files from help contents window.
Fixed file selector dialog not remembering selected file type filter.
Fixed GUI locking up when find in files on large files.

Improved appearance of memory usage windows when window is small.

Version 4.7.2

Build

Add support for ARMv8 architectures to intrinsics.h.

Fixed passing Additional Assembler Options to compile step assembler command.

Add Run Preprocessor option to assembler options.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 9-2020-g2-update
source release.

Added BinaryFile.loadAppend() script function.

Symbol renaming of __ vfprintf/__vfscanf/__do_debug_operation done by linker command-line rather
than in generated Id script.

Updated the LLVM/Clang tools build to use the 10.0.1 source release.

Debug

Fixed watch windows resetting the radix of child nodes when parent node is selected.

Replace Clear Disassembly Breakpoints On Debug Stop with Disassembly Breakpoints environment
option.

Source breakpoints are shown in the disassembly window and vice-versa.

Add debugger project option Alternative LDR Disassembly.

Obiject file disassembly now contains intermixed source code.

Editor

Fixed syntax coloring of assembly files not working when visible whitespace is enabled.

Shift+Tab now reduces indentation of current line when no text has been selected.

Text editor's horizontal scroll bar now uses maximum line length for maximum scroll value.

Changed the Linux version's default keyboard shortcut for the EditUppercase command to "Ctrl+K, U" in
order to avoid a clash with the Ibus input method's default Unicode Code Point shortcut. The original key
sequence of "Ctrl+Shift+U" remains defined as an alternative shortcut.

Added Edit > Selection > Toggle Comment (Ctrl+K, Ctrl+/) command.

56

CrossWorks for ARM Reference Manual Introduction

Selection comment and uncomment operations now add and remove comments at indentation level of
selection rather than only at the start of the line.

Added syntax highlighting for Python source files.

Fixed inactive code coloring being cleared when file is saved.

Fixed navigation commands being disabled when file is saved.

The Edit > Others > Duplicate (Ctrl+D) command will now duplicate selected text.

Spell check now ignores camel case words.

Fixed extension of multi-line cursor after multi-line text insert.

IDE

Symbol browser, watch, trace and register windows now save exported text files to the project directory
by default.

Memory usage window now shows the percentage used of segments and sections.

Build summary now shows size of segments.

Memory window columns are now grouped in auto column mode.

Fixed project explorer's Open With > System Web Browser menu option doing nothing on Linux.

Version 4.7.1

Build

Fixed vfscanf implementation always including support for character classes.

Added missing wide character, float point implementations of vfprintf.

IDE

Fixed errors when loading 3rd-party dynamic libraries on macOS Catalina.

Version 4.7.0

Build

Fixed lock up when removing Externally Built projects that have the Clean Command property set.

Fixed new project wizard's build configuration selector selecting incorrect configurations with some
project templates.

Fixed and improved definitions of wchar_t, WCHAR_MAX and WCHAR_MIN in header files.

Fixed output of floating point numbers using printf when precision value is 1 and the Code > Printf/Scanf

> Printf Floating Point Supported project property is set to Float.

57

CrossWorks for ARM Reference Manual Introduction

Updated the LLVM/Clang tools build to use the 10.0.0 source release.

Added Windows > Project Explorer > Check Solution Target option.

Files now appear in alphabetical order when dragging and dropping them into a project explorer folder.
Fixed Left-justify printf format directive.

Correct names of 64-bit clz/ctz helper functions.

Debug

Fixed crash with ElfDwarf files containing .debug_types section.

Fixed timeout problems with Targetinterface.runFromToAddress (and variants) when used with J-Link
target interface.

Fixed source file identification when debugging multiple elf files.

Add Confirm Automatically Build Before Debug environment option.

Improve cast support in debug expressions.

Fixed Target > Attach Debugger setting breakpoints after Debug > Stop with no Target > Disconnect.

Editor

IDE

Fixed syntax coloring of hex floating point constants.

Added Text Editor > Visual Appearance > View Whitespace option.

Fixed block editing on lines containing tab characters.

Added Edit > Others > Toggle Column Guide.

Fixed code formatter corrupting characters that cannot be represented using Latin 1 character encoding.
Fixed code formatter marking file as modified when it has made no changes to the file.

Fixed code formatter removing all breakpoints and bookmarks.

Fixed file auto recovery appending characters to the end of recovered file in some circumstances.

Selection highlight is now visible on text that has a background color specified in the color scheme.

Fixed .elf files not appearing in the Target > Download File > Download EIf File... and Target > Verify
File > Verify EIf File... file browsers.

Keyboard options dialog now displays command descriptions as a tooltip.

Fixed crash after deleting entries from clipboard ring window.

Fixed default executable extension to be .axf for External GCC toolchain builds.

Fixed appearance of memory usage windows when window is small.

Fixed display of non-printable characters in binary editor.

The binary editor font can now be specified using the Environment > User Interface > Application
Monospace Font option.

macOS application bundle paths can now be used when specifying the location of external executables.
Fixed display of non-printable characters in binary editor.

Fixed the restoring of main window position when located on a display arranged above or to the left of

the display containing the menu bar (macOS only).

58

CrossWorks for ARM Reference Manual Introduction

Fixed context menus not appearing on a display arranged above the display containing the menu bar
(macOS only).
Fixed crash when starting and stopping the debugger using the editor toolbar buttons.

Version 4.6.0

Build

Fixed generation of projects from a project template when file nodes have parent folder nodes
containing no files.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 9-2019-g4-major source
release.

Removed Use External GCC environment option and the -gcc command line option on crossstudio and
crossbuild. See how to use an Using an External ARM GCC toolchain documentation for project property
settings.

Added Use External GCC and GCC Prefix project properties.

Added Use Compiler Driver project property.

Added fixed point implementation of expf selected when Library Optimization is set to Fast.

Project explorer code and data size is now displayed as bytes when less than 1K.

Project property Access Variables Within Memory Map Only changed to Restrict Memory Access.
Changing the ARM Core Type project property now updates the ARM Architecture property.

The User Include Directories are supplied to the assembler to support .include and .incbin directives.

Updated the LLVM/Clang tools build to use the 9.0.1 source release.

Debug

Fixed crash when PC Sampling used with J-Link.

Increased the nested structure depth that can be displayed in watch windows.

Add Load Begin Script and Load End Script project properties.

SVD dim elements can now be specified as hex numbers.

Add cJTAG to Target Interface Type project property.

Fixed displaying breakpoints on code lines in startup completion symbol before startup completion has

occured.

Editor

Fixed text editor auto recovery duplicating end-of-line terminators when file being edited is in DOS
format on a UNIX system.

Fixed incorrect calculation of caret width when using proportional fonts.

Added missing close button on code editor find and replace dialog.

Fixed block uppercase and lowercase operations when block has been marked from top right to bottom
left.

59

CrossWorks for ARM Reference Manual Introduction

Installer

Added additional file icons in order to improve appearance at smaller sizes (Linux only).

Version 4.5.1

Build

stddef.h offsetof macro now uses _builtin_offsetof.

Fixed Windows > Project Explorer > Read Only Data in Code option working the wrong way around.
Debug

Fixed crash when using CMSIS-DAP target interface on latest versions of macOS.

Editor

Fixed auto-complete suggestion being inserted when enter key is pressed immediately after closing

suggestion dialog with mouse click.

IDE

Fixed find in files dialog not disabling find button when search text field is empty.
Fixed crash when using Find References on a preprocessor definition defined on the command line.
Fixed project explorer not sorting tree when files are added using drag and drop.

Fixed menu descriptions not appearing on status bar (Windows and Linux only).

Version 4.5.0

Build

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 8-2019-g3-update
source release.

Add Generate Assembler Listing File project property.

Updated the LLVM/Clang tools build to use the 9.0.0 source release.

Debug

Add support for CoreSight SWO on Cortex-M devices.

Fix clearing trace output when Debug > Break is used.

60

CrossWorks for ARM Reference Manual Introduction

Add support for ARM semihosting.

Fixed simulator leaving pc on next instruction on b . detection.

Add Load Additional Projects project property to enable a project to load the outputs of other projects.
The property Debug Dependent Projects has changed to Debug Additional Projects the value Yes
maintains the old behaviour.

Editor

Editor now displays number of lines and columns selected when selecting text.

Fixed the Replace in selection option not appearing on the find and replace dialog when only a single line
is selected.

Fixed selected text not adjusting size when carrying out a replace in selection.

Fixed crash when using Edit > Column Tidy and a comment is selected.

Version 4.4.5

Build

Fixed CrossScript crash when the BinaryFile.resize() function is called without previously calling the
BinaryFile.load() function.
Fixed crash when creating a new external built executable project.

Fixed crash when creating an empty solution.

Editor

Editor no longer outputs syntax errors to stderr when carrying out code completion.

IDE

Help window search now updates while typing.

Version 4.4.4

Build

Build log window's memory usage summary now displays small sizes in bytes.
Removed option to select linker variant.

Fixed crash when LTO processing of big endian object files.

Fixed -template option on crossbuild.

The preprocessor define __HEAP_SIZE__is now set to the value of the Heap Size project property.

61

CrossWorks for ARM Reference Manual Introduction

Debug

Fix watch window latching the initial size of array variables.

Added Debug > Debugger > Debug Terminal Log File project property.

Editor

IDE

Code editor will no longer match braces, brackets or parenthesis located within comments.

Fixed incorrect syntax coloring of C comments introduced with the /*I< character sequence.

Fixed crash when starting a build with a keyboard accelerator whilst the code suggestion popup is visible.
Fixed breakpointable line markers not appearing on lines that have a temporary breakpoint set.

Fixed delete forward key deleting two characters when code suggestion dialog is visible.

Fixed caret not being visible with certain fonts when located at the end of a line and an underline caret
style is selected.

New project file selection puts files into the folders.
Register window's group selector popup now displays a scroll bar if there are more groups available than
will fit on the display.

Fixed crash if delete key is pressed in target window without having a target interface selected.

Version 4.4.3

Build

Fixed "V8M Mainline" and "FPv5-SP-D16" library build variants.
Pre-Build and Post-Build commands no longer apply to clean operation.

Fixed vfprintf %f format when Printf Floating Point Supported is set to Float.

Debug

Added environment option Switch Project To Text Editor to enable multi-project debugging switch on
editor focus.

Target device status shows multiple device status when multi-project debugging.

Added Debug Location toolbar.

Added additional Debug Symbols File and Debug Symbols Load Address project properties.

Fixed LIBMEM RPC loader instability when downloading to V8M architectures.

Editor

Fixed caret not being visible with certain fonts when located in virtual space.

62

CrossWorks for ARM Reference Manual Introduction

IDE

Significantly improved speed of selection deletion when editing large files.
Added Hide/Show toolbar on editor context menu.

Fixed goto definition opening a relative include file under certain circumstances.

Fixed open with external browser (macOS only).
Automatic column resizing in properties window is now disabled if column splitter is moved.
Package manager can now be opened from the new project dialog.

Version 4.4.2

Build

Added LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES option.
Add stdatomic.h and helper functions to C library.
Fix include file dependency generation when Keep Preprocessor Output is enabled.

Fixed linker script generation and memory usage display when memory segment ends at OxFFFFFFFF.

Debug

Added Targetinterface.setTCK() target script function.

Added Debug > Target Loader > Loader Type project property.

Fixed crash clearing execution profile window when not debugging.

Fixed FTDI based target interfaces not setting the Target > Fast Memory Accesses target property to Yes
by default.

Editor

IDE

Added Text Editor > Visual Appearance > Mate Match Off Screen option.

Removed text menu separators on macOS.

Fixed the recent projects list not being updated when project is opened from the recent projects window.
Fixed pinning of projects not working in the recent projects window.

Improved resizing of dynamic folder properties window.

Fixed crash when docking windows.

Fixed crash when attempting to create a directory on a Windows drive that does not exist.

Improved appearance of list view titles when using dark theme.

Added Internet > HTTP Caching environment option.

Added Package Manager > Verify Package Downloads environment option.

63

CrossWorks for ARM Reference Manual Introduction

Fixed waypoint back and forward keyboard accelerators not working on macOS.

Version 4.4.1

Build

Add support for ARMv8-A/R AAarch32 architecture.
Add ___clz*i2, __ctz*i2, __popcount*i2 and __parity*i2 helper functions to C library.

Debug

Add support for Cortex-A53 executing in AArch32 non-secure state.

Debugger will display data on debug terminal that is written to the ARM/CortexA/R DCC channel when
debugio is not enabled.

Added USB > Maximum Packet Count CMSIS-DAP target property.

Fixed lock up when using some CMSIS-DAP devices on Windows 10 and macOS.

Improved CMSIS-DAP performance when entering and exiting debug state.

Fixed crash when using FLM loaders on Linux and macOS.

Fixed crash with ST-LINK/V2 that has earlier than V2.J28 firmware.

Editor

The colour of column guide bars can now be modified.
Fixed caret not being visible with certain fonts when an underline caret style is selected.

Editor keyboard accelerators will now activate when code suggestion popup is visible.

IDE

Fixed reassignment of FindUsingGoogle command shortcut not being remembered.

Version 4.4.0

Build

Fixed crash when calling character type functions and UTF-8 locale codeset has been selected.

Fixed link error when providing user defined __user_find_locale function.

Fixed iswspace function not recognising some characters as spaces when UTF-8 locale codeset has been
selected.

Added programNotSection parameter to ElfFile.peekBytes and ElfFile.crc32 JavaScript functions.

Fixed parselnt and parseFloat JavaScript functions.

64

CrossWorks for ARM Reference Manual Introduction

Fixed Date.getTime JavaScript function.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 8-2018-g4-major source
release.

Updated the LLVM/Clang tools build to use the 7.0.1 source release.

Pre-Build and Post-Build commands now work with solution and batch builds and on dependent projects.
Add project properties to enable external build commands to be used for compile and link.

Replaced environment options Enable All Warnings Command Line Options and Enforce ANSI
Checking Command Line Options with project properties Enable All Warnings Command Line Options,
Enable All Warnings C Compiler Only Command Line Options and Enable All Warnings C++ Compiler
Only Command Line Options.

Added Enforce ANSI Checking C Command Line Options and Enforce ANSI Checking C++ Command

Line Options.

Debug

Fixed saving of Tl hex files from memory window.
Fixed memory window not updating after loading memory from a file.
Add support for Cortex-M7 ETB tracing.

Editor

IDE

Scroll line up and scroll line down operations now move cursor into visible area if it is off-screen.
Fixed crash when closing editors.
Fixed code suggestion dialog not highlighting selected item with correct colour when dark theme is

selected.

Improved terminal emulator receive performance when using high baud rates.
Added ProjectExplorerExcludeFromBuild keyboard command.
Debug terminal now handles carriage return characters.

Version 4.3.2

Build

IDE

Fixed slow building problem introduced in version 4.3.1.

Added option to open file with external editor to project explorer context menu.

Fixed package manager not correctly uninstalling legacy packages.

65

CrossWorks for ARM Reference Manual Introduction

Version 4.3.1

Build

Fixed use of section attributes in source code when the same section has been renamed using the section
name project properties.

Fixed linker script not being regenerated when Code > Linker > Additional Linker Script Generator
Options property is modified.

Setting the Code > Linker > Check For Memory Segment Overflow property to No no longer disables
unplaced sections checks from the GNU LD linker script. These checks can now be disabled by adding the
-no-check-unplaced-sections option to the Code > Linker > Additional Linker Script Generator Options
property.

Fixed --gap-fill option not being passed to objcopy if the Code > Linker > Additional Output File Gap Fill
Value property is set to 0x00. Clear this property if existing behaviour is required.

Added C++14 sized deallocation functions.

Debug

Added support for STLINK-V3 to ST-LINK/V2 and ST-LINK target interfaces.
Added Debug > Target Control > Check Load Sections Fit Target Description project property.

Fixed incorrect "load section does not fit the target description" error message.

Editor

Auto-surround text is no longer activated when using block selection.

IDE

Fixed incorrect font spacing in list view windows when display scaling is used.

Fixed crash when dragging a window icon over the icon of another window in the the same docking area.
Fixed register selection pins in register window doing nothing when clicked.

Fixed crash when closing editor windows with the code outline window active.

Version 4.3.0

Build

Fixed placement of .data_tcm_run section in default flash_to_tcm_placement.xml file.
Added "Unaligned Access Support" code generation option.

Added "Link Time Optimization" code generation option.

Updated the LLVM/Clang tools build to use the 7.0.0 source release.

66

CrossWorks for ARM Reference Manual Introduction

Fixed output of floating point numbers using printf when precision value is 1.

Debug

Fixed crash when evaluating certain dwarf information.

Fixed crash while disassembling a line with a long symbol name.

Fixed crash when target connection is lost or reset.

Fixed inheritance of the "Reset Script" property using the active build configuration.

Fixed watch window variables not being updated correctly after they have been modified.

Editor

IDE

Added Text Editor > Programmer Assistance > Code Completion Replaces Existing Word option.
Fixed Ctrl+F not focussing text editor find popup on some Linux distributions.

Fixed incorrectly displayed parameters in code suggestion popup when showing overloaded functions.
Fixed use of tab key when function prototypes are displayed in code suggestion popup.

Fixed crash if tab size gets set to 0.

Fixed potential crash when code suggestion popup is displayed and an Alt key combination is pressed.
Comments are no longer displayed as an italic font by default.

Improved IDE start up and project loading time when a lot of editors are open.

Added Environment > User Interface > Theme option (Windows and Linux versions only).
Fixed sporadic crash when IDE is starting up.

Editor tabs can now be reordered.

Editor tab order is now preserved in session file.

Project files can now be drag and dropped into the project explorer in order to load them.
Fixed missing environment settings when Japanese system locale is selected.

Fixed slow register window search.

Fixed list view windows not using the Environment > User Interface > Application Monospace Font

property.

Version 4.2.1

Build

Fixed Sentinel USB tokens not working after Windows 10 version 1803 update.

Fixed crash when building on a machine with more that 16 cores.

Batch builds are now done in parallel.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 7-2018-g2-update
source release.

67

CrossWorks for ARM Reference Manual Introduction

Updated the LLVM/Clang tools build to use the 6.0.1 source release.
Added -disable-missing-runin-error linker script generator option.
Added Code > Linker > Additional Linker Script Generator Options project property.

Multiple run in sections can now be specified in section placement file.

Editor

Fixed using Alt+Tab when quick search window is visible (Linux only).

Added Text Editor > Programmer Assistance > Code Completion Selection Key option.

Added EditMoveSelectedLineUp and EditMoveSelectedLineDown commands and assigned them to Alt
+Up and Alt+Down keys.

IDE

Keyboard map is now saved with UTF-8 encoding.

Web browser links to text files now open in web browser rather than text editor.

Add capability to import eclipse .project/.cproject files as supplied with STM32Cube sample projects.
Fixed crash when closing editor windows when code outline window is open.

Fixed processing of multiple backspace characters in text output windows.

Fixed crash in outline window when viewing certain C++ code.

Fixed missing clipboard operations from text output window's context menu.

Line edit property editors now initially selected.

Fixed crash in stack usage window viewing certain .elf files.

Version 4.2.0

Build

Updated the LLVM/Clang tools build to use the 6.0.0 source release.

Supplied versions of arm_neon.h that are compatible with the supplied gcc and clang compilers.
Command line builder now implements -verbose, default is to build silently.

Added Code Generation option "ARM Advanced SIMD Auto Vectorize" to enable loop vectorizing in the
compilers.

Added prototype for __putchar() to stdio.h.

sys/stat.h now declares mode_t and off_t types.

Added S$(UnixTime) system macro.

Removed deprecated throw declarations in new header file.

Debug

Fixed inability to add items to the watch window when periodic update is enabled.

68

CrossWorks for ARM Reference Manual Introduction

Edited source files will not be used by the debugger.

The Debug option "Connect With Reset" is now ignored by the j-link target interface.

J-Link implemented breakpoints are now cleared on debug stop.

Linux version now using libusb-1.0 library for USB access.

The CrossConnect serial number can now be cleared when editing the Target > Host Connection target

property in the properties window.

Editor

IDE

Added Text Editor > International > Auto-Detect UTF-8 option.

Fixed text editor tooltip not working when word starts on first column.

Fixed goto definition not working correctly when definition has been selected.

Tab key now indents only if selection is multi-line.

Find in files dialog can now be opened using Ctrl+Shift+F from the incremental find dialog.

Fixed activation of keyboard accelerators from HUD windows.

Fixed automatic installation of packages when clicking on documentation links.

Fixed debug terminal find only carrying out search once.

Fixed bookmarks window updating bookmark line numbers when lines were inserted into or deleted
from a different file.

Fix command line supplied to clang static analyzer for ARM/Cortex-A/Cortex-R devices.

Fixed opening of project files when the File > File Open Action property is set to Web Browser.
Popup error message now displayed if package list cannot be downloaded when refreshing.

Added File Search > Collapse Results environment option.

Fixed crash when refreshing the outline window while editing an empty XML file.

Fixed setting propertyGroup defined properties on folder nodes when importing package files.

Installer

Fixed Windows installer failure when user name contains certain non-ASClIl characters.
Fixed loss of icons and inability to start IDE from desktop if umask has been set preventing read and

execute permissions from being enabled for others (Linux only).

Version 4.1.1

Build

Added c++1z and gnu++1z C++ language standard options.
Replaced gcc c++ exception handling code with [lvm equivalent.

Fixed command line generated when "Keep Preprocessor Output” is enabled.

69

CrossWorks for ARM Reference Manual Introduction

Improved parallel build performance on Linux and macOS hosts.

Debug

Word and half-word writes to SWO channel 0 are now displayed in the debug terminal.
Improve debug when compiler option "Supply Absolute File Path" is set to "No".
Fixed crash when quick watch used on a C++ struct containing member functions.

Enhanced Threads window to be able to display additional RTOS queues.

Editor

IDE

The Text Editor > Programmer Assistance > Check Spelling environment option now defaults to No.
Fixed code formatting of a selected block not working correctly when the Tab Cleanup On Save option is
enabled.

Fixed NULL being inserted into text file when CTRL+Space is pressed on Linux version of the code editor.
Added replace in selection to the find dialog's find options summary.

Fixed freezing of IDE when saving a large text file and the Delete Trailing Space On Save option is
enabled.

Improved performance of tabify and untabify operations.

Cursor now moved if it is on a location that is deleted by the code formatter.

Added Formatting > Empty Lines At End Of File option.

Fixed Find Extras context menu not correctly showing the text that will be searched for.

Added Text Editor > Formatting > Use .clang-format File formatting option.

Auto comment no longer activates when in block selection mode.

Fixed crash when using a display with a 16-bit color depth.

Fixed HUD windows not closing when all docked windows have been closed or removed.
Fixed crash when changing active projects while Source Navigator is running.

Check boxes in project system dialogs can now be toggled by a single click.

Fixed menu key not opening context menu in watch and register windows.

Improved appearance of list view check boxes when using display scaling.

Property editor dialogs can now be resized.

Remove .plist files created by clang static analyzer.

Fixed find window's file extension filter not being saved when using Find Extras options.
Fixed find window's additional options summary not being displayed when options are concealed.
Find window's additional options summary now includes file extension filter.

Full file path now displayed in find window's result list.

Fixed ordering of history in package release notes.

Fixed potential problem when multiple processes are accessing settings.

Fixed unresponsive GUI when build generates a lot of output.

Added File Search > Flat Search Result Output environment option.

70

CrossWorks for ARM Reference Manual Introduction

Fixed incorrectly located line edit in list views.

Installer

Fixed crash when running on an Ubuntu 14.04 system using KDE window manager.

Licensing

Fixed broken license activation and management when Use External GCC option is enabled.

Version 4.1.0

Build

Added Environment > Find and Replace > Greedy Regular Expressions environment option.
Add support for Cortex-R7, Cortex-R8, Cortex-A15 and Cortex-A17 processor cores.

Added "V8M Has DSP Instructions" project option.

Added "V8M Mainline" and "FPv5-SP-D16" library build variants.

Fix tdata placement in Cortex-M placement files.

Debug

Fixed crash when connecting to J-Link from 32-bit Windows variant.
Documented the file format for the "Type Interpretation File" project property.

Fixed crash if something is entered in the disassembly window's expression input when not debugging.

IDE

Fixed display of multi-line messages in output window's task view.

Code editor suggestions now inserted on all lines when in block edit mode.

Code editor replace all now only replaces text within block when in block selection mode.

WebKit web browser now uses display scaling factor.

Show Large Icons In Toolbars option now applies to docking windows.

Added keyboard shortcut editor to environment options dialog.

Fixed crash that occured when cancelling the new project wizard when on the edit common project
settings page.

Fixed code editor suggestion popup not restoring opacity when ctrl key is released.

Pasting of a block selection is now done as a block insertion even if text editor is not in block edit mode.
Fixed text terminal not staying at end of file when maximum line limit is reached.

Added missing close button on code editor find dialog.

Pasting of a block selection is now done as a block insertion even if the text editor has lost focus.
Add environment option to enable the text editor to display section headers of ELF files.

Fixed generation of unexpected characters when composing a character with * ' or A keys.

71

CrossWorks for ARM Reference Manual Introduction

Licensing

Fixed wireless network interfaces not being included in list of network adapters on Windows.

Version 4.0.6

Build
Updated the LLVM/Clang tools build to use the 5.0.0 source release.
The inttypes.h header file now includes stdint.h as per the ¢99 standard.
Added "Math Errno" project option.
Dependency files are now deleted on project rebuild/clean.
Debug
Fixed generation of symbols when address_symbol and size_symbol attributes are used in a memory
map or section placement files.
Fixed "Raise Interrupt” with Cortex-M simulator.
Fixed crash with IAR v8 generated elf files.
Fixed usage of brackets in debug watch expressions.
Additional load files can be relative to the project directory.
Fixed crash when scrolling the disassembly window with the mouse wheel when debugger is not
running.
IDE

Added Text Editor > Formatting > Additional Formatting Styles environment option.

Added case sensitivity, whole word and regular expression options to code edit's incremental search
dialog.

Code editor's incremental search dialog no longer resets find dialog settings.

Fixed drag and drop of file onto a project explorer file node from an external program.

Fixed loss of focus when an expanded project explorer node is deleted.

Fixed renaming of build configurations not applying when clicking on another build configuration after
change.

Modified macOS text editor cursor key mapping to be more like other macOS text editors.

Double clicking on company logo images in package manager and new project wizard now has no effect.

Fixed update of registers window status message when no registers are selected.

Version 4.0.5

Build

Fixed running of build command lines containing a '>' output redirection character.

72

CrossWorks for ARM Reference Manual Introduction

Fixed command line property editor.

Added static_assert definition to assert.h.

Fixed crash when Folder Options node is selected in project explorer and Open Solution in Editor is
activated.

Dynamic macros are now expanded in property editor macro preview.

Added RellnputDir and FolderPath macros.

Added empty solution project template.

Added missing __powidf2 and __powisf2 compiler helper functions.

Debug

IDE

Fixed crash using Debug | Restart with the simulator target before startup breakpoint is hit.
Fixed crash using Target | Attach Debugger with J-Trace target.

Fixed bug in backtracing code which caused local variables to be displayed incorrectly.

CWSys object can now be used from crossload script.

Local, global, auto and watch window columns are now independently configurable.

Fixed display of signed 32-bit integer variables on 64-bit Linux and macOS hosts.

Fixed Cortex-M simulator return from exception when using both main and process stack.
Speed up single stepping of large programs when there are many unfound symbols in watch window.
Add "Auto" capability to SWO baud rate project property.

Changed values in variable and register windows are now identified by red text rather than a red
background.

Avoid memory and watch window update during download.

Improve speed of disassembly when source files cannot be found.

Added -reset option to CrossLoad.

Smaller up and down buttons in property window.

Shift+Tab now works when text editor is in block selection mode.

Indent when text editor is in block selection mode now aligns to the indent size setting.
Highlight all selected text now works when text is selected by keyboard.

Fixed opening of files using macOS Finder.

Improved opening of files from the command line.

Fixed crash in text editor when moving left a word at a time.

File extension comparisons for project, package and archive files are now case insensitive.
External diff tool runs as a detached process.

Fixed crash in code outline window when viewing an XML file containing a syntax error.
Add "Copy Full Path" to context menu in project explorer.

Find in files on solution will not search object and library files.

Fixed crash reporter hanging if report submission fails.

Environment option descriptions are now selectable.

73

CrossWorks for ARM Reference Manual Introduction

Improved performance of text editor brace matching in long files.

Version 4.0.4

Debug

Stop accessing address zero on debug reset on Cortex-M devices.

Add "Starting Stack Pointer Value" debug project property.

IDE

Macro viewer in property editor now has horizontal scroll bar.

Fixed blank entries in propery editor's build configuration combo box (macOS only).
Hyperlinks in property editor's description fields now open in an external browser.
Highlighted finds are now local to each text editor.

Fixed text editor match delimiter and extend selection operation (Shift+Ctrl+]).
Fixed moving of popup windows displayed when project is loading.

Fixed Delete key not deleting selected text when cursor is at the end of the file.
Fixed crash running installer on Linux when KDE plugins are installed on the system.
Windows version no longer requires the Universal C Runtime update to be installed.

Updated macOS code signing certificates.

Version 4.0.3

Build

Fix generating additional output file when building with "Use External GCC".

Updated the GCC/BINUTILS tools build to use GNU ARM Embedded Toolchain 6-2017-q2-update source
release.

Updated LLVM/Clang to version 4.0.1.

C runtime start code now has an optional call to an external function named
InitializeUserMemorySections if INITIALIZE_USER_SECTIONS is defined.

Debug

Fix bug locating to assembly code source files.

Locals window update when accessing variables that are in restricted memory ranges.

IDE

Check syntax option is now enabled on files with .html extension.

Find extras menu order now the same in context menu as it is in the main menu.

74

CrossWorks for ARM Reference Manual Introduction

Fixed certain Alt key accelerators not working on macOS.

Fixed index problems introduced in version 4.0.2.

Version 4.0.2

Debug

IDE

Memory window size warning can be disabled and is now only shown when the size changes.

Fixed crash when the memory diff dialog is shown after download verification has failed.

Fixed incorrect calculation of memory usage window cell height when using high DPI fonts.

Fixed crashes caused by uncaught exceptions (Linux only).

Fixed incorrect width of editor margin when using Windows scaling.

Fixed pressing tab key while in block edit mode.

Fixed occasional randomly placed tooltips in code editor.

Added Text Editor > Editing > Tab Key Indents Preprocessor Directives environment option.

Fixed text editor crash when selecting and deleting past end of file with virtual space enabled.

Fixed text editor scrolling to the far left column when text is selected and the mouse is moved.

The Code Outline window now uses the same parser as the Source Navigator this has improved C++
support but has removed conditional preprocessor directives.

The Code Outline window can now display doxygen style comments in the Preview pane.

Fixed crash showing symbols browser for IAR generated executables.

Opening studio from shortcut when Allow Multiple Studios is set to No and studio is already running
now unminimizes and raises main window to the top.

Can now close the solution whilst the Source Navigator or Find References windows are active.
Statistics in the Project Explorer displays the sum of the files sizes of the containing folder node.

Improved error message reporting when studio startup fails.

Version 4.0.1

Build
Added "Export Makefile" to project build context menu.
Reworked compiler driver command line options.
Debug

Fixed the 64-bit Windows J-Link DLL not being found after it moved location in the V6.16 J-Link software

release.

75

CrossWorks for ARM Reference Manual Introduction

IDE

Fixed crash when auto disconnecting simulator before simulator has stopped.

Holding the shift key while scrolling the memory window with the mouse scroll wheel now locks the start
address.

Added Debug > Memory Window > Scroll Wheel Modifies Start Address environment option.

Fixed text editor cursor color when using CrossWorks Dark color scheme.

Added Insert Cursor and Overwrite Cursor colors to editor color schemes.

Fixed text editor repaint when highlight cursor line mode is enabled.

Fixed display of large toolbar icons.

Fixed activation of popup toolbar icons.

Fixed path property editor when using scaling on Windows.

The text editor line number font size now scales with the main text editor font size.

Project properties dialog now remembers splitter placement.

Improved support for Windows scaling.

Fixed code completion suggestion popup appearing on the wrong display on multi-display systems.
Fixed Edit > Selection > Tabify.

Added text editor block selection and edit.

Fixed File > Recent Files and File > Recent Projects not selecting first element of menu when activated
by keyboard.

Fixed Command+W not closing current editor on macOS.

Improved macOS clipboard support.

Avoid auto loading externally modified project file during build.

Grey out goto definition (and others) when indexer is running.

Fixed window group Close All Windows option not recording in session file that windows have been
closed.

Fixed excessively fast vertical scroll wheel scrolling in text output windows.

Editor dock positions are now restored when solution is loaded.

Licensing

Fixed activated licenses not being remembered on Linux.

Version 4.0.0

What's New

IDE

Fast, new look user interface.

76

CrossWorks for ARM Reference Manual Introduction

Native 64-bit Windows, macOS and Linux versions.
macOS Retina displays now supported.
New WebKit based help viewer.

Build

GNU ARM Embedded Toolchain version 6.
LLVM/Clang version 4 compiler.

What's Changed

IDE

Brace matching now takes into account inactive code lines.

Inactive code highlighting now updates as you type.

Added Text Editor > Save > Default Line Endings environment option.

Added different bitmaps to the project window for executable, library and staging project types.
Build detects when files have been excluded/included and cut/pasted into projects.

Project explorer paste file onto file will add it to the containing folder.

The source browser window has renamed the Stack column to Frame Size.

Added Code, Data and Const size columns to the source browser window.

Build

Added Pre-Build Command and Post-Build Command project options.

Added Post-Archive Command project options.

Added environment option Enable All Warnings command line option.

Added environment option Enforce ANSI Checking command line option.

Changed default for Emit Relocations to Yes.

Removed STLPort from the distribution. This is available as a library package.

Changed Printf Floating Point Supported project option to select between Float and Double support.

Changed default for Omit Frame Pointer to Yes.

Debug

Added Access Variables Within Memory Map Only project property.

Added Copy To Clipboard to memory window.

Single stepping will step again if there is more then one instruction sequence associated with a source
line of code.

The Auto Update feature of the execution profile window uses the J-Trace PRO streaming feature.
Added locate next/prev source/instruction buttons to execution trace window.

Added function call and return entries to execution trace window.

77

CrossWorks for ARM Reference Manual Introduction

78

CrossWorks for ARM Reference Manual CrossStudio Tutorial

CrossStudio Tutorial

In this tutorial, we will take you through activating your copy of CrossWorks; installing support packages; and
creating, compiling, and debugging a simple application using the built-in simulator.
Note

If you're viewing this tutorial from within the CrossStudio help Browser window, you may find it more
convenient to view using an external web browser so you can still see the entire CrossStudio window. To do so,

simply right-click on the help content in the CrossStudio Browser and choose Open With External Browser.

In this section

Activating CrossWorks
Describes how to activate your copy of CrossWorks by obtaining and installing an activation key for

evaluation.

Managing support packages
Describes how to download, install, and view CPU-support and board-support packages.

Creating a project
Describes how to start a project, select your target processor, and other common options.

Managing files in a project
Describes how to add existing and new files to a project and how to remove items from a project.

Setting project options
Describes how to set options on project items and how inheritance works for project settings.

79

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Building projects
Describes how to build a project, correct compilation and linkage errors, and find out how big your
applications are.

Exploring projects
Describes how to use the Project Explorer and Symbol Browser to learn how much memory your project
takes and how to navigate among the files that make up the project.

Using the debugger

Describes the debugger and how to find and fix problems at a high level when executing your application.

Low-level debugging
Describes how to use debugger features to debug your program at the machine level by watching registers
and tracing instructions.

Debugging externally built applications
Describes how to use the debugger to debug externally built applications.

80

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Activating CrossWorks

Each copy of CrossWorks must be registered and activated before it will build projects or download and debug
applications. In this tutorial, we are going to use CrossWorks's License Manager dialog to request an evaluation

activation key and, after the key is received, to activate CrossWorks.

If you have already activated your copy of CrossWorks, you can skip this page.

License Manager @

Manage your product licenses and activations

Installed licenses: If you wish to evaluate CrossWorks,
Product License Status request an activation key:
[Using Clipbnard] [By Mail]

If you have a product key, request
an activation key:

[UsingCIipbnard][By Mail]

When you have an activation key:

[Activate Product]

When you're done with a license:

[Remove License]

Requesting an evaluation activation key (with a default e-mail client)

To receive an evaluation activation key that is valid for 30 days:

Choose Tools > License Manager.
Click the Evaluate CrossWorks option.
Choose whether to lock the license to your computer's MAC address or to your system's primary disk.

81

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Send the e-mail containing the registration key to license@rowley.co.uk. If your development system
does not have a default e-mail client, copy the activation request and paste it into an e-mail to this

address.

Choosing which hardware to lock to is a matter of personal choice. If you lock to your primary disk and then
replace that disk drive, reformat it, or upgrade the operating system, CrossWorks may need to be reactivated.
If you lock to a network adapter and the network adapter fails and is replaced, then CrossWorks will require

reactivation.

When we receive your registration key we will send an activation key back to your e-mail's reply address. You

then will use the activation key to unlock and activate CrossWorks.

Activating CrossWorks
When you receive your activation key from us, you can activate CrossWorks as follows:

Choose Tools > License Manager.

Click the Activate CrossWorks option.

Enter the activation key you have received from us.

Click Install License.

The new activation should now be visible in the list of Installed licenses. Click Close to close the License

Manager window.

Note

If you request an activation key outside office hours, there may be a delay processing the registration. If this is
the case, you can continue the tutorial until you reach the Building projects sectionyou will need to activate

CrossWorks before you can build.

82

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Managing support packages

Before a project can be created, a CPU-support or board-support package suitable for the device you are
targeting must be installed. A support package is a single, compressed file that can contain project templates,

system files, example projects, and documentation for a particular target.

In this tutorial, we are going to use the Generic ARM CPU Support Package to create our project. This will
allow us to create a project that will run on CrossWorks' ARM simulator. To create a project that would run on
hardware, you would need to install and use support packages suitable for that target hardware but, for the

purposes of this tutorial, we'll just target the simulator.

Note that the Generic ARM CPU Support Package project templates can be used to target real hardware for
devices that don't currently have a suitable support package; however, it is highly likely that you will need to
modify memory map files, startup code, reset scripts, and the loader program in order to support the target.
This is outside the scope of this tutorial but, should you wish to do this, see the documentation included in the

Generic ARM CPU Support Package for more information.

If you have already installed this support package, you can skip this page.

Downloading and installing a support package

To download and install a support package:

Choose Tools > Manage Packages.
Select the Generic ARM CPU Support Package entry.
(To select more packages to download and install at the same time, you can control-click the additional

packages.)

83

CrossWorks for ARM Reference Manual

CrossStudio Tutorial

Package Manager [=]
Select Packages
| Search Packages -

Title Type Status Action -
oI Lot OO TP PO TRy COUUTO SOp PO TRy TooT T T croTT
Embest LPCEE2000-B Board Support Package EBoard Support Package Mot Installed Ma Action
Embest LPCEE2000-5 Board Support Package Eoard Support Package Mot Installed Mo Action
Freescale i, MX¥ LiteKit Board Support Package Eoard Support Package @ Mot Installed Mo Action
Freescale i.MX21 LiteKit Board Support Package Eoard Support Package Mot Installed Mo Action
Freescale MACT100 CPU Support Package CPU Support Package Mot Installed Mo Action
Freescale MACT100EVE Board Support Package EBoard Support Package Mot Installed Mo Action
Freescale MACT111LCEVE Board Support Package Board Support Package Mot Installed Mo Action
Generic ARM CPU Support Package CPU Support Package Mot Installed Mo Action
Generic PXA270 Board Support Package EBoard Support Package Mot Installed Ma Action
Hitex STR9-com5Stick Board Support Package Eoard Support Package Mot Installed Ma Action
IAR LPC210x KickStart Board Support Package Eoard Support Package @ Mot Installed Mo Action
IAR LPC2148 KickStart Board Support Package Eoard Support Package Mot Installed Mo Action
IAR STR711 KickStart Board Support Package Eoard Support Package Mot Installed Mo Action
IAR STR712 KickStart Board Support Package EBoard Support Package Mot Installed Mo Action
Intel ¥Scale CPU Support Package CPU Support Package Mot Installed Mo Action ¥

Package Information -

Description This package contains praject templates and system files for the Generic ARM.

Latest Version 1.2

Author Rowley Associates Ltd

Package Version History

1.2

Fix Linux memary simulator,
11

Fix externally built application template.

Right-click the selected package and choose to Install Selected Packages.

Board Support Package

Freescale MACF111LCEVE Board Support Package Mot Installed Mo Action
Generic ARM CPU Support Package nlLe rt Package Mot Installed Mo Action
Generic PXA270 Board Support Package Install Selected Packages ort Package | NotInstalled Mo Action
Hitex 5TR9-com5tick Board Support Package Select All Packages ort Package Mot Installed Mo Action
IAR LPC210x% KickStart Board Support Package ort Package Mot Installed Mo Adction
IAR LPC2143 Kickstart Board Support Package Refresh Package List ort Package NotlInstalled No Action
IAR STR711 KickStart Board Support Package Manual Install ort Package Mot Installed Mo Action
IAR STR712 KickStart Board Support Package port Package Mot Installed Mo Action

Intel ¥Scale CPU Support Package

CPU Support Package

Mot Installed

Mo Action

Click the Next button and you will be presented with a list of actions the package manager is going to

carry out.

Click Next again to download and install the support package.

Upon successful completion, you will see a list of the newly installed packages. Click Finish.

Viewing installed support packages

To view the installed support packages:

84

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Choose Tools > Show Installed Packages to list the support packages you have installed on your system.
You should see the name of the Generic ARM CPU Support Package you just installed.

Click Generic ARM CPU Support Package to view the support package page in the CrossWorks

Browser window. This page provides more information about the support package and links to any

documentation, example projects, and system files that may be included in the package.

85

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Creating a project
To start developing an application, first create a new project. To create a new project:

Choose File > New Project or press Ctrl+Shift+N

The New Project dialog appears. This dialog displays the set of project types (Categories) and project templates.

New Project 7 E-

Select new project template

Categories: Project Templates:
v Standard . -
Combining Project ¥ ARM7 Board Generic
Library
Staging Project
¥ Manufacturers
- Generic @ An executable for a generic ARM7 processor that supports running from FLASH and RAM.
ARMT Board
ARMS Board N N
Cortex-M3 Board ‘Q An executable for a generic ARM7 that rts only from RAM located at address 0x00000000.

¥5cale Board

@ An externally built executable for a generic ARM7 processor.

@ A loader executable for a generic ARM7 processor.

@ An externally built executable for a generic ARM7 processor.

MName: Tutorial

Location: | C\CrossWorks Projects\Tutaorial

We'll create a project to develop our application in C:

In the Categories pane, select the Generic > ARM7 Board

2. From the list in the Project Templates pane, select the An executable for a generic ARM7 processor that
supports only running from RAM located at address 0x00000000

3. Inthe Name text field, type Tut or i al to assign that as the new project's name.

4. You can use the Location text field or the Browse button to locate where you want to save the project in
your local file system.

5. Click Next.

86

CrossWorks for ARM Reference Manual CrossStudio Tutorial

I

F New Project @

@ Choose common project settings

Properties:
Property Setting
* Linker Options
Additional Output Format Mone [=]

* Printf/Scanf Options
Printf Floating Point Supported Mo

Printf Integer Support int

Printf Width/Precision Supported Yes

Scanf Classes Supported Mo

Scanf Floating Point Supported Mo

Scanf Integer Support int

* Runtime Memory Area Options

Heap Size 1,024 bytes
Stack Size (FIQ Mode] 256 bytes
Stack Size [IRC Mode) 256 bytes
Stack Size [User/System Mode] 1,024 bytes

Additional Output Format

The format used when creating an additional linked output file,

Next]| Finish || Cancel

Here you can customize the project by altering a number of common project properties, such as an additional
file format to be output when the application is linked and what library support to include if you use printf and

scanf. After the project is created, you can change these settings in the Project Explorer as needed.

1. You can double-click a project property or its value to display either a drop-down menu of potential, valid
values or a text field in which you can type arbitrary values. For our tutorial, the default values are fine.
2. Click Next to display a list of the files CrossWorks will add to this project be default. You can uncheck any

file you plan to add manually or that you know will not be needed.

87

CrossWorks for ARM Reference Manual CrossStudio Tutorial

I

F New Project @

@ Select files to add to project

Files:

File name Path

O Links to system files
crid.s S[5tudioDirfsourcetortd.s
sram_placement.xml S(studioDir]\targetsisram_placeme..,

O Project files
Standard_ARM_RAM_Only_MemoryMap.xml Standard_ARM_RAM_Only_RMemaor...
Standard_ARM_Startup.s Standard_ARM_Startup.s
Standard_ARM _Target.js Standard_ARM _Target.js

The Links to system files group shows the links to CrossWorks system files that will be created in the project.
Because these files are links, the default behavior is that they will be shared with other projectsso modifying one
will affect all projects containing similar links. To prevent accidental modification, these files are created as read-
only. Should you wish to modify a shared file without affecting other projects, first import it into the project.
(Importing a shared file will be demonstrated later in this tutorial.) See Creating and managing projects for
more information on project links.

The Project files pane shows the files that will be copied into the project. Because these files are copied to the
project directory, they can be modified without affecting any other project.

If you uncheck an item, that file is not linked to, or created in, the project. We will leave all items checked for the
moment.

1. Click Next to view the default configurations that will be added to the project. Again, you can uncheck
any you know will not be needed but, for this tutorial, we will leave the defaults unchanged.

88

CrossWorks for ARM Reference Manual CrossStudio Tutorial

I

F New Project @

@ Select configurations to add to project

Configurations:

ARM RAM Debug
ARM RAM Release
THUME RAM Debug
THUME RAM Release

Here you can specify the default configurations that will be added to the project. See Creating and managing

projects for more information on project configurations.
1. Click Finish to complete the new project's creation.

This will create a project for a generic ARM 7 device with RAM located at address 0x00000000. This is

fine, because we are going to run this example on the simulator. ARM hardware, however, is rarely so
accommodating because memory will be mapped at different addresses, target-specific startup code may be
required to initialize peripherals, different techniques need to be employed to reset the target, and target-
specific loader applications are required to program flash memory. To create a project to run on hardware, you
should instead select a template from the project type matching your targetthat will create a project with the
memory maps, startup code, reset script, and a flash loader for your target.

The Project Explorer shows the overall structure of your project. To invoke it, do one of the following:
Choose View > Project Explorer.

or

89

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Type Ctrl+Alt+P.

This is what our project looks like in the Project Explorer:

Project Explorer 0| x
% ARM RAM Debug e e K = v
Project Items CZode Data

Solution ‘Tutorial’
E_] Solution Properties
=[] Project Tutorial
E_] Project Properties
|:| Source Files
= E System Files
@ crid.s
sram_placement.xml
Standard_ARM_RAM_Only_Memorykap.xml
4sm| Standard_ARM_Startup.s
Standard_ARM_Target js

The project name is shown in bold to indicate it is the active project (and, in our case, the only project). If you
have more than one project, you can set the active project by using the drop-down box on the Build tool bar or
by right-clicking the desired project's name in the Project Explorer to display the shortcut menu with the Set as
Active Project command.

The files are arranged into two groups; click the + symbol next to the project name to reveal them:

Source Files contains the main source files for your application, typically header files, C files, and
assembly code files. You may want to add files with other extensions or documentation files in HTML
format, for instance.

System Files contains links to source files that are not part of the project but are required when the
project is built and run. In this case, the system files are: crt 0. s the C run-time startup, written in
assembly code

90

CrossWorks for ARM Reference Manual CrossStudio Tutorial

sram pl acenment . xm placement file describes how program sections should be placed in memory
segments

St andar d_ARM RAM Onl y_Menor yMap. xm a memory map file that describes a target's memory
segments

St andard_ARM St ar t up. s contains the target-specific start code and exception vectors

St andar d_ARM Tar get . j s contains the target-specific target script that tells the debugger how to

reset the target and what to do when the processor stops or starts

Files stored outside the project's home directory (with a small purple shortcut indicator at the bottom left of the

icon, as above.

These folders have nothing to do with directories on disk, they are simply a means to group related files in the
Project Explorer. You can create new folders and specify filters for them based on the project files' extensions;
thereafter, when you add a new file to the project, it will be shown in the Project Explorer folder whose filter
matches the new file's extension.

91

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Managing files in a project

We'll now set up the example project with some files that demonstrate features of the CrossWorks IDE. For this,
we will add one pre-prepared file and one new file to the project.

Adding an existing file to a project

To add one of the existing tutorial files to the project:
Choose Project > Add Existing File or press Ctrl+P, A.

or

In the Project Explorer, right-click the Tutorial project node.
Choose Add Existing File from the shortcut menu.

In response, CrossWorks displays a standard file-locator dialog. Use it to navigate to the CrossWorks installation
directory, then to the t ut ori al folder, where you should select the f act . c file.

o~

¥ Add Existing Items [2=]

@Qvl . # tutorial - | 4 | | Search o |

‘ Organize + o= Views ~ [New Folder

Mame Dater;odif... Type Size
B factc T mMain.c

C File File
116 bytes 220 bytes

File name: fact.c - [CSnurce Files (*.c) T]

(oo Y] [Coes]

92

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Click Open to add the file to the project. The Project Explorer will list f act . ¢ in the Project Items' Source Files
folder, with a shortcut arrow because the file is not in the project's home directory. Rather than edit the file in the
tutorial directory, we'll put a copy of it into the project's home directory:

In the Project Explorer, right-click the f act . ¢ node.

From the pop-up menu, click Import.

The shortcut arrow disappears from the f act . ¢ node, indicating that our working version of that file is now in

our Tutorial project's home directory.

We can open a file for editing by double-clicking the node in the Project Explorer. For example, double-clicking

f act. c opensitin the code editor:

/' Browser f fact.c H

= ChvProjectshTutorialhfact.c

int fact{int n)

{
if (n <= 1)
return 1;
glse

return facti{n-1} * n;

Adding a new file to a project

Our project isn't complete, because f act . ¢ is only part of an application. To our project we'll add a new C file

that will contain the main() function. To add a new file to the project, do the following:

Choose File > New to open the New File dialog.

or
On the Project Explorer tool bar, click the Add New File button.
or
In the Project Explorer, right-click the Tutorial node.
Choose Add New File from the shortcut menu.
or

93

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Type Ctrl+N.
The New File dialog appears.

In the Categories pane, select C C++ to indicate the general type of file.
In the Templates pane, select the C File (.c) option to further specify the kind of file we will be adding.
In the Name edit box, type nmai n.

The dialog box will now look like this:

NewFile [l

Categories: Templates:

i Assembly

@ Cee= Q D

O Miscellaneous C++ File @I Header File
(cpp) (.h)

| Creates a C source file,

{~ Create a new file not linked to a project {* Add a new file to the current project

Mame: |mair1 |

Location: | ChCrossWorks ProjectsiTutorial |

Click OK to add the new file.

CrossWorks opens the new file in the code editor. Rather than type the program from scratch, we'll add it from a

file stored on disk. With the new, empty mai n. ¢ in the foreground:

Choose Edit > Others > Insert File or press Ctrl+K, Ctrl+l.

Using the file-selection dialog, navigate to the t ut ori al directory.
Select the mai n. c file.

Click OK.

Your mai n. c file should now look like this:

94

CrossWorks for ARM Reference Manual CrossStudio Tutorial

/ Dashboard }/fa::t.c }‘/ mair.c

8 = C\CrossWorks Projects\Tutorial\main.c
S/ crosshiorks Tutoriol

#include <cross_studio lo.hs

#ifndef DEFIME_ME
#error DEFINE_ME undefined
#endif

volid factorial{int};
18

int main{woid)

{
int i;
for (1 =2; 1 < 18; ++1)

debug_printf{"Factorial of %4 is Zdwn", i, factorial{i}}

return 2;

i
18 |

Next, we'll set up some project options.

95

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Setting project options

Up to this point, you have created a simple project. In this section, we will set some options for that project.

You can set project options on any node of a solution. That is, you can set options on a solution-wide basis, on

a project-wide basis, on a project-group basis, or on an individual-file basis. For instance, options you set on a
solution are inherited by all projects in that solution, by all groups in each of those projects, and by all files in
each of those groups. If you set an option further down in the hierarchy, that setting will be inherited by nodes
that are children of (or grandchildren of, etc.) that node. This provides a powerful way to customize and manage

your projects.

Adding a C preprocessor definition

In this instance, we will define a C preprocessor definition that will apply to the entire Tutorial project. This means
every file in the project will inherit our new definition. If, however, we were to later add other projects to the
solution, they would not inherit the definition; if we wanted that, we could set the property on the solution node
rather than the project node.

To set a C preprocessor definition on the project node:

Right-click the Tutorial project in the Project Explorer and select Properties from the menuthe Project
Manager dialog appears.

Click the Configuration drop-down and change to the Common configuration (it is one of the "Private
Configurations").

Scroll down the list as necessary to click the Preprocessor Options > Preprocessor Definitions property.
Double-click the property name or value field, or click the . . . symbol to display the empty Preprocessor
Definitions window, and in that window type the definition DEFI NE_IVE.

The dialog box will now look like this:

96

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Project Manager -7
View: |Properties Properties: [All Grouping: | Categorize Configuration: E-:? Comman
Projects: Settings:
Solution ‘Tutarial’ Property Setting Inherited From In Canfiguration o~
- 7] Project ‘Tutorial’
= a Source Files * Preprocessor Options
facF.c Ignore Includes Mo .
=] main.c Preprocessor Definitions DEFINE_ME =< 7] Project Tutarial’ ?.i Common
+ D System Files Preprocessor Undefinitions

System Include Directories
Undefine All Preprocessor Definitions Mo
User Include Directories

* Printf/Scanf Options
Printf Floating Point Supported Mo |%|
Printf Integer Support int
Printf Width/Precision Supported Yes
Scanf Classes Supported Mo
Scanf Floating Point Supported Mo
Scanf Integer Support int -

Notice that, when you change between Debug and Release configurations, the code generation options
change. This dialog shows the options used when building a project (or anything in a project) in a given
configuration. Because we put the above, new definition in the Common configuration, both Debug and
Release configurations will use this setting. We could, however, set the definition to be different in Debug and

Release configurations if we wanted to pass different definitions into debug and release builds.

Now click OK to accept the changes made to the project.

Using the Properties Window

If you click on the project node, the Properties Window will show the properties of the projectall were inherited
from the solution. If you modify a property when the project node is selected, you'll find that its value is
highlighted because you have overridden the property value inherited from the solution. To restore the

inherited value of a property that was changed, right-click the property and select Use Inherited Value.

Next, we'll build the project.

97

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Building projects

Now that the project is created and set up, it's time to build it. There are some deliberate errors in the program

that we need to correct; doing that is the next step in this tutorial.

Setting the build configuration
The first thing to do is set the active build configuration you want to use:
Select ARM RAM Debug from the Active Configuration .

This means we are going to use a build configuration that generates ARM code, will run from RAM, and
generates code with debug information and no optimization, so it can be debugged. If we wanted to produce
production code with no debug information and optimization enabled, we could use the ARM RAM Release
configuration. However, because we are going to use the debugger, we shall use the ARM RAM Debug

configuration.

Building the project
To build the project:
Choose Build > Build Tutorial.
or
On the Build tool bar, click the Build Active Project button.
or
Type F7.
Alternatively, to build the Tutorial project using a shortcut menu:

In the Project Explorer, right-click the Tutorial project node.

Select Build from the shortcut menu.

CrossWorks starts compiling the project files, but stops after detecting an error. The Output window shows the

Transcript, which contains the errors found in the project:

98

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Cutput

Show: |Transcript - T,,.. 'T* Tasks -

| Building "Tutorial”
Completed (with errors)

= @ Compiling main.c — 2 errors
e 'void' is illegal as argument 3 to debug

- found ‘return’, expecting '

@ Build failed

Completed

Correcting compilation and linkage errors

The file mai n. ¢ contains two errors. After compilation, CrossWorks moves the cursor to the line containing
the first reported error and displays an error message in the Output window. (You can change this behavior by
modifying the Text Editor > Editing Options > Enable Popup Diagnostics environment option using the Tools
> Options dialog.)

int main{void)

{
i_"t E ﬂ type woid' is illegal as argument 3 to debug_printf | ¥
or .
15 I:!Ehug;_pr‘in'tﬂ:“Fan:t:rial of %24 is Xdwn", i, factorial(i})
return 2;
X

To correct the error, change the return type of f act or i al fromvoi dtoi nt in its prototype.

To move the cursor to the line containing the next error, type F4 or choose Search > Next Location. The cursor is
now positioned at the debug_printf statement, which is missing a terminating semicolonadd the semicolon to
the end of the line. Using F4 again reveals that we have corrected all errors.

Pressing F4 again wraps around and moves the cursor to the first error, and you can use Shift+F4 or Search >
Previous Location to move back through errors. Now that the errors are corrected, build the project again by
pressing F7. The Transcript shows there still is a problem.

99

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Cutput

Show: |Trar15cript - YN

Building "Tutorial™ in configuration "ARM RAM Debug™
Completed fwith errors)
@ Compiling fact.c
@ Compiling main.c
= & Linking Tutorial.elf — 1 error
ARM BAM Debug/main.o: In function ‘main’:

W (O /CrossWorks Projects/Tutorial/main.c15: undefined reference to factorial’

@ Build failed

Completed

The remaining error is a linkage error. Double-click f act . ¢ in the Project Explorer to open it for editing
and change the two occurrences of f act tof act ori al . Rebuild the projectthis time, the project compiles
correctly:

—4 Building "Tutorial” in configuration “ARM RAM Debug™ 5 targets in 0.3s
Completed 15 targets/s
@ Compiling fact.c
@ Linking Tutorial.elf

0K

~# Build complete
Completed
SRAM Summary

4,736 SRAM 7%

A summary of the memory used by the project is displayed at the end of the build log. The results for your
application may be different, so don't worry if they don't match.

In the next sections, we'll explore the characteristics of the newly built project.

100

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Exploring projects

Now that the project has no errors and builds correctly, we can turn our attention to uncovering exactly how our

application fits in memory and how to navigate around it.

Using Project Explorer features

The Project Explorer is the central focus for arranging your source code into projects, and it's a good place to
show ancillary information gathered when CrossWorks builds your applications. This section will cover features

the Project Explorer offers to give you an overview of your project.

Project code and data sizes

Developers are always interested in how much memory their applications use, especially when they are working
with small, embedded microcontrollers. The Project Explorer can display the code and data sizes for each
project and individual source file that successfully compiled. To view this information, use the Options pop-up

menu on the Project Explorer tool bar to ensure that Statistics Column is checked.

101

CrossWorks for ARM Reference Manual

Project Explorer

CrossStudio Tutorial

I | >

::5 Debug ~|| [3 @
Project Items \w | statistics Display

Solution ‘Tutorial
E_;l Solution Properties
=[] Project Tutorial
E_;l Project Properties
= E Source Files
@E fact.c
Q main.c
(L] System Files

Fead-Only Data In Code
Show Statistics Rounded

Dependencies OFf
Dependencies Under Node

Dependencies In Folder

Properties Off
Properties Under Mode
Properties In Folder

Lse Common Properties Folder

Show Cutput Files

Show Source Control Status

Synchronize Explorer With Editor

When the Statistics Column option is checked, the Project Explorer displays two additional columns, Code and

Data.

102

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Project ltems Code Data
Solution 'Tutorial
+ E_;l Solution Properties
- [T] Project Tutorial’ 2,143 28
+ E_;l Project Properties
- 'a Source Files
¥ & fact.c 80
¥] main.c 100 24
[System Files

The Code column displays the total code space required for the project. The Data column displays the total

data space required. The code and data sizes shown for each C and assembly source file are estimates, but good
ones. Because the linker removes any unreferenced code and data, and performs a number of optimizations, the
sizes for the linked project may not be the sum of the sizes of each individual file. The code and data sizes for the

project, however, are accurate. As already mentioned, your numbers may not match these exactly.

Dependencies

The Project Explorer is very versatile: not only can you display the code and data sizes for each element of a
project and for the project as a whole, you can also configure it to show the dependencies for a file. As part of
the compilation process, CrossWorks finds and records the relationships between filesthat is, it finds which
files depend upon other files. CrossWorks uses these known relationships when it builds the project again, to
minimize the amount of work required to bring the project up to date.

To show the dependencies for a project, use the Options button on the Project Explorer tool bar to ensure that
either Dependencies Under Node or Dependencies In Folder is checked. Once checked, dependent files are
shown as sub-nodes of the file that depends on them.

103

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Project ltems

& Solution Tutorial

+ E_;l Solution Properties

- [T] Project Tutorial
+ E_] Project Properties
- 'E Source Files

- Q fact.c

El Dependencies
= Q main.c
= g Dependencies
@ __crossworks.h
@ cross_studio_ioh
[System Files

In this case, mai n. ¢ is dependent upon cr 0ss_st udi o_i 0. h because it includes it with an #i ncl ude
directive. Itis also dependenton __cr osswor ks. h because thatis included by cr oss_st udi o_i 0. h.You
can open the files in an editor by double-clicking them, so having dependencies turned on is an effective way of

navigating to and summarizing the files a source file includes.

Output files

It is useful to know the output files when compiling and linking the application, and CrossWorks can display this
information, too. To turn on output-file display, click the Project Explorer tool bar's Options button and verify
that Output Files Folder option is checked in the menu. Once checked, output files are shown in an Output Files

folder under the node that generates them. Click that folder's + symbol to expand the view of the output files.

104

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Project ltems

71 Solution Tutarial

+ g Solution Properties

-1 [] Project Tutorial
+ E_] Project Properties
-] 3 Source Files

= [gll_ihl fact.c

= g Output Files
fact.o
- "F_Ebl main.c
@ __crossworks.h
@ cross_studio_io.h
= g Output Files
main.o
+ [:l System Files
= g Output Files
Tutorial.elf
Tutorial.ld
Tutorial.map

In the above figure, we can see that the files f act . 0 and mai n. o are object files, produced by compiling
their corresponding source files. The linker script Tut or i al . | d, the map file Tut or i al . map, and the linked
executable Tut ori al . el f are produced by the linker. As a convenience, double-clicking an object file or a

linked executable file in the Project Explorer will open an editor showing the disassembled contents of the file.

Disassembling a project or file

You can disassemble a project either by double-clicking the corresponding file in the Project Explorer, as

described above, or by using the Disassemble tool.

To disassemble a project or file:

Right-click the appropriate project or file in the Project Explorer.

From the shortcut menu, choose Disassemble.

105

CrossWorks for ARM Reference Manual CrossStudio Tutorial

CrossWorks then opens a new read-only editor showing the disassembled listing. If you change your project
and rebuild it, thereby causing a change in the object or executable file, the disassembly updates to keep the
display's contents synchronized with the file on disk.

Using Memory Usage Window features

The Memory Usage window can be used to view a graphical summary of how memory was used in each
memory segment of a linked application.
To display the memory usage:

Choose View > Memory Usage or press Ctrl+Alt+Z.

For the Tutorial project, the Memory Usage window shows this:

Memory Usage i} x
SRAM

@

From this, you can see:

The SRAM segment is located at 0x00000000.
The SRAM segment is 64KB in length.
There is 59.3KB of unused memory in the SRAM segment.

If you expand the SRAM segment by clicking it, CrossWorks will display all the program sections contained
within the segment:

106

CrossWorks for ARM Reference Manual CrossStudio Tutorial

FMemory Usage | X

SEAM 000000000
4 593 KE free of 64.0 KB

wvectors Q00000000
ﬁ
60 bytes used
Jdnit 00000003
ﬁ
523 bytes used
dext 000000 24¢
1.5 KB used
Jrodata 000000564
M
24 bytes used
bss 00000087 ¢
M
4 bytes used
heap 000000880
1.0 KB used
stack 00000030
1.0 KB used
stack_irg 000001080
M
256 bytes used
stack fig 000001120
M

256 bytes used

107

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Using Symbol Browser features

For a more-detailed view of how your application is laid out in memory than the Memory Usage window
provides, you can use the Symbol Browser. It allows you to navigate your application, see which data objects
and functions have been linked into your application, what their sizes are, which section they are in, and where
they are placed in memory.

To activate the Symbol Browser:

Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

Drilling down into the application

The Tutorial project shows this in the Symbol Browser:

Symbaol Browser :‘i X
{l A _;,fi v Search S5ymbaols

Mame Range Size

+ W [Mosection)

+ W .bss Q000057 c-000005TT 4
+ M .heap 0000055000000 7 F 1,024
+ M .init Q000002 0000024k 528
+ M .rodata 00000564 0000057 b 24
+ M .stack 00000 c50-0000107F 1,024
+ W .stack_fig 0000115000001 27 256
+ W .stack_irg Q0001050000011 7 25E
+ W text 0000024 c-00000563 1,5a0
+ W .vectors Q000000 0000003 b &l

From this, you can see sections and their sizes. For example, the .vectors section containing the ARM exception
vectors is placed in memory between address 0x00000000 and 0x0000003B.

The .init section containing the system startup code is placed in memory

The .text section containing the program code is placed in memory

The .rodata section containing read-only data is placed in memory

The .heap section is 1024 bytes in length and is located at 0x00000880. Linker > Heap Size project
property.

108

CrossWorks for ARM Reference Manual CrossStudio Tutorial

The .stack section which contains the User/System mode stack is 1024 Linker > Stack Size properties.
The .stack_irq section which contains the IRQ mode stack is 256 bytes in
The .stack_fiq section which contains the FIQ mode stack is 256 bytes in

To drill down, open the CODE node by double-clicking it: CrossWorks displays the individual functions that have

been placed in memory and their sizes:

109

CrossWorks for ARM Reference Manual

Symbol Browser @ X
{l - i - Search Symbols
Mame Range Size
W (Mo section)
W .bss 0000057 c-000005TT 4
W .heap Q000055000000 7 1,024
M .init 0000003 0000024 b 528
MW .rodata 00000564 0000057 b 24
W stack Q0000 c50-0000107F 1,024
W .stack_fig 0000115000001 27 256
W .stack_irg 00001050-0000117f 256
< W text 00000 24 c-00000562 1,560
& debug_printf 00000300-00000333 52
& end 000003 dc
EI end Q0000774
& factorial 0000024 c-0000029b a0
& libarm_dcc_read 000007&0
& libarm_dcc_write Q0000340
& libarm_run_dcc_port_ 00000320-00000757 233
$ main 00000 2900000 2FF 100
& read_wait 00000760
@ write_wait 000003 c4
& _ ctors start 000005864
§ __data_start__ 00000864
& _ debug_io_lock 00000534 0000054 b 24
& _ debug_io_unlock 0000084 c-00000863 24
§ _ do_debug_operatic 00000334 00000383 a0
& __ do_nvdebug_operz 00000354-000003bb 56
& _ dtors_start 000005854
& __ermo 00000730-000007 a3 36
& __heap_lock 000007 a4 000007 bb 24
& __heap_unlock Q00007 b 000007 d3 24
& _ printf_lock 000007 d4 000007 el 24
& _ printf_unlock 000007 ec-00000803 24
& __scanf_lock 00000504 0000051 b 24
& _ scanf_unlock 0000031 c-00000333 24
& text start 0000024 ¢
W .wvectors Q0000000 0000003 b a0

CrossStudio Tutorial

110

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Here, we can see that main is 100 bytes in size and is placed in memory between addresses 0000029C and
000002FF, inclusive, and that factorial is 80 bytes and occupies addresses 0000024C through 0000029B. Just as
in the Project Explorer, if you double-click a function, CrossWorks moves the cursor to the line containing the

definition of that function, so you can easily use the Symbol Browser to navigate around your application.

Printing Symbol Browser contents

You can print the contents of the Symbol Browser by selecting its window and choosing Print from the File
menu, or Print Preview if you want to see what it will look like before printing. CrossWorks prints only the
columns you have selected for display, and prints items in the order displayed in the Symbol Browser, so you

can choose which columns to print and how to print symbols by configuring the Symbol Browser display.

We have touched on only some of the features the Symbol Browser offers; to learn more, refer to Symbol

Browser, where it is described in detail.

111

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Using the debugger

Our sample application, which we have just compiled and linked, is now built and ready to run. In this section,
we'll concentrate on downloading and debugging this application, and on using the features of CrossWorks to
see how it performs.

Getting set up

Before running your application, you need to select the target to run it on. Choose Target > Targets to list in the
Targets window each target interface that is defined. You will use these to connect CrossWorks to a target. For
this tutorial, you'll be debugging on the simulator, not hardware, to simplify matters.
To connect to the simulator:

Choose Target > Connect > ARM Simulator.

or

Choose View > Targets to activate the Targets window.

In the Targets window, double-click ARM Simulator.

After connecting, the ARM Simulator target is shown in the status bar:

() ARM Simulator 33 OInstructions g} Built OK INS '

The color of the target-status LED in the status bar changes according to what CrossWorks and the target are
doing:

White No target is connected.

Yellow Target is connected.

Solid green Target is free running, not under control of CrossWorks or the debugger.
Flashing green Target is running under control of the debugger.

Solid red Target is stopped at a breakpoint or because execution is paused.

Flashing red CrossWorks is programming the application into the target.

Double-clicking the Target Status will show the Targets window, if it is not already visible.

The core simulator target can accurately count the cycles spent executing your application, so the status bar
shows a cycle counter. If you connect a target that cannot provide performance information, the cycle counter

panel is hidden. Double-clicking the Cycle Counter panel will reset the cycle counter to zero.

112

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Setting a breakpoint

CrossWorks will run a program until it hits a breakpoint. We'll place a breakpoint on the call to debug_pri nt f
in mai n. c.To set the breakpoint, move the cursor to the line containing debug_pri nt f and choose Debug >
Toggle Breakpoint or press F9.

Alternately, you can set a breakpoint without changing the cursor's position by clicking in the gutter of the line

to set the breakpoint on.

S Crosskiorks Tutorial
#include <cross_studio_lo.h>
#ifdef DEFINE_ME

#error DEFINE_ME undefined

gendif

int factorial{int};

int main{woid}
{
int i;
for (1 =8; 1 < 18; ++1)
§ 15 | debug_printf{"Factorial of %d is %dwn", 1, factorial{i}};
return 2;

B

The gutter displays an icon on lines where breakpoints are set. The Breakpoints window updates to show where
each breakpoint is set and whether it's set, disabled, or invalidyou can find more detailed information in the
Breakpoints window section. The breakpoints you set are stored in a session file associated with the project, so

your breakpoints are remembered if you exit and re-run CrossWorks.

Starting the application

To start the application, choose Debug > Start or press F5.

The workspace will change from the standard Editing workspace to the Debugging workspace. You can choose
which windows to display in each of these workspaces and manage them independently. CrossWorks loads the
active project into the target and places the breakpoints you have set. During loading, the Target Log in the

Output Window shows its progress and any problems:

113

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Cutput @ x
Show: |Transcript - ‘f‘. ?.,
@ Checking “Tutorial™ in configuration “ARM RAM Debug™ 5targets in 0.0s oK
Completed 109 targets/s ~
~H Preparing target for download Completed in 0.0s oK
Completed ~
@ Erasing “Tutorial.elf” to ARM Simulator Completed in 0.0s oK
Completed 0.0 KB/s —
~ A Downloading “Tutorial.elf” to ARM Simulator 21 KB in0.2s oK
Completed 9.6 KBfs ~
—# Verifying "Tutorial.elf” on ARM Simulator 21 KB in0.0s oK
Completed 106.0 KB/s —

The program stops at our breakpoint and a yellow arrow in the gutter indicates where the program is paused.

b int main{woid}
{
int i;
k for (1 =2; 1« 18; ++1)
£ 15 | debug_printf("Factorial of %d is %dwn", i, factorial(i});
k return 2;
by

Stepintothef act ori al function by selecting Debug > Step Into, by typing F11, or by clicking the Step Into
button on the Debug tool bar.

Now step to the first statement in the function by selecting Debug > Step Over, by typing F10, or by clicking the
Step Over button on the Debug tool bar.

114

CrossWorks for ARM Reference Manual CrossStudio Tutorial

int factorial (int n)

+ {
g 5| if (n <= 1)
] return 1;
elae
k return factorial (n-1) * n;

You can step out of a function by choosing Debug > Step Out, by typing Shift+F11, or by clicking the Step Out
button on the Debug tool bar. You can also step to a specific statement by choosing Debug > Run To Cursor. To
allow your application to run to the next breakpoint, choose Debug > Go.

Note that, when single-stepping, you may step into a function whose source code the debugger cannot locate.
In such cases, the debugger will display the instructions of the application; you can step out to get back to
source code or continue to debug at the instruction-code level. There may be cases in which the debugger

cannot display the instructions; in such cases, you will be informed of this with a dialog and you should step out.

Inspecting data

Being able to control execution isn't very helpful if you can't look at the values of variables, registers, and

peripherals. Hovering the mouse cursor over a variable will show its value as a data tip:

115

CrossWorks for ARM Reference Manual CrossStudio Tutorial

int factorialiint n)

r {
$ 5 if th = 1)
]

return 1;

elae

You can configure CrossWorks to display data tips in a variety of formats at the same time using the
Environment Options dialog. You can also use the Autos, Locals, Globals, Watch, and Memory windows to view

variables and memory. These windows are described in CrossStudio User Guide.

The Call Stack window shows the function calls that have been made but have not yet finished executing, that is

the list of active functions.

To display the call stack:

Choose Debug > Call Stack or press Ctrl+Alt+S.

116

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Call Stack @ x

= ¥
Address | Function

& 0:x000002BC int mainf

C» 0xD000025C int factorial(int n=0x00000000)

You can learn more about this in the Call Stack window section.

Program output

The Tutorial application uses the function debug_pri nt f to output a string to the Debug Terminal in the
Output window. The Debug Terminal appears automatically whenever something is written to itpress F5 to
continue program execution and you will notice that the Debug Terminal appears. In fact, the program runs
forever, writing the same messages over and over again. To pause the program, select Debug > Break or type

Ctrl+. (control-period).

In the next section, we'll cover low-level debugging at the machine level.

117

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Low-level debugging

This section describes how to debug your application at the register and instruction level. Debugging at a high
level is fine, but sometimes you need to look more closely into the way your program executes to track down the
causes of difficult-to-find bugs. CrossWorks provides the tools you need to do so.

Setting up again

Next, we'll run the sample application again and look at how it executes at the machine level. If you haven't done
so already, stop the program executing by typing Shift+F5, by selecting Debug > Stop, or by clicking the Stop
Debugging button on the Debug tool bar. Now, run the program until it stops at the first breakpoint again.

You can see the current processor state in the Register windows. To show the first Registers window:
Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

The Registers window can be used to view CPU and peripheral registers. To display the state of the registers for

the active processor mode, use the Registers 1 window's Register Groups menu to select CPU - Current Mode.

Registers 1
"’ Hz Mg Mg ¥yp Ex
CPU - All

v | CPU - Current Mode

This view is displaying the registers for the active processor mode. You can also display the entire set of ARM
registers: to do this, select CPU - All from the Register Groups menu. Your registers window will look something
like this:

118

CrossWorks for ARM Reference Manual

CrossStudio Tutorial

Registers 1

v R Xy Xy X Ex W —F =

Mame Yalue

* CPU - Current Mode
re exe0000000
rl B BEE a6
r2 Bxeapaazal
r3 B BEE a6
r4 Bxcdcdcded
ra Bxcdcdcded
ré Bxcdcdeded
r7 BxA8aBE 68
ré Bxcdcdeded
ro Bxcdcdcded
rla Bxcdcdcded
rll Bxcdcdcdcd
rl2 Bxcdcdcded
sp(ri3) BxB8888:68
1r(rld) 8xB0808164
pc(rils) BxpeaRa29c

=l epsr Ax800008+FT

There are four register windows, so you can open and display four sets of CPU and peripheral registers at the

same time. You can configure which registers and peripherals to display in the Registers windows individually.

As you single-step the program, the contents of the Registers window updates and any change in a register

value is highlighted in red.

119

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Disassembly

The Disassembly window can be used to debug your program at the instruction level. It displays a disassembly
of the instructions around the currently located instruction, interleaved with the source code of the program, if
the source is available. When the Disassembly window has focus, all single-stepping is done one instruction at a
time. This window also allows you to set breakpoints by clicking in the gutter of lines containing instructions on

which you want to set a breakpoint.

Disassembly @
main = Dxc “
— main.c — 8
int factoriszslfint);
inkt main({wvoid)
{
Boaaa293 B530 push {r4, r7, 1lr}
BEBBE294A BO21 sub sp, §4
Baaaa2 9 AFO0 add r7, =sp, 0
— main.c — 13
ink ir
for (i = 0; 4i « 10; ++1i)
BBaaa29E 2300 movs r3, £0
BBaga2A8 03B str r3, [x7, £0]
Soaga2A2 EQOE b 0x000002C2 <main+tlinia>
— main.c — 15
debug prinkf("Factorial of %d is &d\n", ctorial (i}) ;
o> ePpeslnd g8 3B ldr r3, [z7, #01
BEEBE2AE 1Cis adds rd, r3, 0
S0e282A3 F7FFFFDL k1 0x00000260 <factorialX>
Soaea2ALC 1C04 adds r4, 0, #0
BEBBE2AE 4B0R 1dr r3, [pc, #0xZB]
gpaga288 f234 1dr 2, [x7, #£0]
gpaga282 1C13 adds 0, 3, #0
pegaa284 1C11 adds rl, rZ, 0
gpaga28s Czz adds rZ, r4, 0
Baaaa283 FOOOFE10 Bl 0x00000ZDC <debug printf>

Stopping and starting debugging

You can stop debugging using Debug > Stop or Shi f t +F5.

120

CrossWorks for ARM Reference Manual CrossStudio Tutorial

To restart debugging without reloading the program, you can use Debug > Debug From Reset. Note
that, when you debug from reset, no loading takes place; it is expected that your program resets any data
values as necessary as part of its startup.

You can attach the debugger to a running target, other than a simulator, using Target > Attach
Debugger.

121

CrossWorks for ARM Reference Manual CrossStudio Tutorial

Debugging externally built applications

This section describes how to debug applications that were not built by CrossWorks. To keep things simple, we

shall use the application we just built as our externally built application.
Start by creating a new, externally built executable project:
Choose File > New Project or press Ctrl+Shift+N.

The New Project dialog appears. It displays the set of project types and project templates.

Mew Project 7=l

Select new project template

Categories: Project Templates:
~_Standard ARM7 Board G i -
-
Combining Project rd aeneric
Library ~ ~
Staging Project @ An externally built executable for a generic ARMT7 processor.
~ Manufacturers
- Generic An executable for a generic ARMT7 processor that supports running from FLASH and RAM.
ARMT Board
ARMS Board R N
Cortex-M3 Board An executable for a generic ARM7 processor that supports only running from RAM located at address 0x00000000,
¥5cale Board
@ A loader executable for a generic ARMT7 processor.
T DIOCessSor. T
Mame: Externally_Built_Tutorial
Location: | C\CrossWorks Projects\Externally_Built_Tutorial | Browse.., |

We'll create an externally built executable project:

In the Categories pane, select the Generic > ARM7 Board project type.

In the Project Templates pane, select the An externally built executable for a generic ARM7 processor
icon, which selects the type of project to add.

Type External I y_Bui |l t _Tut ori al inthe Name field, which names the project.

You can use the Location field or the Browse button to locate where you want the project to be created.
Click OK.

Once created, the project-setup wizard prompts you for the executable file you want to use.

122

CrossWorks for ARM Reference Manual CrossStudio Tutorial

o

MNew Project

G Choose common project settings

Properties:
Property Setting
+ External Build Options
Executable File C:/CrossWorks Projects/Tutorial/ARM RAM Debug /Tutaorial.elf =2
Executable File
The name of the externally built executable,

Next]’ Finish][Cancel

In the Executable File field, type the path to the Tut ori al . el f executable file we generated earlier. For
example, if the project was created in the C: / Cr ossWor ks Proj ect s/ Tut ori al directory and was
built using the ARM RAM Debug configuration, the path to the executable file will be C: / Cr oss\Wr ks
Proj ects/ Tutorial / ARM RAM Debug/ Tutori al . el f.

Clicking Next displays the files that will be added to the project.

123

CrossWorks for ARM Reference Manual CrossStudio Tutorial

o

MNew Project @

@ Select files to add to project

Files:

File name Path

O Project files
Standard_ARM_MemorybMap.xml Standard_ARM_Memoryfap.xml
Standard_ARM _Target.js Standard_ARM_Target.js

Next]’ Finish][Cancel

The Project files group shows the files that will be copied into the project. The only files used are the memory
map file, which describes the memory layout used by the application, and the script used to reset and control
the target. For the debugging session to work correctly, each of these files must match and be appropriate for
the application you are debugging.

Clicking Next displays the configurations that will be added to the project.

124

CrossWorks for ARM Reference Manual CrossStudio Tutorial

I

Mew Project

G Select configurations to add to project

Configurations:

ARM RAM Debug
ARM RAM Release
THUME RAM Debug
THUME RAM Release

Complete the project creation by clicking Finish.

You will be prompted as to whether you want to overwrite the existing memory map and target script. Click No
to keep the existing files.

Now you have created the externally built executable project. You should be able to use the debugger just as we
did earlier in the tutorial.

125

CrossWorks for ARM Reference Manual CrossStudio Tutorial

126

CrossWorks for ARM Reference Manual CrossStudio User Guide

CrossStudio User Guide

This is the user guide for the CrossStudio integrated development environment (IDE). The CrossStudio IDE

consists of:

a project system to organize your source files

a build system to build your applications

programmer aids to navigate and work effectively

a target programmer to download applications into RAM or flash
a debugger to pinpoint bugs

127

CrossWorks for ARM Reference Manual CrossStudio User Guide

CrossStudio standard layout

CrossStudio's main window is divided into the following areas:

Title bar:Displays the name of the current solution.

Menu bar:Menus for editing, building, and debugging your program.

Toolbars:Frequently used actions are quickly accessible on toolbars below the menu bar.

Editing area:A tabbed view of any open editor windows and the HTML viewer.

Docked windows:CrossStudio has many windows that dock to the left, right, or below the editing area.
You can configure which windows will be visible, and their placement, when editing and debugging.
Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

128

CrossWorks for ARM Reference Manual CrossStudio User Guide

Menu bar

The menu bar contains menus for editing, building, and debugging your program. You can navigate menus
using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.
or

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.
2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

Tap Return to display the menu.

Use the Left and Right keys to select the required menu.

Use the Up or Down key to select the required command or submenu.

Press Enter to execute the selected command.

SR T

Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlinedits shortcut key. So, to
activate a menu using the keyboard:

While holding down the Alt key, type the desired menu's shortcut key.
After the menu appears, you can navigate it using the cursor keys:

Use Up and Down to move up and down the list of menu items.
Use Esc to cancel a menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a command's name to execute that command.

129

CrossWorks for ARM Reference Manual CrossStudio User Guide

Title bar

The first item shown in the title bar is CrossStudio's name. Because CrossStudio can be used to target different
processors, the name of the target processor family is also shown, to help you distinguish between instances of
CrossStudio when debugging multi-processor or multi-core systems.

The filename of the active editor follows CrossStudio's name; you can configure the presentation of this filename
as described below.

After the filename, the title bar displays status information on CrossStudio's state:

[building] CrossStudio is building a solution, building a project, or compiling a file.
[run] An application is running under control of CrossStudio's debugger.
[break] The debugger is stopped at a breakpoint.

[autostep] The debugger is single stepping the application without user interaction (autostepping).

130

CrossWorks for ARM Reference Manual CrossStudio User Guide

Status bar

At the bottom of the window, the status bar contains useful information about the current editor, build status,
and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
Target device status flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

131

CrossWorks for ARM Reference Manual CrossStudio User Guide

Caret position Indicates the insertion position position in the editor
window. For text files, the caret position pane displays
the line number and column number of the insertion
point in the active window; when editing binary files, it
displays the address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

Choose View > Status Bar.
From the status bar menu, select the panels to display and deselect the ones you want hidden.

or
Right-click the status bar.
From the status bar menu, select the panels to display and deselect the ones you want to hide.
To show or hide the status bar:

Choose View > Status Bar.
From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when CrossStudio's main window is not maximized. (The size grip
is never shown in full-screen mode or when maximized.)
To show or hide the size grip

Choose View > Status Bar.
From the status bar menu, select or deselect the Size Grip item.

132

CrossWorks for ARM Reference Manual CrossStudio User Guide

Editing workspace

The main area of CrossStudio is the editing workspace. It contains any files being edited, the on-line help
system's HTML browser, and the Dashboard.

133

CrossWorks for ARM Reference Manual CrossStudio User Guide

Docking windows

CrossStudio has a flexible docking system you can use to position windows as you like them. You can dock
windows in the CrossStudio window or in the four head-up display windows. CrossStudio will remember the

position of the windows when you leave the IDE and will restore them when you return.

Window groups

You can organize CrossStudio windows into window groups. A window group has multiple windows docked
in it, only one of which is active at a time. The window group displays the active window's title for each of the

windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

Press and hold the left mouse button over the title of the window you wish to move.
As you start dragging, all window groups, including hidden window groups, become visible.
Drag the window over the window group to dock in.

Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

CrossStudio remembers the dock position and visibility of each window in each perspective. The most common
use for this is to lay your windows out in the Standard perspective, which is the perspective used when you are
editing and not debugging. When CrossStudio starts to debug a program, it switches to the Debug perspective.
You can now lay out your windows in this perspective and CrossStudio will remember how you laid them them
out. When you stop debugging, CrossStudio will revert to the Standard perspective and that window layout for
editing; when you return to Debug perspective on the next debug session, the windows will be restored to how
you laid them out in that for debugging.

CrossStudio remembers the layout of windows, in all perspectives, such that they can be restored when you run

CrossStudio again. However, you may wish to revert back to the standard docking positions; to do this:
Choose Window > Reset Window Layout.

Some customers are accustomed to having the Project Explorer on the left or the right, depending upon which
version of Microsoft Visual Studio they commonly use. To quickly switch the CrossStudio layout to match your

preferred Visual Studio setup:

Choose Window > Reverse Workspace Layout.

134

CrossWorks for ARM Reference Manual CrossStudio User Guide

Dashboard

When CrossStudio starts, it presents the Dashboard, a collection of panels that provide useful information, one-

click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before CrossWorks is fully functionalfor instance, whether

you need to activate CrossWorks, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer
version is available. You can install each new package individually by clicking the Install button under each
notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the
appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds you have subscribed to. Clicking a link will
display the published article in an external web browser. You can manage your feed subscriptions to by clicking
the Manage Feed:s link at the end of the News panel and pinning the feeds in the Favorites windowyou are only

subscribed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

135

CrossWorks for ARM Reference Manual CrossStudio User Guide

CrossStudio help and assistance

CrossStudio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, CrossStudio provides a longer description in the status bar when you hover over a

button or menu item.

Online manual
CrossStudio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using CrossStudio

CrossStudio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

Click to select the item with which you want assistance.
Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the insertion point within a word and
press F1, the help-system page most likely to be useful is displayed in the HTML browser. This a great way to
quickly find the help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the CrossWorks documentation and gives a way to search through

them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

136

CrossWorks for ARM Reference Manual CrossStudio User Guide

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

Choose Help > Contents or press Ctrl+Alt+F1.
Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

137

CrossWorks for ARM Reference Manual CrossStudio User Guide

Creating and managing projects

A CrossStudio project is a container for everything required to build your applications. It contains all the assorted

resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to
organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-
management tasks.

138

CrossWorks for ARM Reference Manual CrossStudio User Guide

Solutions and projects

To develop a product using CrossStudio, you must understand the concepts of projects and solutions.
A project contains and organizes everything you need to create a single application or a library.
A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.
In your CrossWorks project, you

organize build-system inputs for building a product.
add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension
hzp, that contain an XML description of your project. See Project file format for a description of the project-file

format.

Projects

The projects you create within a solution have a project type CrossStudio uses to determine how to build the
project. The project type is selected when you use the New Project dialog. The available project types depend

on the CrossWorks variant you are using, but the following are present in most CrossWorks variants:

Executable: a program that can be loaded and executed.

Externally Built Executable: an executable that is not built by the CrossWorks internal build process.
Library: a group of object files collected into a single file (sometimes called an archive).

Externally Built Library: a library that is not built by the CrossWorks internal build process.

Object File: the result of a single compilation.

Staging: a project that will apply a user-defined command to each file in a project.

Combining: a project that can be used to apply a user-defined command when any files in a project have

changed.

139

CrossWorks for ARM Reference Manual CrossStudio User Guide

Project properties and configurations

Project properties are attached to project nodes. They are usually used in the build process, for example, to
define C preprocessor symbols. You can assign different values to the same property, based on a configuration:
for example, you can assign one value to a C preprocessor symbol for release build and a different value for a
debug build.

Folders and Dynamic Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions
to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a
file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Projects can also contain dynamic folders which will can show the directories and files contained in the file
system in the project explorer. You can specify if the dynamic folder is recursive and use wildcards to include and

exclude files.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement
files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of
related products, are managed in a CrossStudio project. A project can also contain files that are not directly used
by CrossStudio to build a product but contain information you use during development, such as documentation.
You edit source files during development using CrossStudio's built-in text editor, and you organize files into a

target (described next) to define the build-system inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files
placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project
directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to
the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project
directory or to $(StudioDir), the full, absolute pathname is used.

The project system will allow (with a warning) duplicate files to be put into a project.
The project system uses a file's extension to determine the appropriate build action to perform on the file:

A file with the extension .c will be compiled by a C compiler.

140

CrossWorks for ARM Reference Manual CrossStudio User Guide

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the object-file extension .o will be linked.

A file with the library-file extension .a will be linked.

A file with the extension .xml will be opened and its file type determined by the XML document type.

Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type property with the Common configuration selected in

the Properties window, which enables files with non-standard extensions to be compiled by the project system.

Externally Built Executables

You can use an external build process for Externally Built Executable project types by setting the Build
Command project property, for example to make target. Alternatively you can set command lines for specific
build steps to compile/assemble and link. When you create an Externally Built Executable project type

configurations will be created that create command lines for a variety of external tool chains.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For
example, you could have a solution that builds a library together with a stub test driver executable. You can
link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit CrossWorks, details of your current session are stored in a session file. Session files are text files,
with the file extension hzs, that contain details such as which files you have opened in the editor and what
breakpoints you have set in the Breakpoint window.

141

CrossWorks for ARM Reference Manual CrossStudio User Guide

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. Inthe New Project wizard, select the type of project you wish to create and specify where it will be
placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the
solution directory. The project system will use the project directory as the current directory when it builds your
project. Once complete, the Project Explorer displays the new solution, project, and files contained in the
project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.
3. Click OK.

142

CrossWorks for ARM Reference Manual CrossStudio User Guide

Adding existing files to a project

You can add existing files to a project in a number of ways.

To add existing files to the active project:
Choose Project > Add Existing File or press Ctrl+P, A.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.
Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter
matches a file's extension, the file is placed underneath the project node.
To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.
To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

To create a dynamic folder:

1. In the Project Explore, right click on the project to which you wish to add a new folder.

2. Choose New Folder....

3. Using the New Folder dialog name the folder and then show the dynamic folder options.
4

. Specify the required Source Folder and the Filter Specification.

The files that match the filter specification in the source folder will appear in the newly created folder.

143

CrossWorks for ARM Reference Manual CrossStudio User Guide

Adding new files to a project

You can add new files to a project in a number of ways.

To add new files to the active project:

Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.
2. Choose Add New File.

When adding a new file, CrossStudio displays the New File dialog, from which you can choose the type of file

to add, its filename, and where it will be stored. Once created, the new file is added to the folder whose filter
matches the extension of the newly added file. If no filter matches the newly added file extension, the new file is
placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add New File.

The new file is added to the folder without using filter matching.

144

CrossWorks for ARM Reference Manual CrossStudio User Guide

Removing a file, folder, project, or project link

You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,
using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does
not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.
2. Choose Edit > Delete or press Del.

or

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

145

CrossWorks for ARM Reference Manual CrossStudio User Guide

Building your application

CrossStudio builds your application using the resources and build rules it finds in your solution.

When CrossStudio builds your application, it tries to avoid building files that have not changed since they were
last built. It does this by comparing the modification dates of the generated files with the modification dates of
the dependent files together with the modification dates of the properties that pertain to the build. But if you

are copying files, sometimes the modification dates may not be updated when the file is copiedin this instance,

it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale CrossStudio currently is using by setting the Environment Options > Building
> Show Build Information property. To see the build commands themselves, set the Environment Options >
Building > Echo Build Command property.

You may have a solution that contains several interdependent projects. Typically, you might have several
executable projects and some library projects. The Project Dependencies dialog specifies the dependencies
between projects and to see the effect of those dependencies on the solution build order. Note that
dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the
Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder
contains the list of newly generated files and the files from which they were generated. To see if one of files
can be decoded and displayed in the editor, right-click the file to see if the View command is available on the
shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all
executable files built in the solution.

When CrossStudio builds projects, it uses the values set in the Properties window. To generalize your builds, you
can define macro values that are substituted when the project properties are used. These macro values can be

defined globally at the solution and project level, and can be defined on a per-configuration basis.

The combination of configurations, properties with inheritance, dependencies, and macros provides a very
powerful build-management system. However, such systems can become complicated. To understand the
implications of changing build settings, right-click a node in the Project Explorer and select Properties to view a
dialog that shows which macros and build steps apply to that project node.
To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

or

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

146

CrossWorks for ARM Reference Manual CrossStudio User Guide

To build a single project:

1. Select the required project in the Project Explorer.
2. Choose Build > Build or press F7.

or
1. Right-click the project in the Project Explorer.
2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.
or

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted
in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.
You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

147

CrossWorks for ARM Reference Manual CrossStudio User Guide

Creating variants using configurations

CrossStudio provides a facility to build projects in various configurations. Project configurations are used to
create different software builds for your projects.

A configuration defines a set of project property values. For example, the output of a compilation can be put
into different directories, dependent upon the configuration. When you create a solution, some default project
configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler
options for debug builds will differ from those of a release build: a debug build will set options so the project can
be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its
speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit properties from other configurations. This provides a single point of change for definitions
common to several configurations. A particular property can be overridden in a particular configuration to

provide configuration-specific settings.

When a solution is created, two configurations are generated Debug and Release and you can create additional
configurations by choosing Build > Build Configurations. Before you build, ensure that the appropriate
configuration is set using Build > Set Active Build Configuration or, alternatively, the Active Configuration
combo box in the Project Explorer. You should also ensure that the appropriate build properties are set in the

Properties window.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or
select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The
New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

148

CrossWorks for ARM Reference Manual CrossStudio User Guide

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

149

CrossWorks for ARM Reference Manual CrossStudio User Guide

Project properties

For solutions, projects, folders, and files, properties can be defined that are used by the project system in
the build process. These property values can be viewed and modified by using the Properties window in
conjunction with the Project Explorer. As you select items in the Project Explorer, the Properties window will

list the set of relevant properties.

Some properties are only applicable to a given item type. For example, linker properties are only applicable to
a project that builds an executable file. However, other properties can be applied either at the file, project, or
solution project node. For example, a compiler property can be applied to a solution, project, or individual file.

By setting a property at the solution level, you enable all files of the solution to use that property's value.

Unique properties

A unique property has one value. When a build is done, the value of a unique property is the first one defined

in the project hierarchy. For example, the Treat Warnings As Errors property could be set to Yes at the solution
level, which would then be applicable to every file in the solution that is compiled, assembled, and linked. You
can then selectively define property values for other project items. For example, a particular source file may have
warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that particular file.

Note that, when the Properties window displays a project property, it will be shown in bold if it has been

defined for unique properties. The inherited or default value will be shown if it hasn't been defined.

solution Treat Warnings As Errors = Yes
projectl Treat Warnings As Errors = Yes
filel Treat Warnings As Errors = Yes
file2 Treat Warnings As Errors = No
project2 Treat Warnings As Errors = No
filel Treat Warnings As Errors No
file2 Treat Warnings As Errors Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/filel Yes
project1/file2 No
project2/file1 No
project2/file2 Yes
Aggregate properties

An aggregating property collects all the values defined for it in the project hierarchy. For example, when a C
file is compiled, the Preprocessor Definitions property will take all the values defined at the file, project, and

solution levels. Note that the Properties window will not show the inherited values of an aggregating property.

150

CrossWorks for ARM Reference Manual CrossStudio User Guide

solution Preprocessor Definitions = Sol utionDef
projectl Preprocessor Definitions =
filel Preprocessor Definitions
file2 Preprocessor Definitions Fi | e1Def
project2 Preprocessor Definitions = Project Def
filel Preprocessor Definitions
file2 Preprocessor Definitions

Fi | e2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/filel SolutionDef

project1/file2 SolutionDef, File1Def
project2/file1 SolutionDef, ProjectDef
project2/file2 SolutionDef, ProjectDef, File2Def

151

CrossWorks for ARM Reference Manual CrossStudio User Guide

Configurations and property values

Property values are defined for a configuration so you can have different values for a property for different
builds. A given configuration can inherit the property values of other configurations. When the project system
requires a property value, it checks for the existence of the property value in current configuration and then in
the set of inherited configurations. You can specify the set of inherited configurations using the Configurations
dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration
allows you to set property values that will apply to all configurations you create. You can select the Common
configuration using the Configurations combo box of the properties window. If you are modifying a property
value of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the property is unique, the build system will use the one defined for the particular configuration. If the
property isn't defined for this configuration, the build system uses an arbitrary one from the set of inherited

configurations.

If the property is still undefined, the build system uses the value for the Common configuration. If it is still
undefined, the build system tries to find the value in the next higher level of the project hierarchy.
solution [Common] Preprocessor Definitions = ConmonSol uti onDef
sol ution [Debug] Preprocessor Definitions = DebugSol uti onDef
solution [Rel ease] Preprocessor Definitions = Rel easeSol uti onDef
projectl - Preprocessor Definitions =
filel - Preprocessor Definitions =
file2 [Common] Preprocessor Definitions = CommonFil elDef
file2 [Debug] Preprocessor Definitions = DebugFil elDef
project2 [Common] Preprocessor Definitions = ProjectDef
filel Preprocessor Definitions =
file2 [Commobn] - Preprocessor Definitions = Fil e2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration

File Setting
project1/filel CommonSolutionDef, DebugSolutionDef
project1/file2 CommonSolutionDef,

DebugSolutionDef,CommonFile1Def, DebugFile1Def
project2/file1 CommonSolutionDef, DebugSolutionDef, ProjectDef

152

CrossWorks for ARM Reference Manual CrossStudio User Guide

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

and the files will be compiled with these Preprocessor Definitions when in Release configuration:

File Setting
project1/filel CommonSolutionDef, ReleaseSolutionDef
project1/file2 CommonSolutionDef, ReleaseSolutionDef,

CommonfFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef
project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

153

CrossWorks for ARM Reference Manual CrossStudio User Guide

Project macros

You can use macros to modify the way the project system refers to files.
Macros are divided into four classes:

System macros defined by CrossStudio relay information about the environment, such as paths to
common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,
you would set up paths to libraries and any external items here.

Project macros are saved as project properties in the project file and can define values specific to the
solution or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by CrossStudio itself and as such are read-only. System macros can be used in project

properties, environment settings and to refer to files. See System macros list for the list of System macros.

Global macros

Global macros are store in the environment option Global Macros.

To define a global macro:

1. Use Tools > Options to show the environment options dialog.

2. In the Environment Options dialog's Building group, select the Global Macros property.
3. Click the ellipsis button on the right.
4

. Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:
You can set the project macros from the Properties window:

1. Select the appropriate solution/project in the Project Explorer.

2. In the Properties window's General Options group, select the Macros property.
3. Click the ellipsis button on the right.
4

. Set the macro using the syntax name = replacement text.

154

CrossWorks for ARM Reference Manual CrossStudio User Guide

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project property or environment setting by using the $(macro) syntax. For example,
the Object File Name property has a default value of $(I nt Di r) / $(| nput Nane) $(OBJ).

You can also specify a default value for a macro if it is undefined using the $(macro:default) syntax. For example,
$(MyMacr 0: 0) would expand to 0 if the macro MyMacr o has not been defined.

155

CrossWorks for ARM Reference Manual CrossStudio User Guide

Dependencies and build order

You can set up dependency relationships between projects using the Project Dependencies dialog. Project
dependencies make it possible to build solutions in the correct order and, where the target permits, to load
and delete applications and libraries in the correct order. A typical usage of project dependencies is to make
an executable project dependent upon a library executable. When you elect to build the executable, the build
system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project properties and, as such, can be defined differently based upon the
selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the
projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would
result if any of those projects were selected. In this way, CrossStudio prevents you from constructing circular
dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are
loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded
before the applications that use them, and you can ensure this happens by making the application dependent
upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed
before the libraries on which they depend.

156

CrossWorks for ARM Reference Manual CrossStudio User Guide

Precompile Header File support

You can specify a single file in your project to be a precompiled header by setting the project property
Precompiled Header File on the file node of the project. The file should be project local i.e. in the same directory
as the project file and should include the header files that you wish to be compiled.

You must set the project level property Enable Precompiled Header File which supplies the output file
generated by the precompiled header file to the compilation of each file in the project.

157

CrossWorks for ARM Reference Manual CrossStudio User Guide

Linking and section placement

Executable programs consist of a number of sections. Typically, there are program sections for code, initialized
data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the CrossWorks project
system uses memory-map files and section-placement files. These XML-formatted files are described in Memory
Map file format and Section Placement file format. They can be edited with the CrossWorks text editor. The
memory-map file specifies the start address and size of target memory segments. The section-placement file
specifies where to place program sections in the target's memory segments. Separating the memory map from
the section-placement scheme enables a single hardware description to be shared across projects and also

enables a project to be built for a variety of hardware descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM
could look something like this in the memory-map editor.

< nane="Devi cel" >
< nanme="FLASH' start="0x10000000" si ze="0x10000" />
< nane="SRAM' start="0x20000000" size="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will
list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors
and .text sections in the FLASH segment would look like this:

< nane="Fl ash Section Pl acenent">
< name="FLASH' >
< name=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
</ >
< nanme="SRAM' >
< name=".stack" | oad="No" />
</ >
</ >

Note that the order of section placement within a segment is top down; in this example .vectors is placed at
lower addresses than .text. The order memory segments are processed is bottom up; so in this example the

sections in the SRAM segment will be placed prior to the sections in the FLASH segment.

Multiple memory segments can be specified by separating them with a semicolon. In the following example, the
.stack section will be placed in the SRAM2 memory segment if it exists in the memory map, otherwise it will be
placed in the SRAM memory segment. Sections can only be placed in one segment, they will not be placed in a
second segment when the first is full.

< nane="Fl ash Secti on Pl acenent" >

158

CrossWorks for ARM Reference Manual CrossStudio User Guide

< nane="FLASH' >
< nane=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
</ >
< name="SRAMZ; SRAM' >
< nane=".stack" | oad="No" />
</ >
</ >

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,
alternatively, they can be specified in the project's linker properties.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this
can be achieved using __attribute__ on declarations. For example:

voi d foobar(void) _attribute ((section(".fo00")));

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,
constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options properties.

You can now place the section into the section placement file using the editor so that it will be located after the
vectors sections as follows:

< nanme="Fl ash Secti on Pl acenent" >
< nane="FLASH' >
< nane=".vectors" | oad="Yes" />
< nane=".foo" |oad="Yes" />
< nane=".text" | oad="Yes" />
</ >
< nanme=" SRAM' >
< nane=".stack" | oad="No" />
</ >
</ >

If you are modifying a section-placement file that is supplied in the CrossWorks distribution, you will need to
import it into your project using the Project Explorer.

Sections containing code and constant data should have their load property set to Yes. Some sections don't
require any loading, such as stack sections and zeroed-data sections; such sections should have their load
property set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for
initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data section and then is copied into the .data_run section using:

< nanme="Fl ash Secti on Pl acenent" >
< nane="FLASH' >
< nane=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
< nanme=".data" |oad="Yes" runin=".data_run" />
</ >

159

CrossWorks for ARM Reference Manual

CrossStudio User Guide

< nanme=" SRAM' >
< nanme=".data_run" | oad="No" />
< nane=".stack" | oad="No" />
</ >
</ >

The startup code will copy the contents of the .data section to the .data_run section. To enable this, symbols

named __section-name_start__, __section-name_end__, __ section-name_load_start__and __section-

name_load_end__ are generated marking the section start, end, load start and load end addresses of each

section. The startup code uses these symbols to copy the sections from their load positions to their run

positions.

You can also create your own load and run section, for example the following placement file adds a .mydata

section:
< nane="Fl ash Section Pl acenent">
< nane="FLASH' >
< name=".vectors" | oad="Yes" />
< nane=".text" | oad="Yes" />
< name=".data" | oad="Yes" runin=".data_run" />
< name=". mydata" | oad="Yes" runin=".nydata_run" />
</ >
< nane="SRAM' >
< name=".data_run" | oad="No" />
< name=". mydata_run" | oad="No" />
< name=".stack" | oad="No" />
</ >
</ >

As the startup code doesn't know about this section, the following code will need to be added to the program to

initialise the section:

/* Section image |located in flash */

extern const unsigned char _ _nydata |oad_start_ [];
extern const unsigned char _ nmydata_load_end__[];

/* Where to | ocate the section inage in RAM

extern unsigned char __nydata_start__[];
extern unsigned char _ nydata_end__[];

/* Copy inmage fromflash to RAM */
mencpy(__nmydata_start__,
__nydata_| oad_start__,
__nydata_end__ - _ nydata_start_);

*/

160

CrossWorks for ARM Reference Manual CrossStudio User Guide

Using source control

Source control is an essential tool for individuals or development teams. CrossStudio integrates with several

popular source-control systems to provide this feature for files in your CrossWorks projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided
by CrossWorks aims to be provider independent.

161

CrossWorks for ARM Reference Manual CrossStudio User Guide

Source control capabilities

The source-control integration capability provides:

Connecting to the source-control repository and mapping files in the CrossWorks project to those in
source control.

Showing the source-control status of files in the project.

Adding files in the project to source control.

Fetching files in the project from source control.

Optionally locking and unlocking files in the project for editing.

Comparing a file in the project with the latest version in source control.

Updating a file in the project by merging changes from the latest version in source control.

Committing changes made to project files into source control.

162

CrossWorks for ARM Reference Manual CrossStudio User Guide

Configuring source-control providers

CrossStudio supports Subversion, Git, and Mercurial as source-control systems. To enable CrossStudio to utilize
source-control features, you need to install, on your operating system, the appropriate command line client for
the source-control systems that you will use.

Once you have installed the command line client, you must configure CrossStudio to use it.

To configure Subversion:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Subversion Options group to point to Subversion svnh command. On
Windows operating systems, the Subversion command is svn. exe.

To configure Git:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Git Options group to point to Git gi t command. On Windows
operating systems, the Git commandisgi t . exe.

To configure Mercurial:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Mercurial Options group to point to Git hg command. On Windows
operating systems, the Git command is hg. exe.

163

CrossWorks for ARM Reference Manual CrossStudio User Guide

Connecting to the source-control system

When CrossStudio loads a project, it examines the file system folder that contains the project to determine the
source-control system the project uses. If CrossStudio cannot determine, from the file system, the source-control

system in use, it disables source-control integration.

That is, if you have not set up the paths to the source-control command line clients, even if a working copy exists
and the appropriate command line client is installed, CrossStudio cannot establish source-control integration for
the project.

User credentials

You can set the credentials that the source-control system uses, for commands that require credentials, using
VCS > Options > Configure. From here you can set the user name and password. These details are saved to the
session file (the password is encrypted) so you won't need to specify this information each time the project is
loaded.

Note

CrossStudio has no facility to create repositories from scratch, nor to clone, pull, or checkout repositories to
a working copy: it is your responsibility to create a working copy outside of CrossStudio using your selected

command-line client or Windows Explorer extension.

The "Tortoise" products are a popular set of tools to provide source-control facilities in the Windows shell. Use

Google to find TortoiseSVN, TortoiseGit, and TortoiseHG and see if you like them.

164

CrossWorks for ARM Reference Manual CrossStudio User Guide

File source-control status

Determining the source-control status of a file can be expensive for large repositories, so CrossWorks updates

the source-control status in the background. Priority is given to items that are displayed.
A file will be in one of the following states:

Clean:The file is in source control and matches the tip revision.

Not Controlled:The file is not in source control.

Conflicted:The file is in conflict with changes made to the repository.

Locked:The file is locked.

Update Available:The file is older than the most-recent version in source control.
Added:The file is scheduled to be added to the repository.

Removed:The file is scheduled to be removed from the repository.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing VCS > Refresh.

165

CrossWorks for ARM Reference Manual CrossStudio User Guide

Source-control operations

Source-control operations can be performed on single files or recursively on multiple files in the Project
Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's
shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the
Project Explorer shortcut menu.

166

CrossWorks for ARM Reference Manual CrossStudio User Guide

Adding files to source control

To add files to the source-control system:

1. In the Project Explorer, select the file to add. If you select a folder, project, or solution, any eligible child
items will also be added to source control.

choose Source Control > Add or press Ctrl+R, A.

The dialog will list the files that can be added.

In that dialog, you can deselect any files you don't want to add to source control.

Click Add.

vk N

Note

Files are scheduled to be added to source control and will only be committed to source control (and seen by

others) when you commit the file.

Enabling the VCS > Options > Add Immediately option will bypass the dialog and immediately add (but not

commit) the files.

167

CrossWorks for ARM Reference Manual CrossStudio User Guide

Updating files

To update files from source control:

1. In the Project Explorer, select the file to update. If you select a folder, project, or solution, any eligible
child items will also be updated from source control.

choose Source Control > Update or press Ctrl+R, U.

The dialog will list the files that can be updated.

In that dialog, you can deselect any files you don't want to update from source control.

Click Update.

vk N

Note

Enabling the VCS > Options > Update Immediately option will bypass the dialog and immediately update the

files.

168

CrossWorks for ARM Reference Manual CrossStudio User Guide

Committing files

To commit files:

1. In the Project Explorer, select the file to commit. If you select a folder, project, or solution, any eligible
child items will also be committed.

Choose Source Control > Commit or press Ctrl+R, C.

The dialog will list the files that can be committed.

In that dialog, you can deselect any files you don't want to commit and enter an optional comment.

Click Commit.

vk N

Note

Enabling the VCS > Options > Commit Immediately option will bypass the dialog and immediately commit the

files without a comment.

169

CrossWorks for ARM Reference Manual CrossStudio User Guide

Reverting files

To revert files:

1. In the Project Explorer, select the file to revert. If you select a folder, project, or solution, any eligible child
items will also be reverted.

Choose Source Control > Revert or press Ctrl+R, V.

The dialog will list the files that can be reverted.

In that dialog, you can deselect any files you don't want to revert.

Click Revert.

vk N

Note

Enabling the VCS > Options > Revert Imnmediately option will bypass the dialog and immediately revert files.

170

CrossWorks for ARM Reference Manual CrossStudio User Guide

Locking files

To lock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child
items will also be locked.

Choose Source Control > Lock or press Ctrl+R, L.

The dialog will list the files that can be locked.

In that dialog, you can deselect any files you don't want to lock and enter an optional comment.

Click Lock.

vk N

Note

Enabling the VCS > Options > Lock Immediately option will bypass the dialog and immediately lock files

without a comment.

171

CrossWorks for ARM Reference Manual CrossStudio User Guide

Unlocking files

To unlock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child
items will also be unlocked.

Choose Source Control > Unlock or press Ctrl+R, N.

The dialog will list the files that can be unlocked.

In that dialog, you can deselect any files you don't want to unlock.

Click Unlock.

vk N

Note

Enabling the VCS > Options > Unlock Immediately option will bypass the dialog and immediately unlock files.

172

CrossWorks for ARM Reference Manual CrossStudio User Guide

Removing files from source control

To remove files from source control:

1. In the Project Explorer, select the file to remove. If you select a folder, project, or solution, any eligible
child items will also be removed.

choose Source Control > Remove or press Ctrl+R, R.

The dialog will list the files that can be removed.

In that dialog, you can deselect any files you don't want to remove.

vk N

Click Remove.

Note

Files are scheduled to be removed from source control and will still be and seen by others, giving you the

opportunity to revert the removal. When you commit the file, the file is removed from source control.

Enabling the VCS > Options > Remove Immediately option will bypass the dialog and immediately remove (but

not commit) files.

173

CrossWorks for ARM Reference Manual CrossStudio User Guide

Showing differences between files

To show the differences between the file in the project and the version checked into source control, do the
following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Compare.

You can use an external diff tool in preference to the built-in CrossWorks diff tool. To define the diff command
line CrossWorks generates, choose Tools > Options > Source Control > Diff Command Line. The command line
is defined as a list of strings to avoid problems with spaces in arguments. The diff command line can contain the
following macros:

S(localfile):The filename of the file in the project.
S(remotefile):The filename of the latest version of the file in source control.
S(localname):A display name for $(localfile).

S(remotename):A display name for $(remotefile).

174

CrossWorks for ARM Reference Manual CrossStudio User Guide

Source-control properties

When a file in the project is in source control, the Properties window shows the following properties in the
Source Control Options group:

Property
CrossStudio Status

last Author
Path: Relative

Path: Repository

Path: Working Copy

Provider

Provider Status

Revision: Local

Revision: Remote

Status: In Conflict?

Status: Locked?
Status: Modified?

Status: Update Available?

Description

The source-control status of working copy as viewed
by CrossStudio.

The author of the file's head revision.
The item's path relative to the repository root.

The pathname of the file in the source-control system,
typically a URL.

The pathname of the file in the working copy.

The name of the source-control system managing this
file.

The status of the file as reported by the source-control
provider.

The revision number/name of the local file.

The revision number/name of the most-recent version
in source control.

If Yes, updates merged into the file using Update
conflict with the changes you made locally; if No,
the file is not locked. When conflicted, must resolve
the conflicts and mark them Resol ved before
committing the file.

If Yes, the file is lock by you; if No, the file is not locked.

If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

If Yes, the file in the project location is an old version
compared to the latest version in the source-control
systemuse Update to merge in the latest changes.

175

CrossWorks for ARM Reference Manual CrossStudio User Guide

Subversion provider

The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description
Executable The path to the svn executable.
Lock Supported If Yes, check out and undo check out operations

are supported. Check out will issue the svn | ock
command; check in and undo check out will issue the
svn unl ock command.

Authentication Selects whether authentication (user name and
password) is sent with every command.

Show Updates Selects whether the update (- u flag) is sent with
status requests in order to show that new versions are
available in the repository. Note that this requires a
live connection to the repository: if you are working
without a network connection to your repository, you
can disable this switch and continue to enjoy source
control status information in the Project Explorer and
Pending Changes windows.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote
root,asvn checkout -Ncommand will beissued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The CrossWorks source-control operations are implemented using Subversion commands. Mapping CrossWorks

source-control operations to Subversion source-control operations is straightforward:

Operation Command

Commit svn conmi t for the file, with optional comment.
Update svn updat e for each file.

Revert svn revert foreach file.

176

CrossWorks for ARM Reference Manual

Resolved
Lock
Unlock
Add
Remove

Source Control Explorer

svn

svn

svn

svn

svn

svn

CrossStudio User Guide

r esol ved for each file.

| ock for each file, with optional comment.
unl ock for each file.

add for each file.

r emove for each file.

| i st with aremote root.svn nkdi r to create

directories in the repository.

177

CrossWorks for ARM Reference Manual CrossStudio User Guide

CVS provider

The CVS source-control provider has been tested with CYSNT 2.5.03. The CVS source-control provider uses the
CVSr | s command to browse the repositorythis command is implemented in CVS 1.12 but usage of . as the root
of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description
CVSROOT The CVSROOT value to access the repository.
Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands

are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-

out operation will issue the cvs unedi t command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs | ogi n command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote
root,acvs checkout -1 -dcommand will beissued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The CrossWorks source-control operations have been implemented using CVS commands. There are no
multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

cvs st at us and optionalcvs edi t or s for local
Get Status directories in CVS control.cvs rl s - e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file.cvs commi t for the file and
directories.

Get Latest cvs update -I -d foreach directory notin CVS

control.cvs updat e to merge the local file. cvs
updat e - Cto overwrite the local file.

178

CrossWorks for ARM Reference Manual CrossStudio User Guide

Check Out Optional cvs updat e - Cto get the latest version.
cvs edit tolockthefile.

Undo Check Out cvs unedit to unlock the file. Optional cvs
updat e to get the latest version.

Check In cvs conmit for the file.

Source Control Explorer cvs rls - e witharemote root starting with ..cvs

i mport to create directories in the repository.

179

CrossWorks for ARM Reference Manual CrossStudio User Guide

Package management

Additional target-support functions can be added to, and removed from, CrossWorks with packages.

A CrossWorks package is an archive file containing a collection of target-support files. Installing a package
involves copying the files it contains to an appropriate destination directory and registering the package with
CrossWorks's package system. Keeping target-support files separate from the main CrossWorks installation
allows us to support new hardware and issue bug fixes for existing hardware-support files between CrossWorks
releases, and it allows third parties to develop their own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:
Choose Tools > Manage Packages.

In some situations, such as using CrossWorks on a computer without Internet access or when you want to install
packages that are not on the website, you cannot use the Package Manager to install packages and it will be
necessary to manually install them.

To manually install a package:

1. Choose Tools > Packages > Manually Install Packages.
2. Select one or more package files you want to install.

3. Click Open to install the packages.
Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

180

CrossWorks for ARM Reference Manual

CrossStudio User Guide

. 3
¥ Package Manager @Iéj
Select Packages

Search Packages -
Title Type Status Action -
Analog Devices ADUCTO00 CPU Support Package CPU Support Package Mot Installed Mo Action
Analog Devices ADuCT020 Eval Board Support Package Board Support Package Mot Installed Mo Adion |=
Analog Devices ADuCT7024 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT026 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT128 Eval Board Support Package Board Support Package Mot Installed Mo Action
Anglia Calumbus STRY1x USE Evaluation Board Support Package Board Support Package Mot Installed Mo Action
ARM Evaluator-7T Board Support Package Board Support Package | Installed Mo Action
Atmel ATO1SAMT CPU Support Package CPU Support Package Update Available Update
Atmel ATOLSAMTAZ-EK Board Support Package Board Support Package Mot Installed Install
Atmel AT915AMYTL-5TK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT91SAM7TSE-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AM7S-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT9LSAMTX-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel ATO15AMO260-EK Board Support Package Board Support Package Installed Mo Action
Atmel AT915AM9261-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AMO263-EK Board Support Package Board Support Package | Installed Mo Action
Atmel EBO1 Board Support Package Board Support Package Mot Installed No Adtion
Atmal FRAAA Raard Sonnnart Darkana Rnard Soonnnart Darkana Mlnt Trctallad Mo Artinn

Package Information -

Description This package contains project templates and system files for the Atmel AT91SAMY.

Installed Version 17

Latest Version 15

Package Version History

13

Added support for AT915SAM7LG4 and AT91SAMTL125.
Loaders now set the boot from internal FLASH NVM bit by default.
1.7 -
Mext l [Cancel
-

To activate the Package Manager:

Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

Click on the disclosure icon near the top-right corner of the dialog.

Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

Display All Show all packages irrespective of their status.

Display Not Installed Show packages that are available but are not currently installed.

181

CrossWorks for ARM Reference Manual CrossStudio User Guide

Display Installed Only show packages that are installed.
Display Updates Only show packages that are installed but are not up-to-date because a newer version is
available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

Choose Tools > Package Manager and set the status filter to Display Not Installed.

Select the package or packages you wish to install.

Right-click the selected packages and choose Install Selected Packages from the shortcut menu.
Click Next; you will be see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will install the selected packages.

IS L T o

When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to
$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

Choose Tools > Package Manager and set the status filter to Display Updates.

Select the package or packages you wish to update.

Right-click the selected packages and choose Update Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will update the package(s).

AL O o e

When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

182

CrossWorks for ARM Reference Manual CrossStudio User Guide

To remove a package:

IS e

Choose Tools > Package Manager and set the status filter to Display Installed.

Select the package or packages you wish to remove.

Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will remove the package(s).

When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1.

S T

Choose Tools > Package Manager and set the status filter to Display Installed.

Select the package or packages you wish to reinstall.

Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will reinstall the packages.

When the operation is complete, click Finish to close the Package Manager.

183

CrossWorks for ARM Reference Manual CrossStudio User Guide

Exploring your application

In this section, we discuss the CrossStudio tools that help you examine how your application is built.

184

CrossWorks for ARM Reference Manual CrossStudio User Guide

Project explorer

The Project Explorer is the user interface of the CrossWorks project system. It organizes your projects and files
and provides access to the commands that operate on them. A toolbar at the top of the window offers quick
access to commonly used commands for the selected project node or the active project. Right-click to reveal a
shortcut menu with a larger set of commands that will work on the selected project node, ignoring the active

project.

The selected project node determines what operations you can perform. For example, the Compile operation
will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations
The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Select the node. If the node is already selected and

Single click is a solution, project, or folder node, a rename editor
appears.
Double click Double-clicking a solution node or folder node will

reveal or hide the node's children. Double-clicking a
project node selects it as the active project. Double-
clicking a file opens the file with the default editor for
that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

_:iinl Add a new file to the active project using the New File
— dialog.

@ Add existing files to the active project.

185

CrossWorks for ARM Reference Manual

iy &) gt (F =

Shortcut menu commands

CrossStudio User Guide

Remove files, folders, projects, and links from the
project.

Create a new folder in the active project.
Menu of build operations.
Disassemble the active project.

Menu of Project Explorer options.

Display the properties dialog for the selected item.

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item
Build and Batch Build

Rebuild and Batch Rebuild

Clean and Batch Clean

Export Build and Batch Export Build

Add New Project
Add Existing Project
Paste

Remove

Rename

Source Control Operations

Edit Solution As Text

Save Solution As

Properties

Description

Build all projects under the solution in the current or
batch build configuration.

Rebuild all projects under the solution in the current or
batch build configuration.

Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add a new project to the solution.

Create a link from an existing solution to this solution.
Paste a copied project into the solution.

Remove the link to another solution from the solution.
Rename the solution node.

Source-control operations on the project file and
recursive operations on all files in the solution.

Create an editor containing the project file.

Change the filename of the project filenote that the
saved project file is not reloaded.

Show the Properties dialog with the solution node
selected.

186

CrossWorks for ARM Reference Manual

For projects:

Item
Build and Batch Build

Rebuild and Batch Rebuild
Clean and Batch Clean
Export Build and Batch Export Build

Link

Set As Active Project

Debugging Commands

Memory-Map Commands

Section-Placement Commands

Target Processor

Add New File
Add Existing File
New Folder

Cut

Copy

Paste

Remove

Rename

CrossStudio User Guide

Description

Build the project in the current or batch build
configuration.

Reuild the project in the current or batch build
configuration.

Remove all output and intermediate build files for the
project in the current or batch build configuration.

Create an editor with the build commands for the
project in the current or batch build configuration.

Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set the project to be the active project.

For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

For Executable project types that don't have memory-
map files in the project and have the memory-map file
project property set, there are commands to view the
memory-map file and to import it into the project.

For Executable project types that don't have section-
placement files in the project but have the section-
placement file project property set, there are
commands to view the section-placement file and to
import it into the project.

For Executable and Externally Built Executable project
types that have a Target Processor property group, the
selected target can be changed.

Add a new file to the project.

Add an existing file to the project.

Create a new folder in the project.

Cut the project from the solution.

Copy the project from the solution.

Paste a copied folder or file into the project.
Remove the project from the solution.

Rename the project.

187

CrossWorks for ARM Reference Manual

Source Control Operations

Find in Project Files

Properties

For folders:
Item

Add New File
Add Existing File
New Folder

Cut

Copy

Paste
Remove
Rename

Source Control Operations

Compile

Properties

For files:
Item

Open
Open With

Select in File Explorer

Compile

Export Build

Exclude From Build

Disassemble

Preprocess

Cut

CrossStudio User Guide

Source-control, recursive operations on all files in the
project.

Run Find in Files in the project directory.

Show the Project Manager dialog and select the
project node.

Description

Add a new file to the folder.

Add an existing file to the folder.

Create a new folder in the folder.

Cut the folder from the project or folder.
Copy the folder from the project or folder.
Paste a copied folder or file into the folder.
Remove the folder from the project or folder.
Rename the folder.

Source-control recursive operations on all files in the
folder.

Compile each file in the folder.

Show the properties dialog with the folder node
selected.

Description
Edit the file with the default editor for the file's type.

Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Create a operating system file system window with the
file selected.

Compile the file.

Create an editor window containing the commands to
compile the file in the active build configuration.

Set the Exclude From Build property to Yes for this
project node in the active build configuration.

Disassemble the output file of the compile into an
editor window.

Run the C preprocessor on the file and show the
output in an editor window.

Cut the file from the project or folder.

188

CrossWorks for ARM Reference Manual CrossStudio User Guide

Copy Copy the file from the project or folder.

Remove Remove the file from the project or folder.

Import Import the file into the project.

Source Control Operations Source-control operations on the file.

Properties Show the properties dialog with the file node selected.

189

CrossWorks for ARM Reference Manual CrossStudio User Guide

Source navigator window

One of the best ways to find your way around your source code is using the Source Navigator. It parses the
active project's source code and organizes classes, functions, and variables in various ways.
To activate the Source Navigator:

Choose Navigate > Source Navigator or press Ctrl+Alt+N.

The main part of the Source Navigator window provides an overview of your application's functions, classes,

and variables.

CrossStudio displays these icons to the left of each object:

Icon Description
{} A Cor C++ structure or a C++ namespace.
3 A C++ class.
&
& A C++ member function declared pri vat e ora
function declared with st at i ¢ linkage.
‘E" A C++ member function declared pr ot ect ed.
& A C++ member function declared publ i c ora
function declared with ext er n linkage.
% A C++ member variable declared pri vat e ora
variable declared with st at i c linkage.
‘E’@ A C++ member variable declared pr ot ect ed.
@ A C++ member variable declared publ i ¢ or a variable

declared with ext er n linkage.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to. To parse source files manually,
click the Refresh button on the Source Navigator toolbar.

CrossStudio re-parses all files in the active project, and any dependent project, and updates the Source
Navigator with the changes. Parsing progress is shown as a progress bar in the in the Source Navigator window.
Errors and warnings detected during parsing are sent to the Source Navigator Log in the Output windowyou can

show the log quickly by clicking the Show Source Navigator Log tool button on the Source Navigator toolbar.

190

CrossWorks for ARM Reference Manual CrossStudio User Guide

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.
2. Choose Group By Type

191

CrossWorks for ARM Reference Manual CrossStudio User Guide

References window

The References window shows the results of the last Find References operation. The Find References facility
is closely related to the Source Navigator in that it indexes your project and searches for references within the

active source code regions.
To activate the References window:

If you have hidden the References window and want to see it again:

Choose Navigate > References or press Ctrl+Alt+R.

To find all references in a project:

1. Open a source file that is part of the active project, or one of its dependent projects.

2. In the editor, move the insertion point within the name of the function, variable, method, or macro to
find.

3. Choose Search > Find References or press Alt+R.

4. CrossStudio shows the References window, without moving focus, and searches your project in the
background.

You can also find references directly from the text editor's context menu: right-click the item to find and choose
Find References. As a convenience, CrossStudio is configured to also run Find References when you Alt+Right-

click in the text editorsee Mouse-click accelerators.

To search within the results:

Type the text to search for in the Reference window's search box. As you type, the search results are
narrowed.

Click the close button to clear the search text and show all references.

To replace within the results:

Type the replacement text in the Reference window's replace box.
Use the buttons to navigate and replace the text.

The documents that have had replaced text will appear unsaved in the text editor.

192

CrossWorks for ARM Reference Manual CrossStudio User Guide

Symbol browser window

The Symbol Browser shows useful information about your linked application and complements the information
displayed in the Project Explorer window. You can select different ways to filter and group the information in
the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser
to drill down to see the size and location of each part of your program. The way symbols are sorted and grouped
is saved between runs; so, when you rebuild an application, CrossStudio automatically updates the Symbol

Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

{El Group symbols by source filename.

{ﬁ Group symbols by symbol type (equates, functions,

labels, sections, and variables).

{. Group symbols by the section where they are defined.
& | Move the insertion point to the statement that defined

- the symbol.

Select columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an
application. CrossStudio displays the following icons to the left of each symbol:

Icon Description
% Private Equate A private symbol not defined relative to
a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.
Public Function A public function symbol.

Private Label A private data symbol, defined relative to
a section.

e » @ » o

Public Label A public data symbol, defined relative to a
section.

Section A program section.

193

CrossWorks for ARM Reference Manual CrossStudio User Guide

Choosing what to show

To activate the Symbol Browser window:
Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.
You can choose to display the following fields for each symbol:

Value:The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.
For absolute or symbolic equates, this will be the value of the symbol.

Range:The range of addresses the code or data item covers. For code symbols that correspond to high-
level functions, the range is the range of addresses used for that function's code. For data addresses that
correspond to high-level static or extern variables, the range is the range of addresses used to store that
data item. These ranges are only available if the corresponding source file was compiled with debugging
information turned on: if no debugging information is available, the range will simply be the first address
of the function or data item.

Size:The size, in bytes, of the code or data item. The Size column is derived from the Range of the symbol:
if the symbol corresponds to a high-level code or data item and has a range, Size is calculated as the
difference between the start and end addresses of the range. If a symbol has no range, the size column is
blank.

Section:The section in which the symbol is defined. If the symbol is not defined within a section, the
Section column is blank.

Type:The high-level type for the data or code item. If the source file that defines the symbol is compiled
with debugging information turned off, type information is not available and the Type column is blank.
Frame Size:The amount of stack space used by a call to the function symbol. If the source file that defines
the symbol is compiled with debugging information turned off, frame size information is not available

and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use

the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.
2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.
Symbols that are absolute or are not defined within a section are grouped beneath (No Section).

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

194

CrossWorks for ARM Reference Manual CrossStudio User Guide

2. From the pop-up menu, choose Group By Section.
The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.
When you group symbols by type, each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside, a section.

A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is
defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging
information, are grouped beneath (Unknown).

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.
The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.
2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those
symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides an
editable combobox} you can use to specify the symbols you'd like displayed. You can type * to match a sequence

of zero or more characters and ? to match exactly one character.

195

CrossWorks for ARM Reference Manual CrossStudio User Guide

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a
symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all
high-level language symbols with an underscore character, so the variable ext ern i nt u or the function
voi d fn(voi d) have low-level symbol names _u and _f n. The Symbol Browser uses the low-level symbol
name when displaying and filtering, so you must type the leading underscore to match high-level symbols.
To display symbols that start with a common prefix:

Type the desired prefix text into the combo box, optionally followed by a "*".
For instance, to display all symbols that start with "i2c_", type "i2¢_" and all matching symbols are displayedyou
don't need to add a trailing "*" in this case, because it is implied.
To display symbols that end with a common suffix:

Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in _data, type *_data and all matching symbols are displayedin this

case, the leading * is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging

information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.
or

1. Right-click the symbol in the list of symbols.
2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.
2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

196

CrossWorks for ARM Reference Manual CrossStudio User Guide

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

IS L T o e

Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.
Ensure the Size field is checked in the Field Chooser button's menu.

Ensure that the filter on the Symbol Browser toolbar is empty.

Click on the Size field in the header to sort by data size.

The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

> W

Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.
Ensure the Range and Size fields are checked in the Field Chooser button's menu.

Read the section sizes and ranges of each section in the application.

197

CrossWorks for ARM Reference Manual CrossStudio User Guide

Stack usage window

The Stack Usage Window finds the call paths of your linked application and displays them as a call tree
together with their minimal stack requirements. A call path of your application is any function that has been
linked in but has no direct call made to it but will make calls to other functions. The main function is the most
obvious example of a call path, an interrupt handler or a function that is called only as a function pointer are
other examples. To use the stack usage window your linked application must be compiled with debugging
information enabled.

User interface

Button Description
i Move the insertion point to the statement that defined
-+ the symbol.
= Collapse the selected open call tree.
ok Open the selected open call tree.
.j:':' Show only the deepest call path through the selected
- call tree.

198

CrossWorks for ARM Reference Manual CrossStudio User Guide

Memory usage window

The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Bdemal _FLASH (e BO00000C
B 2.9MB free of 4 MB

Extemal _SRAM b8 1 0000

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or
data.
To activate the Memory Usage window:

Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by CrossStudio, memory-usage information may not be available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.
To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and
choose Show Memory Sections from the shortcut menu.

199

CrossWorks for ARM Reference Manual CrossStudio User Guide

SRAM (4 000000
4 11.3kB free of 16 kB

wvectors_ram (e DOD0000

&0 bytes used

data (4000003
1 kB used

b=s (cA00004 3c
1.1 kB used

heap (4000084
1 kB used

stack (e A0000cc4

1 kB uszed

Each bar represents an entire memory segment. Green represents the area of the segment that contains the
program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed
in a segment is larger than the segment size. When this happens, the segment and section bars represents the
total memory used, green areas represent the code or data within the segment, and red areas represent code or
data placed outside the segment.

200

CrossWorks for ARM Reference Manual CrossStudio User Guide

Extemal _SRAM (b3 1 000000

4 65 kB over 1 MBE

data? (bc8 1000000

65 kB used

bss2 (31010400

1 ME used

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location
of specific objects within memory, use the Symbol browser window.

201

CrossWorks for ARM Reference Manual CrossStudio User Guide

Bookmarks window

The Bookmarks window contains a list of bookmarks that are set in the project. The bookmarks are stored in the
session file associated with the project and persist across runs of CrossStudioif you remove the session file, the

bookmarks associated with the project are lost.

User interface

Button Description

Toggle a bookmark at the insertion point in the active
— editor. Equivalent to choosing Edit > Bookmarks >
Toggle Bookmark or pressing Ctrl+F2.

(] Go to the previous bookmark in the bookmark list.

- Equivalent to choosing Edit > Bookmarks > Previous
Bookmark or pressing Alt+Shift+F2.

(] Go to the next next bookmark in the bookmark list.

o Equivalent to choosing Edit > Bookmarks > Next
Bookmark or pressing Alt+F2.

q{ Clear all bookmarksyou confirm the action using a
dialog. Equivalent to choosing Edit > Bookmarks >
Clear All Bookmarks or pressing Ctrl+K, Alt+F2.

O Selects the fill color for newly created bookmarks.

Double-clicking a bookmark in the bookmark list moves focus to the the bookmark.

You can set bookmarks with the mouse or using keystrokessee Using bookmarks.

202

CrossWorks for ARM Reference Manual CrossStudio User Guide

Code Outline Window

The Code Outline window shows the structure of the text of the focused code editor. For C and C++ documents
the top level symbols and types are displayed, for XML documents the nodes are displayed. For Cand C+

+ documents the Preview tab can display documentation on the top level symbols and types. The defacto
standard doxygen commands are supported for example:

/**

* \brief Convert a given full parsed comment to an XM. docunent.

*

* A Rel ax NG schema for the XML can be found in conment-xm -schema.rng file
* inside clang source tree.
*
*

\ param Conment a \c CXComment _Ful | Conment AST node.

*

* \returns string containing an XM. docunent .
*/
Cl NDEX_LI NKAGE CXString clang_Ful | Conment _get AsXM.(CXConmrent Conment) ;

203

CrossWorks for ARM Reference Manual CrossStudio User Guide

Analyzing Source Code

The Analyze action is available on the context menu of the project explorer at project, folder and file level. The
analyze action will run the https://clang.llvm.org/extra/clang-tidy linter tool on the C/C++ files selected by
the project explorer node and display warnings in the output window. The default checks will be the same as
the clang analyzer. You can enable additional checks by setting the Clang Tidy Checks project property. For
example you can enable the bugprone code constructs check and disable a specific clang analyzer diagnostic
check as follows

bugpr one- *
-cl ang-di agnosti c- par ent heses-equal ity

You can also set the project property Analyze After Compile which will run the analyzer each time the compiler

is run.

204

https://clang.llvm.org/extra/clang-tidy

CrossWorks for ARM Reference Manual CrossStudio User Guide

Editing your code

CrossStudio has a built-in editor that allows you to edit text, but some features make it particularly well suited to

editing code.

You can open multiple code editors to browse or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.
You can open a code editor in several ways, some of which are:

By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the
shortcut menu.
Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

Code pane:The area where you edit code. You can set options that affect the code pane's text indents,
tabs, drag-and-drop behavior, and so forth.

Margin gutter:A gray area on the left side of the code editor where margin indicators such as breakpoints,
bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of
code.

Horizontal and vertical scroll bars:You can scroll the code pane horizontally and vertically to view code that

extends beyond the edges of the pane.

205

CrossWorks for ARM Reference Manual CrossStudio User Guide

Basic editing
This section is a whirlwind tour of the basic editing features CrossStudio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word
processors. For code that is part of a project, the project's programming language support provides syntax
highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

206

CrossWorks for ARM Reference Manual CrossStudio User Guide

Moving the insertion point

The most common way to navigate through text is to use use the mouse or the keyboard's cursor keys.

Using the mouse

You can move the insertion point within a document by clicking the mouse inside the editor window.

Using the keyboard

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Move the insertion point up one line

Down Move the insertion point down one line

Left Move the insertion point left one character

Right Move the insertion point right one character

Home Move the insertion point to the first non-whitespace

character on the line pressing Home a second time
moves the insertion point to the leftmost column

End Move the insertion point to the end of the line
PageUp Move the insertion point up one page

PageDown Move the insertion point down one page

Ctrl+Home Move the insertion point to the start of the document
Ctrl+End Move the insertion point to the end of the document
Ctrl+Left Move the insertion point left one word

Ctrl+Right Move the insertion point right one word

CrossStudio offers additional movement keystrokes, though most users are more comfortable using repeated

simple keystrokes to accomplish the same thing:

Keystroke Description

Alt+Up Move the insertion point up five lines

Alt+Down Move the insertion point down five lines

Alt+Home Move the insertion point to the top of the window
Alt+End Move the insertion point to the bottom of the window
Ctrl+Up Scroll the document up one line in the window

without moving the insertion point

207

CrossWorks for ARM Reference Manual CrossStudio User Guide

Ctrl+Down Scroll the document down one line in the window
without moving the insertion point

If you are editing source code, the are source-related keystrokes too:

Keystroke Description
Move the insertion point backwards to the previous
Ctrl+PgUp) P P
function or method.
Ctrl+PgDn Move the insertion point forwards to the next function
or method.

208

CrossWorks for ARM Reference Manual CrossStudio User Guide

Adding text

The editor has two text-input modes:

Insertion mode:As you type on the keyboard, text is entered at the insertion point and any text to the right
of the insertion point is shifted along. A visual indication of insertion mode is that the cursor is a flashing
line.

Overstrike mode:As you type on the keyboard, text at the insertion point is replaced with your typing. A
visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert
mode. To configure the cursor appearance, choose Tools > Options.
To toggle between insertion and overstrike mode:

Click Insert.
When overstrike mode is enabled, the mode indicator changes from INS to OVR and the cursor will change to
the overstrike cursor.
To add or insert text:

1. Move the insertion point to the place text is to be inserted.
2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to place the editor into overstrike mode.

To add or insert text on multiple lines:

1. Hold down the Alt key and use block selection to mark the place text is to be inserted.

2. Enter the text using the keyboard.

209

CrossWorks for ARM Reference Manual CrossStudio User Guide

Deleting text

The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Delete the character before the insertion point
Delete Delete the character after the insertion point
Ctrl+Backspace Delete one word before the insertion point
Ctrl+Delete Delete one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.
2. Press Delete as many times as needed.

or
1. Place the insertion point after the letter or word you want to delete.
2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.
2. Press Delete or Backspace to delete it.

To delete a text block:

1. Hold down the Alt key and use block selection to mark the text you want to delete.
2. Press Delete or Backspace to delete it.

To delete characters on multiple lines:

1. Hold down the Alt key and use block selection to mark the lines.
2. Press Delete or Backspace as many times as needed to delete the characters.

210

CrossWorks for ARM Reference Manual

Using the clipboard

You can select text by using the keyboard or the mouse.

To select text with the keyboard:

Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.
2. Drag the mouse to mark the selection.

3. Release the mouse to end selecting.

To select a block of text with the keyboard:

Hold down the Shift+Alt keys while using the cursor keys.

To select a block of text with the mouse:

1. Hold down the Alt key.

2. Click the start of the selection.

3. Drag the mouse to mark the selection.
4

. Release the mouse to end selecting.

To copy selected text to the clipboard:

Choose Edit > Copy or press Ctrl+C.

The standard Windows key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:

Choose Edit > Cut or press Ctrl+X.

The standard Windows key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:

Choose Edit > Paste or press Ctrl+V.

CrossStudio User Guide

The standard Windows key sequence Shift+Ins also inserts the clipboard content at the insertion point.

211

CrossWorks for ARM Reference Manual CrossStudio User Guide

Undo and redo

The editor has an undo facility to undo previous editing actions. The redo feature can be used to re-apply
previously undone actions.
To undo one editing action:

Choose Edit > Undo or press Ctrl+Z.

The standard Windows key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:
1. On the Standard toolbar, click the arrow next to the Undo button.
2. Select the editing operations to undo.

To undo all edits:

Choose Edit > Others > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:
Choose Edit > Redo or press Ctrl+Y.

The standard Windows key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

Choose Edit > Others > Redo All or press Ctrl+K, Ctrl+Y.

212

CrossWorks for ARM Reference Manual CrossStudio User Guide

Drag and drop

You can select text, then drag it to another location. You can drop the text at a different location in the same
window or in another one.
To drag and drop text:

1. Select the text you want to move.
2. Press and hold the mouse button to drag the selected text to where you want to place it.
3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging
the text: the mouse pointer changes to indicate a copy operation. Press the Esc key while dragging text to cancel
the drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.
2. Click Text Editor.
3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

213

CrossWorks for ARM Reference Manual CrossStudio User Guide

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.
To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and
Shift+Tab or Shift+F3 to move to the previous match.

If you press Ctrl+F a second time, CrossStudio pops up the standard Find dialog to search the file. If you wish to
bring up the Find dialog without pressing Ct r | +F twice, choose Search > Find.

214

CrossWorks for ARM Reference Manual CrossStudio User Guide

Advanced editing

You can do anything using its basic code-editing features, but the CrossStudio text editor has a host of labor-

saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

215

CrossWorks for ARM Reference Manual CrossStudio User Guide

Indenting source code

The editor uses the Tab key to increase or decrease the indentation level of the selected text.

To increase indentation:

Select the text to indent.

Choose Selection > Increase Line Indent or press Tab.

To decrease indentation:

Select the text to indent.

Choose Selection > Decrease Line Indent or press Shift+Tab.

The indentation size can be changed in the Language Properties pane of the editor's Properties window, as can
all the indent-related features listed below.

To change indentation size:

Choose Tools > Options or press Alt+,.
Select the Languages page.
Set the Indent Size property for the required language.

You can choose to use spaces or tab tab characters to fill whitespace when indenting.

To set tab or space fill when indenting:

Choose Tools > Options or press Alt+,.
Select the Languages page.
Set the Use Tabs property for the required language. Note: changing this setting does not add or remove

existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation
assistance:

None:The indentation of the source code is left to the user.

Indent:This is the default. The editor maintains the current indentation level. When you press Return or
Enter, the editor moves the insertion point down one line and indented to the same level as the now-
previous line.

Smart:The editor analyzes the source code to compute the appropriate indentation level for each line.
You can change how many lines before the insertion point will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

216

CrossWorks for ARM Reference Manual CrossStudio User Guide

Set the Indent Mode property for the required language.
To change whether opening braces are indented in smart-indent mode:
Set the Indent Opening Brace property for the required language.
To change whether closing braces are indented in smart-indent mode:
Set the Indent Closing Brace property for the required language.
To change the number of previous lines used for context in smart-indent mode:

Set the Indent Context Lines property for the required language.

217

CrossWorks for ARM Reference Manual CrossStudio User Guide

Commenting out sections of code

To comment selected text:

Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:
Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

218

CrossWorks for ARM Reference Manual CrossStudio User Guide

Adjusting letter case

The editor can change the case of the current word or the selection. The editor will change the case of the
selection, if there is a selection, otherwise it will change the case of word at the insertion point.
To change text to uppercase:

Choose Selection > Make Uppercase or press Ctrl+K, U.

This changes, for instance, Hello to HELLO.

To change text to lowercase:
Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, Hello to hello.

To switch between uppercase and lowercase:
Choose Selection > Switch Case.
This changes, for instance, Hello to hELLO.

With large software teams or imported source code, sometimes identifiers don't conform to your local coding
style. To assist in conversion between two common coding styles for identifiers, CrossStudio's editor offers the
following two shortcuts:

To change from split case to camel case:
Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance, this_is_wrong to thislsWrong.

To change from camel case to split case:
Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance, thislsWrong to this_is_wrong.

219

CrossWorks for ARM Reference Manual CrossStudio User Guide

Using bookmarks

To edit a document elsewhere and then return to your current location, add a bookmark. The Bookmarks
window maintains a list of the bookmarks set in source files see Bookmarks window.
To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.
2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

To place a bookmark using the mouse:

1. Right-click the margin gutter where the bookmark should be set.
2. Choose Toggle Bookmark.

The default color to use for new bookmarks is configured in the Bookmarks window. You can choose a specific

color for the bookmark as follows:

1. Press and hold the Alt key.
2. Click the margin gutter where the bookmark should be set.
3. From the palette, click the bookmark color to use for the bookmark.

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.
2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point moves to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point moves to the last bookmark in the document.

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.
2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark is no longer set.

To remove all bookmarks in a document:

Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

220

CrossWorks for ARM Reference Manual

Quick reference for bookmark operations

Keystroke
Ctrl+F2

Ctrl+K, 0

F2

Shift+F2

Ctrl+Q, F2

Ctrl+Q, Shift+F2

Ctrl+K, F2

Alt+F2

Alt+Shift+F2

Ctrl+Q, Alt+F2

Ctrl+Q, Alt+Shift+F2

Ctrl+K, Alt+F2

Menu

Edit > Bookmarks > Toggle
Bookmark

Edit > Bookmarks > Next
Bookmark In Document

Edit > Bookmarks > Previous
Bookmark In Document

Edit > Bookmarks > First
Bookmark In Document

Edit > Bookmarks > Last Bookmark
In Document

Edit > Bookmarks > Clear
Bookmarks In Document

Edit > Bookmarks > Next
Bookmark

Edit > Bookmarks > Previous
Bookmark

Edit > Bookmarks > First
Bookmark

Edit > Bookmarks > Last Bookmark

Edit > Bookmarks > Clear All
Bookmarks

221

CrossStudio User Guide

Description

Toggle a bookmark at the insertion
point.

Clear the bookmark at the insertion
point.

Move the insertion point to next
bookmark in the document.

Move the insertion point to
previous bookmark in the
document.

Move the insertion point to the first
bookmark in the document.

Move the insertion point to the last
bookmark in the document.

Clear all bookmarks in the
document.

Move the insertion point to the next
bookmark in the Bookmarks list.

Move the insertion point to
the previous bookmark in the
Bookmarks list.

Move the insertion point to the first
bookmark in the Bookmarks list.

Move the insertion point to the last
bookmark in the Bookmarks list.

Clear all bookmarks in all
documents.

CrossWorks for ARM Reference Manual CrossStudio User Guide

Find and Replace window

The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the Find and Replace window:

Choose Search > Find And Replace or press Ctrl+Alt+F.

To find text in a single file:

Select Current Document in the context combo box.

Enter the string to be found in the text edit input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Whole word option.

If the search string is a regular expression, set the Use regexp option.

Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

Click the Replace button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

Click the Find In Files button on the toolbar.

Enter the string to search for into the Find what input.

Select the appropriate option in the Look in input to select whether to carry out the search in all open
documents, all documents in the current project, all documents in the current solution, or all files in a
specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

222

CrossWorks for ARM Reference Manual CrossStudio User Guide

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

Click the Replace In Files button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

Select the appropriate option in the Look in input to select whether you want to carry out the search and
replace in the current or in all open documents.

If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want
to search.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end
of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Replace All button to replace all occurrences of the string in the specified files.

223

CrossWorks for ARM Reference Manual CrossStudio User Guide

Clipboard Ring window

The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The
clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using
the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're
working with many documents and need to cut and paste between them.

To activate the clipboard ring:

Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current
item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one
you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces
the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The
item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item
again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste a specific item from the clipboard ring:

1. Move the insertion point to the position to paste the item in the document.
2. Click the arrow at the right of the item to paste.
3. Choose Paste from the pop-up menu.

or

1. Click the item to paste to make it the current item.
2. Move the insertion point to the position to paste the item in the document.
3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the insertion point to where you want

to paste the items and do one of the following:
Choose Edit > Clipboard Ring > Paste All.

or

224

CrossWorks for ARM Reference Manual CrossStudio User Guide

On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:
1. Click the arrow at the right of the item to remove.
2. Choose Delete from the pop-up menu.
To remove all items from the clipboard ring:
Choose Edit > Clipboard Ring > Clear Clipboard Ring.
or

On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows category to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or
deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

225

CrossWorks for ARM Reference Manual

Mouse-click accelerators

CrossStudio User Guide

CrossStudio provides a number of mouse-click accelerators in the editor that speed access to commonly used

functions. The mouse-click accelerators are user configurable using Tools > Options.

Default mouse-click assignments

Click Default

Left Not configurable start selection.
Shift+Left Not configurable extend selection.
Ctrl+Left Select word.

Alt+Left Execute Go To Definition.

Middle No action.

Shift+Middle Display Go To Include menu.
Ctrl+Middle No action.

Alt+Middle Display Go To Method menu.
Right Not configurable show context menu.
Shift+Right No action.

Ctrl+Right No action.

Alt+Right Execute Find References.

Each accelerator can be assigned one of the following actions:

Default:The system default for that click.

Go To Definition:Go to the definition of the item clicked, equivalent to choosing Navigate > Go To
Definition or pressing Alt+G.

Find References:Find references to the item clicked, equivalent to choosing Search > Find References or
pressing Alt+R.

Find in Solution:Textually find the item clicked in all the files in the solution, equivalent to choosing Search
> Find Extras > Find in Solution or pressing Alt+U.

Find Help:Use F1-help on the item clicked, equivalent to choosing Help > Help or pressing F1.

Go To Method:Display the Go To Method menu, equivalent to choosing Navigate > Find Method or
pressing Ctrl+M.

Go To Include:Display the Go To Include menu, equivalent to choosing Navigate > Find Include or
pressing Ctrl+Shift+M.

Paste:Paste the clipboard at the position clicked, equivalent to choosing Edit > Paste or pressing Ctrl+V.

Configuring Mac OS X

On Mac OS X you must configure the mouse to pass middle clicks and right clicks to the application if you wish
to use mouse-click accelerators in CrossStudio. Configure the mouse preferences in the Mouse control panel in
Mac OS X System Preferences to the following:

226

CrossWorks for ARM Reference Manual CrossStudio User Guide

Right mouse button set to Secondary Button.
Middle mouse button set to Button 3.

227

CrossWorks for ARM Reference Manual CrossStudio User Guide

Regular expressions

The editor can search and replace text using regular expressions. A regular expression is a string that uses
special characters to describe and reference patterns of text. The regular expression system used by the editor
is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular
Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the CrossStudio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters

cor h. A range can be specified using the - character;
e.g., [0-27-9] matches if the characteris 0, 1,2, 7 8, or
9. A range can be negated using the A character; e.g.,
[Aa-z] matches if the character is anything other than a
lowercase alphabetic character.

\c¢ Match the literal character c. For example, you would
use * to match the character *.

\a Match ASCII bell character (ASCIl code 7).

\f Match ASCII form feed character (ASCIl code 12).

\t Match ASCII horizontal tab character (ASCIl code 9).

\v Match ASClI vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

? Match zero or one occurrences of the preceding
expression.

228

CrossWorks for ARM Reference Manual

{n}
{n}

\b
\B
(e)
\n

Examples

CrossStudio User Guide

Match n occurrences of the preceding expression.

Match at least n occurrences of the preceding
expression.

Match at most m occurrences of the preceding
expression.

Match at least n and at most m occurrences of the
preceding expression.

Beginning of line.
End of line.

Word boundary.
Non-word boundary.
Capture expression e.

Back-reference to nth captured text.

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what" "Replace With"
u\w.d

AXS

(typedef.+\s+)(\S+); \TTEST_\2;

Description

Search for any-length string
containing one or more word
characters beginning with the
character u and ending in the
character d.

Search for any lines ending in a
semicolon.

Find C type definition and insert the
string TEST onto the beginning of
the type name.

229

CrossWorks for ARM Reference Manual CrossStudio User Guide

Locals window

The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Mo Display the selected item in binary.

Xg Display the selected item in octal.

Xig Display the selected item in decimal.

¥ Display the selected item in hexadecimal.

;;:1% Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

z4
8
3

Sort variables numerically by address or register
number (default).

-—

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents
of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call
Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the
active stack frame. ltems that have changed since they were previously displayed are highlighted in red.
To activate the Locals window:

Choose Debug > Locals or press Ctrl+Alt+L.
When you select a variable in the main part of the display, the display-format button highlighted on the Locals
window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

230

CrossWorks for ARM Reference Manual CrossStudio User Guide

or

Click the item to change.

On the Locals window toolbar, select the desired display format.
To modify the value of a local variable:

Click the value of the local variable to modify.
Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,
and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, select one of the commands to modify the local variable's value.

231

CrossWorks for ARM Reference Manual CrossStudio User Guide

Globals window

The Globals window displays a list of all variables that are global to the program. The operations available on the
entries in this window are the same as the Watch window, except you cannot add or delete variables from the
Globals window.

Globals window user interface
The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Xq Display the selected item in binary.

Xg Display the selected item in octal.

¥y Display the selected item in decimal.

X Display the selected item in hexadecimal.

}qﬁj Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

2
8
9

Sort variables numerically by address or register
number (default).

-—

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the
program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

Choose Debug > Other Windows > Globals or press Ctrl+Alt+G.

232

CrossWorks for ARM Reference Manual CrossStudio User Guide

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals
window toolbar changes to show the item's display format.

To change the display format of a global variable:

Right-click the item to change.
From the shortcut menu, choose the desired display format.

or
Click the item to change.
On the Globals window toolbar, select the desired display format.
To modify the value of a global variable:

Click the value of the global variable to modify.
Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,

and octal numbers with 0.

233

CrossWorks for ARM Reference Manual CrossStudio User Guide

Watch window

The Watch window provides a means to evaluate expressions and to display the results of those expressions.
Typically, expressions are just the name of a variable to be displayed, but they can be considerably more
complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the
expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Xy Display the selected item in binary.

Xg Display the selected item in octal.

Xig Display the selected item in decimal.

¥ Display the selected item in hexadecimal.

Kﬁ;. Display the selected item as a signed decimal.

' Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

m Remove the selected watch item.

% Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description
" View pointer or array as a null-terminated string.
%[] View pointer or array as an array.

% View pointer value.

* Set watch value to zero.

Set watch value to one.
¥ Increment watched variable by one.

13 Decrement watched variable by one.

234

CrossWorks for ARM Reference Manual CrossStudio User Guide

Negated watched variable.

=X
% Invert watched variable.
View the properties of the watch value.

You can view details of the watched item using the Properties window.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program
stops on a breakpoint, or single steps, and whenever you traverse the call stack. tems that have changed since

they were previously displayed are highlighted in red.

To activate the Watch window:

Choose Debug > Other Windows > Watch > Watch 1 or press Ctrl+T, W, 1.

235

CrossWorks for ARM Reference Manual CrossStudio User Guide

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch
window toolbar changes to show the item's display format.

To change the display format of an expression:

Right-click the item to change.

From the shortcut menu, choose the desired display format.
or

Click the item to change.

On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug
session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the
shortcut menu. A pointer can be interpreted as:

a null-terminated ASClI string
an array
an integer

dereferenced

To modify the value of an expression:

Click the value of the local variable to modify.
Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,
and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, choose one of the commands to modify the variable's value.

236

CrossWorks for ARM Reference Manual CrossStudio User Guide

Register window

The Register windows show the values of both CPU registers and the processor's special function or peripheral
registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have
hundreds of special function registers or peripheral registers, so CrossStudio provides four register windows. You

can configure each register window to display one or more register groups for the processor being debugged.

A Register window has a toolbar and a main data display.

Button Description
Display the CPU, special function register, and
peripheral register groups.

,@ Display the CPU registers.

o Hide the CPU registers.

—» Force-read a register, ignoring the access property of

the register.

Update the selected register group.

Set the active memory window to the address and size
of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the
program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the
registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:

Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The

selected context can be:

The register state the CPU stopped in.
The register state when a function call occurred using the Call Stack window.

The register state of the currently selected thread using the the Threads window.

237

CrossWorks for ARM Reference Manual CrossStudio User Guide

The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

On the Registers window toolbar, click the Groups button.
From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or
peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built
with. If there is no memory-map file associated with a project, the Registers window will show only the CPU
registers.

To display a special function or peripheral register:

On the Registers toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the
Registers window toolbar changes to show the item's display format.

To change the display format of a register:

Right-click the item to change.

From the shortcut menu, choose the desired display format.
or

Click the item to change.

On the Registers window toolbar, select the desired display format.

Modifying register values

To modify the value of a register:

Click the value of the register to modify.

238

CrossWorks for ARM Reference Manual CrossStudio User Guide

Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.
or

Right-click the value of the register to modify.
From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

239

CrossWorks for ARM Reference Manual CrossStudio User Guide

Memory window

The Memory window shows the contents of the connected target's memory areas and allows the memory to
be edited. CrossStudio provides four memory windows, you can configure each memory window to display
different memory ranges.

The Memory window has a toolbar and a data display/edit area

Field/Button Description

Address Address to dlsplay. This can be a numeric value or a
debug expression.

Size Number of bytes to display. This can be a number or
a debug expression. If unspecified, the number of
bytes required to fill the window will be automatically
calculated.

Columns Number of columns to display. If unspecified, the
number of columns required to fill the window will be
automatically calculated.

X Select binary display.

Mg Select octal display.

X10 Select unsigned decimal display.

Kﬁ;. Select signed decimal display.

¥ Select hexadecimal display (default).

+:§+ Select byte display (default).

J_ﬁ_' Select 2-byte display.

1-3-:+ Select 4-byte display.

Display both data and text (default).

Display data only.

Display text only.

E

Display an incrementing address range that starts from
the selected address (default).

Display a decrementing address range that starts from
the selected address.

—

240

CrossWorks for ARM Reference Manual CrossStudio User Guide

[E Display an incrementing address range that ends at
the selected address.

[Display a decrementing address range that ends at the
selected address.

G Evaluate the address and size expressions, and update
the Memory window.

Using the memory window

The memory window does not show the complete address space of the target, instead you must enter both the
address and the number of bytes to display. You can specify the address and size using numeric values or debug
expressions which enable you to position the memory display at the address of a variable or at the value of a
register. You can also specify whether you want the expressions to be evaluated each time the memory window
is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update each time
your program stops on a breakpoint, after a single step and whenever you traverse the call stack. If any values
that were previously displayed have changed, they are highlighted in red.

To activate the first Memory window:
Choose Debug > Other Windows > Memory > Memory 1 or press Ctrl+T, M, 1.

Other register windows can be similarly activated.

Using the mouse
You can move the memory window's edit cursor by clicking on a data or text entry.

The vertical scroll bar can be used to modify the address being viewed by clicking the up and down buttons, the
page up and down areas or using the vertical scroll wheel when the scroll bar is at it's furthest extent. Holding

down the Shift key while scrolling will prevent the address being modified.

Using the keyboard

Keystroke Description

Up Mov§ the cursor up one ling, or if thf& cursor is on the
first line, move the address up one line.

Down Move the cursor down one line, or if the cursor is on
the last line, move the address down line line.

Left Move the cursor left one character.

Right Move the cursor right one character.

Home Move the cursor to the first entry.

End Move the cursor to the last entry.

241

CrossWorks for ARM Reference Manual

PageUp
PageDown

Ctrl+E

Editing memory

CrossStudio User Guide

Move the cursor up one page, or if the cursor is on first
page, move the address up one page.

Move the cursor down one page, or if the cursor is on
the last page, move the address down one page.

Toggle the cursor between data and text editing.

To edit memory, simply move the cursor to the data or text entry you want to modify and start typing. The

memory entry will be written and read back as you type.

Shortcut menu commands

The shortcut menu contains the following commands:

Action

Access Memory By Display Width
Address Order

Auto Evaluate

Auto Refresh

Export To Binary Editor

Save As

Load From

Display formats

Description
Access memory in terms of the display width.

Specify whether the address range shown uses
Address as the start or end address and whether
addresses should increment or decrement.

Re-evaluate Address and Size each time the Memory
window is updated.

Specify how frequently the memory window should
automatically refresh.

Create a binary editor with the current Memory
window contents.

Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, Tl Hex File, and Hex File.

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

Saving memory contents

You can save the displayed contents of the memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

242

CrossWorks for ARM Reference Manual CrossStudio User Guide

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas
Instruments TXT file.

To save the current state of memory to a file:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.
Right-click the main memory display.

From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.
Right-click the main memory display.

Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

Copying to clipboard

You can copy the contents of the memory window to the clipboard as text. If an address range is selected, the
data or text of the selected range will be copied to the clipboard depending on whether the selection has been
made in the data or text view. If no address range is selected, the current memory window view will be copied to
the clipboard.

243

CrossWorks for ARM Reference Manual CrossStudio User Guide

Breakpoints window

The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

Enable, disable, and delete existing breakpoints.
Add new breakpoints.

Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular
project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level
breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout
The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Create a new breakpoint using the New Breakpoint
dialog.

Toggle the selected breakpoint between enabled and
disabled states.

Remove the selected breakpoint.

Move the insertion point to the statement where the
selected breakpoint is set.

Delete all breakpoints.
Disable all breakpoints.

Enable all breakpoints.

LEE & e 3

Create a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints are set and the state they are in. You can

organize breakpoints into folders, called breakpoint groups.
CrossStudio displays these icons to the left of each breakpoint:

Icon Description

244

CrossWorks for ARM Reference Manual CrossStudio User Guide

Enabled breakpoint An enabled breakpoint will stop
P your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

7] Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window toolbar, click the Delete Breakpoint} button.
To edit the properties of a breakpoint:

In the Breakpoints window, right-click the breakpoint to edit.
Choose Edit Breakpoint from the shortcut menu.
Edit the breakpoint in the New Breakpoint dialog.

To toggle the enabled state of a breakpoint:

In the Breakpoints window, right-click the breakpoint to enable or disable.

Choose Enable/Disable Breakpoint from the shortcut menu.
or

In the Breakpoints window, click the breakpoint to enable or disable.
Press Ctrl+F9.

245

CrossWorks for ARM Reference Manual CrossStudio User Guide

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints
that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

From the Breakpoints window toolbar, click the New Breakpoint Group button.
or

From the Debug menu, choose Breakpoints then New Breakpoint Group.
or

Right-click anywhere in the Breakpoints window.

Choose New Breakpoint Group from the shortcut menu.
In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

In the Breakpoints window, right-click the breakpoint group to make active.

Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

In the Breakpoints window, right-click the breakpoint group to delete.

Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to enable.

Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to disable.
Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

246

CrossWorks for ARM Reference Manual CrossStudio User Guide

To delete all breakpoints:
Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.
or

On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:
Choose Breakpoints > Enable All Breakpoints or press Ctrl+B, N.
or

On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:
Choose Breakpoints > Disable All Breakpoints or press Ctrl+B, X.
or

On the Breakpoints window toolbar, click the Disable All Breakpoints button.

247

CrossWorks for ARM Reference Manual CrossStudio User Guide

Call Stack window

The Call Stack window displays the list of function calls (stack frames) that were active when program execution
halted. When execution halts, CrossStudio populates the call-stack window from the active (currently executing)
task. For simple, single-threaded applications not using the CrossWorks tasking library, there is only a single

task; but for multi-tasking programs that use the CrossWorks Tasking Library, there may be any number of tasks.

CrossStudio updates the Call Stack window when you change the active task in the Threads window.
The Call Stack window has a toolbar and a main call-stack display.

Button Description

Move the insertion point to where the call was made
to the selected frame.

Set the debugger context to the selected stack frame.
Move the debugger context down one stack to the
called function.

Move the debugger context up one stack to the calling
function.

> ¢« vV @

Select the fields to display for each entry in the call
stack.

i

Set the debugger context to the most recent stack
frame and move the insertion point to the currently
executing statement.

‘%ﬂ

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point
when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

CrossStudio displays these icons to the left of each function name:

Icon Description

s Indicates the stack frame of the current task.

[Indicates the stack frame selected for the debugger
context.

) Indicates that a breakpoint is active and when the

function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

248

CrossWorks for ARM Reference Manual CrossStudio User Guide

Showing the call-stack window

To activate the Call Stack window:

Choose Debug > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and
values. You can configure the Call Stack window to show varying amounts of information for each stack frame.
By default, CrossStudio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.
2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:
In the Call Stack window, double-click the stack frame to move to.
or

In the Call Stack window, select the stack frame to move to.
On the Call Stack window's toolbar, click the Switch To Frame button.

or

In the Call Stack window, right-click the stack frame to move to.

Choose Switch To Frame from the shortcut menu.

The debugger moves the insertion point to the statement where the call was made. If there is no debug
information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context up one stack frame:
On the Call Stack window's toolbar, click the Up One Stack Frame button.

or

249

CrossWorks for ARM Reference Manual CrossStudio User Guide

On the Debug Location toolbar, click the Up One Stack Frame button.
or

Press Alt+-.
The debugger moves the insertion point to the statement where the call was made. If there is no debug
information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.
To move the debugger context down one stack frame:

On the Call Stack window's toolbar, click the Down One Stack Frame button.
or

On the Debug Location toolbar, click the Down One Stack Frame button.
or

Press Alt++.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

In the Call Stack window, click the stack frame on the function to stop at on return.
On the Build toolbar, click the Toggle Breakpoint button.

or

In the Call Stack window, click the stack frame on the function to stop at on return.
Press F9.

or

In the Call Stack window, right-click the function to stop at on return.

Choose Toggle Breakpoint from the shortcut menu.

250

CrossWorks for ARM Reference Manual CrossStudio User Guide

Threads window

The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.

To activate the Threads window:
Choose Debug > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type

property is "Threads Script" (or is called t hr eads. j s) and is in the project that is being debugged.

When debugging starts the function init() is called to determine which columns are displayed in the Threads

window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads
window corresponding to the columns that have been created together with the saved execution context
(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

contextto put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script
The threads script controls the Threads window with the Threads object.

The methods Threads.setColumns, Threads.setSortByNumber and Threads.setColor can be called from the

function init().

function init()

{
Thr eads. set Col utms(" Nane", "Priority", "State", "Time");

Thr eads. set Sort ByNunber (" Ti me") ;
Thr eads. set Col or ("State", "Ready", "Executing", "Witing");

}

The above example creates the named columns Name, Priority, State, and Time in the Threads window, with
the Time column sorted numerically rather than alphabetically. The states Ready, Executing and Waiting will

have yellow, green and red colored pixmaps respectively.

If you don't supply the function init() in the threads script, the Threads window will create the default columns

Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the function

update().
The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the Threads
window. Subsequent entries added to this window will go under this entry. If you don't call this, new entries will

all be at the top level of the Threads window.

251

CrossWorks for ARM Reference Manual CrossStudio User Guide

The Threads.add() function takes a variable number of string arguments, which should correspond to the
number of columns displayed by the Threads window. The last argument to the Threads.add() function
should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can
be supplied a call to the threads script function getregs(handle), which will return an array when the thread is
selected in the Threads window. The array containing the registers should have elements in the same order in
which they are displayed in the CPU Registers displaytypically this will be in register-number order, e.g., r0, r1,

and so on.

function update()
{
Threads. cl ear ();
Thr eads. newgueue(" My Tasks");
Thr eads. add(" Task1", "0", "Executing", "1000", [O,
Thr eads. add(" Task2", "1", "Witing", "2000", [O,1

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the
methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use
the JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug
expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.
So, if you have structs in the application as follows

struct task {
char *nane;
unsi gned char priority;
char *state,;
unsi gned time;
struct task *next;
unsi gned registers[17];
unsi gned t hread_| ocal _storage[4];

b

struct task task2 =
{
"Task2",
i
"Wai ting",
2000,

0,

{01,23,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16 },
{ 01,23}

b

struct task taskl =
{
"Task1",
0,
"Executing",
1000,
&t ask2,
{01,2,34,56,7,8,9, 10, 11, 12, 13, 14, 15, 16 },

252

CrossWorks for ARM Reference Manual CrossStudio User Guide

{ 01,23}
b

you can update() the Threads window using the following:

taskl = Debug. eval uate("taskl");
Threads. add(taskl. nane, taskl.priority, taskl.state, taskl.tine, taskl.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug. eval uate("&t askl");
whi | e (next)
{

var xt = Debug. eval uate("*(struct task*)"+next);
Threads. add(xt.nane, xt.priority, xt.state, xt.time, xt.registers);
next = xt.next;

Note that, if the threads script goes into an endless loop, the debuggerand consequently CrossStudiowill
become unresponsive and you will need to kill CrossStudio using a task manager. Therefore, the above loop is

better coded as follows:

var next = Debug. eval uate("&t askl");

var count = O;

whil e (next && count < 10)

{

var xt = Debug.eval uate("*(struct task*)"+next);
Thr eads. add(xt.nane, xt.priority, xt.state, xt.time, xt.registers);
next = Xt.next;
count ++;

You can speed up the Threads window update by not supplying the registers of the thread to the Threads.add()
function. To do this, you should supply a handle/pointer to the thread as the last argument to the Threads.add()

function. For example:

var next = Debug. eval uat e(" &t ask1");
var count = O;
whil e (next && count < 10)

{

var xt = Debug.eval uate("*(struct task*)"+next);

Thr eads. add(xt.name, xt.priority, xt.state, xt.tine, next);
next =xt . next;

count ++;

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function should

return the array of registers, for example:

function getregs(x)

{

return Debug. eval uate("((struct task*)"+x+")->registers");

}

253

CrossWorks for ARM Reference Manual CrossStudio User Guide

If you use thread local storage, implementing the gettls(x) function enables you to return the base address of
the thread local storage, for example:

function gettls(x)

{
}

return Debug. eval uate("((struct task*)"+x+")->thread_| ocal _storage");

The gettls(x) function can also be called with null as a parameter. In this case you will have to evaluate an

expression that returns the current thread local storage, for example:

function gettls(x)

{
if (x==null)
X = Debug. eval uat e(" ¤t Task") ;
return Debug. eval uate("((struct task*)"+x+")->thread_| ocal _storage");
}

The debugger may require the name of a thread which you can provide by implementing the getname(x)

function, for example:

function getnane(x)

{
}

return Debug. eval uate("((struct task*)"+x+")->nanme");

Adding extra queues to the threads window

You can add extra information to the threads window to display other RTOS queues. In the function init() you

can use Threads.setColumns2 to create an additional display in the threads window, for example:

function init()

{

Thr eads. set Col ums2("Ti mers", "I1d(Timers)", "Nane", "Hook", "Timeout", "Period", "Active")

The first argument is identifier of the queue which is also supplied to Threads.add2 in the function update() as
follows

function update()

{

Thr eads. add2(" Ti mers", "Ox1FFOA30", "MTiner", "0x46C8 (Tiner50)", "50(550)", "50", "1");
You can avoid updating queues that aren't displayed using the Threads.shown function as follows

function update()

{

i f (Threads. shown("Tiners"))
Thr eads. add2(" Ti mers", "Ox1FFOA30", "MTinmer", "0x46C8
(Tiners50)", "50(550)", "50", "1");

254

CrossWorks for ARM Reference Manual CrossStudio User Guide

Execution Profile window

The Execution Profile window shows a list of source locations and the number of times those source locations
have been executed. This window is only available for targets that support the collection of jump trace

information.
To activate the Execution Profile window:

Choose Debug > Other Windows > Execution Profile or press Ctrl+T, P.

The count value displayed is the number of times the first instruction of the source code location has been
executed. The source locations displayed are target dependent: they could represent each statement of the
program or each jump target of the program. If however the debugger is in intermixed or disassembly mode
then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have
this window displayed then single stepping may be slower than usual.

255

CrossWorks for ARM Reference Manual CrossStudio User Guide

Execution Trace window

The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:
Choose Debug > Other Windows > Execution Trace or press Ctrl+T, T.

The type and number of the trace entries depends upon the target that is connected when gathering trace
information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can
click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.
Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

256

CrossWorks for ARM Reference Manual CrossStudio User Guide

Debug file search editor

When a program is built with debugging enabled, the debugging information contains the paths and filenames
of all the source files for the program in order to allow the debugger to find them. If a program or library linked
into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help CrossStudio find the source files is to add the directory containing
the source files to one of its source-file search paths. Alternatively, if CrossStudio cannot find a source file, it will

prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located
where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. CrossStudio maintains two debug source-file search paths:

Project-session search path:This path is for the current project session and does not apply to all projects.
The global search path:This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the
original pathnames to the new locations. When a file cannot be found at its original location or in the debug
search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the
user has specified that the file does not exist. Each project session maintains its own source file map, the map is
not shared by all projects.

To view the debug source file map:

Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

Choose Debug > Options > Search Paths.

257

CrossWorks for ARM Reference Manual

Right-click the mapping to delete.
Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

Choose Debug > Options > Search Paths.
Right-click any mapping.

Choose Delete All Mappings from the shortcut menu.

258

CrossStudio User Guide

CrossWorks for ARM Reference Manual CrossStudio User Guide

Debug Terminal window

The Debug Terminal window displays debug output from the target application and can also be used to be

provide debug input to the target application.

To activate the Debug Terminal window:

Choose Debug > Debug Terminal or press Ctrl+Alt+D.

259

CrossWorks for ARM Reference Manual CrossStudio User Guide

Debug Immediate window

The Debug Immediate window allows you to type in debug expressions and display the results. All results are
displayed in the format specified by the Default Display Mode property found in the Debugging group in the
Environment Options dialog.

To activate the Envronment Options dialog:

Choose Tools > Options or press Alt+,.

To activate the Debug Immediate window:

Choose Debug > Other Windows > Debug Immediate.

260

CrossWorks for ARM Reference Manual CrossStudio User Guide

Breakpoint expressions

The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities
offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the
particular target interface you are using and the capabilities of your target silicon for exact details. The simplest
expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first
instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the
symbol has been accessed; this is termed a data breakpoint. For example, the expression X will breakpoint when
xis accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,
X[4] will breakpoint when element 4 of array x is accessed, and @ p will breakpoint when the sp register is
accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific
value. The expression X == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,
==, and = can be used similarly. For example, @p <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator & to mask the value you wish to break on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator && to combine comparisons. For example
(x >= 2) && (x <= 14)

will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char [256])
(0x1000) will breakpoint when the memory region 0x10000x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example ! (char [256]) (0x1000) will
breakpoint when memory outside the range 0x10000x10FF is accessed.

261

CrossWorks for ARM Reference Manual CrossStudio User Guide

Debug expressions

The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.
The simplest expression is an identifier the debugger tries to interpret in the following order:

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.
Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.
Registers can be referenced by prefixing the register name with @

The standard C and C++ operators !, ~,*,/ , %+, - ,>>,<<, <, <=,>,>=,==,| ,& ", &%, and | | are supported

on numeric types.

The standard assignment operators =, +=, - =, * =,/ =, %, >>, >>=, <<=, &=, | =, *= are supported on numeric

types.

The array subscript operator [] is supported on array and pointer types.

The structure access operator . is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix *) is supported on pointers, the address-of (prefix &) and sizeof operators are

supported.

The addr essof (filename, linenumber) operator will return the address of the specified source code line
number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.
Arrays can be sliced using [a:b] where a is the first element and b is the last element to display.

Operators have the precedence and associativity one expects of a C-like programming language.

262

CrossWorks for ARM Reference Manual CrossStudio User Guide

Output window

The Output window contains logs and transcripts from various systems within CrossStudio. Most notably, it

contains the Transcript and Source Navigator Log.

Transcript
The Transcript contains the results of the last build or target operation. It is cleared on each build. Errors
detected by CrossStudio are shown in red and warnings are shown in yellow. Double-clicking an error
or warning in the build log will open the offending file at the error position. The commands used for the
build can be echoed to the build log by setting the Echo Build Command Lines environment option. The
transcript also shows a trace of the high-level loading and debug operations carried out on the target. For
downloading, uploading, and verification operations, it displays the time it took to carry out each operation.

The log is cleared for each new download or debug session.

Navigator Log
The Source Navigator Log displays a list of files the Source Navigator has parsed and the time it took to
parse each file.

To activate the Output window:

Choose View > Output or press Ctrl+Alt+O.

To show a specific log:

On the Output window toolbar, click the log combo box.

From the list, click the log to display.
or

Choose View > Logs and select the log to display.

263

CrossWorks for ARM Reference Manual CrossStudio User Guide

Properties window

The Properties window displays properties of the current CrossStudio object. Using the Properties window, you
can set the build properties of your project, modify the editor defaults, and change target settings.
To activate the Properties window:

Choose View > Properties Window or press Ctrl+Alt+Enter.

The Properties window is organized as a set of keyvalue pairs. As you select one of the keys, help text explains
the purpose of the property. Because properties are numerous and can be specific to a particular product build,
consider this help to be the definitive help on the property.

You can divide the properties display into categories or, alternatively, display it as a flat list that is sorted
alphabetically.

A combo-box enables you to change the properties and explains which properties you are looking at.

Some properties have actions associated with themyou can find these by right-clicking the property key. Most

properties that represent filenames can be opened this way.

When the Properties window is displaying project properties, you'll find some properties displayed in bold. This
means the property value hasn't been inherited. If you wish to inherit rather than define such a property, right-
click the property and select Inherit from the shortcut menu.

264

CrossWorks for ARM Reference Manual CrossStudio User Guide

Targets window

The Targets window (and its associated menu) displays the set of target interfaces you can connect to in order
to download and debug your programs. Using the Targets window in conjunction with the Properties window
enables you to define new targets based on the specific target types supported by the particular CrossStudio

release.

To activate the Targets window:
Choose View > Targets or press Ctrl+Alt+T.

You can connect, disconnect, and reconnect to a target system. You can also use the Targets window to reset

and load programs.

Targets window layout

Button Description

Connect the target interface selected in the Targets
window.

Disconnect the connected target interface.
Reconnect the connected target interface.

Reset the connected target interface.

B & ¢

Display the properties of the selected target interface.

Managing connections to target devices

To connect a target:

In the Targets window, double-click the target to connect.
or

Choose Target > Connect and click the target to connect.
or

1. In the Targets window, click the target to connect.
2. On the Targets window toolbar, click the Connect button

or

1. In the Targets window, right-click the target to connect.

2. Choose Connect.

265

CrossWorks for ARM Reference Manual CrossStudio User Guide

To disconnect a target:

Choose Target > Disconnect or press Ctrl+T, D.
or

On the Targets window toolbar, click the Disconnect button.
or

1. Right-click the connected target in the Targets window.
2. Choose Disconnect from the shortcut menu.

Alternatively, connecting a different target will disconnect the current target connection.

You can disconnect and reconnect a target in a single operation using the reconnect feature. This may be useful
if the target board has been power cycled, or reset manually, because it forces CrossStudio to resynchronize with
the target.

Toreconnecta target:

Choose Target > Reconnect or press Ctrl+T, E.
or

On the Targets window toolbar, click the Reconnect button.
or

1. In the Targets window, right-click the target to reconnect.
2. Choose Reconnect from the shortcut menu.

Automatic target connection

You can configure CrossStudio to automatically connect to the last-used target interface when loading a

solution.

To enable or disable automatic target connection:
1. Choose View > Targets or press Ctrl+Alt+T.
2. Click the disclosure arrow on the Targets window toolbar.
3. Select or deselect Automatically Connect When Starting Debug.

Resetting the target

Reset of the target is typically handled by the system when you start debugging. However, you can manually

reset the target from the Targets window.

To reset the connected target:

Choose Project > Reset And Debug or press Ctrl+Alt+F5.

266

CrossWorks for ARM Reference Manual CrossStudio User Guide

or

On the Targets window toolbar, click the Reset button.

Creating a new target interface

To create a new target interface:

1. From the Targets window shortcut menu, click New Target Interface. A menu will display the types of
target interface that can be created.

2. Select the type of target interface to create.

Setting target interface properties

All target interfaces have a set of properties. Some properties are read-only and provide information about the
target, but others are modifiable and allow the target interface to be configured. Target interface properties can

be viewed and edited using CrossStudio's property system.

To view or edit target properties:

Select a target.

Select the Properties option from the target's shortcut menu.

The Targets window provides the facility to restore the target definitions to the default set. Restoring the default
target definitions will undo any of the changes you have made to the targets and their properties, therefore it

should be used with care.

To restore the default target definitions:

1. Select Restore Default Targets from the Targets window shortcut menu.
2. Click Yes when the systems asks whether you want to restore the default targets.

Importing and exporting target definitions

You can import and export your target-interface definitions. This may be useful if you make a change to the

default set of target definitions and want to share it with another user or use it on another machine.

To export the current set of target-interface definitions:

Choose Export Target Definitions To XML from the Targets window shortcut menu.
Specify the location and name of the file to which you want to save the target definitions and click Save.

To import an existing set of target-interface definitions:

Select Import Target Definitions From XML from the Targets window shortcut menu.

Select the file from which you want to load the target definitions and click Open.

267

CrossWorks for ARM Reference Manual CrossStudio User Guide

Downloading programs

Program download is handled automatically by CrossStudio when you start debugging. However, you can

download arbitrary programs to a target using the Targets window.

To download a program to the currently selected target:

In the Targets window, right-click the selected target.
Choose Download File.
From the Download File menu, select the type of file to download.

In the Open File dialog, select the executable file to download and click Open to download the file.
CrossStudio supports the following file formats when downloading a program:

Binary

Intel Hex

Motorola S-record
CrossWorks native object file
Texas Instruments text file

Verifying downloaded programs

You can verify a target's contents against arbitrary programs on disk using the Targets window.

To verify a target's contents against a program:

1. In the Targets window, right-click the selected target.

2. Choose Verify File.

3. From the Verify File menu, select the type of file to verify.

4. In the Open File dialog, select the executable file to verify and click Open to verify the file.

CrossStudio supports the same file types for verification as for downloading.

Erasing target memory

Usually, erasing target memory is done when CrossStudio downloads a program, but you can erase a target's

memory manually.

To erase all target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase All from the shortcut menu.

To erase part of target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase Range from the shortcut menu.

268

CrossWorks for ARM Reference Manual CrossStudio User Guide

Terminal emulator window

The Terminal Emulator window contains a basic serial-terminal emulator that allows you to receive and transmit
data over a serial interface.
To activate the Terminal Emulator window:

Choose Tools > Terminal Emulator > Terminal Emulator or press Ctrl+Alt+M.

To use the terminal emulator:

1. Set the required terminal emulator properties.
2. Connect the terminal emulator to the communications port by clicking the button on the toolbar or by

selecting Connect from the shortcut menu.

Once connected, any input in the Terminal Emulator window is sent to the communications port and any data

received from the communications port is displayed on the terminal.

Connection may be refused if the communication port is in use by another application or if the port doesn't
exist.

To disconnect the terminal emulator:

1. Disconnect the communications port by clicking the Disconnect icon on the toolbar or by right-clicking

to select Disconnect from the shortcut menu.

This will release the communications port for use in other applications.

Supported control codes

The terminal supports a limited set of control codes:

Control code Description

<BS> Backspace

<CR> Carriage return

<LF> Linefeed

<ESC>[{attr1};....{attrn}m Set display attributes. The attributes 2-Dim, 5-Blink, 7-

Reverse, and 8-Hidden are not supported.

269

CrossWorks for ARM Reference Manual CrossStudio User Guide

Script Console window

The Script Console window provides interactive access to the JavaScript interpreter and JavaScript classes that
are built into CrossStudio. The interpreter is an implementation of the 3rd edition of the ECMAScript standard.
The interpreter has an additional function property of the global object that enable files to be loaded into the
interpreter.

The JavaScript method load(filepath) loads and executes the JavaScript contained in filepath returns a Boolean
indicating success.

To activate the Script Console window:

Choose View > Script Console or press Ctrl+Alt+J.

270

CrossWorks for ARM Reference Manual CrossStudio User Guide

Downloads window

The Downloads Window displays a historical list of files downloaded over the Internet by CrossStudio.

Downloads ._'E. x

M Luminary_Stellaris_Driver_Library.hzg

— 4 R A
Il L o e R D R A R R

Luminary_LMZ25.hz

= o R A

Xy

- =1 2w oweniload o

L = W SR A= R ELER |

Atmel_AT915AMS261_EK.hzq

Xy

{ o O e -] S
-1 = = il el o =T |

L L i L} W N BL LRl RELEE)

Atmel_AT91SAMTY_EK.hzg

= m) - - - - —
- K LAMLAML i g 101 =
= L} 1

Xy

Atmel_AT91SAMTS_EK.hzg

-
i iy
=

Xy

=]
K TAMLAM 'L =1 "1 =11Aar
L} L LER L Aadid

ST _STA2051.hzq

Xy

=]
K TAMLAM 'L =1 "1 =11Aar
L} W N 241 ARELER L Aadid

To activate the Downloads window:

Choose Tools > Downloads Window.

271

CrossWorks for ARM Reference Manual CrossStudio User Guide

Latest News window

The Latest News window displays a historical list of news articles from the Rowley Associates website.

Latest News B =
COrdered by date b

_rossWorks for ARM Version 1.7 Build 13 Released Sep 24

Atmel AT915AMS260-EK Board Support Package Version 1.3
Released

Atmel AT9154M9261-EK Board Support Package Yersion 1.3
Feleased

Atmel AT915AMS263-EK Board Support Package Version 1.3

Feleased
AT915AMTL-5TK Board Support Package Released Sep 2
ATILSAMT CPU Support Package Version 1.3 Released Sep 2

CrossWarks for AVRE Version 1.4 Build 3 Released Aug 29

B8 aa a aa

CrossWorks for ARM Version 1.7 Build 12 Released AU 2T

To activate the Latest News window:

Choose Help > Latest News.

272

CrossWorks for ARM Reference Manual Command-line options

Command-line options

This section describes the command-line options accepted by CrossStudio.

Usage

crossstudio [options] [files]

273

CrossWorks for ARM Reference Manual

-D (Define macro)

Syntax

-D macro=value

Description

Define a CrossWorks macro value.

274

Command-line options

CrossWorks for ARM Reference Manual Command-line options

-noclang (Disable Clang support)

Syntax

-noclang

Description

Disable Clang support.

275

CrossWorks for ARM Reference Manual Command-line options

-noload (Disable loading of last project)

Syntax

-noload

Description

Disable loading of last project on startup.

276

CrossWorks for ARM Reference Manual Command-line options

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

277

CrossWorks for ARM Reference Manual Command-line options

-permit-multiple-studio-instances (Permit multiple
studio instances)

Syntax

-permit-multiple-studio-instances

Description

Allow multiple instances of CrossStudio to run at the same time. This behaviour can also be enabled using the
Environment > Startup Options > Allow Multiple CrossStudios environment option.

278

CrossWorks for ARM Reference Manual Command-line options

-rootuserdir (Set the root user data directory)

Syntax

-rootuserdir dir

Description

Set the CrossWorks root user data directory.

279

CrossWorks for ARM Reference Manual Command-line options

-save-settings-off (Disable saving of environment
settings)

Syntax

-save-settings-off

Description

Disable the saving of modified environment settings.

280

CrossWorks for ARM Reference Manual

-set-setting (Set environment setting)

Syntax

-set-setting environment_setting=value

Description
Sets an environment setting to a specified value. For example:

-set-setting "Environment/Buil d/ Show Conmand Li nes=Yes"

281

Command-line options

CrossWorks for ARM Reference Manual Command-line options

-templatesfile (Set project templates path)

Syntax

-templatesfile path

Description

Sets the search path for finding project template files.

282

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

Uninstalling CrossWorks for ARM

This section describes how to completely uninstall CrossWorks for ARM for each supported operating system:

Uninstalling CrossWorks for ARM from Windows
Uninstalling CrossWorks for ARM from macOS

Uninstalling CrossWorks for ARM from Linux

Uninstalling CrossWorks for ARM from Windows

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.
To remove user data using CrossStudio:

1. Start CrossStudio.
2. Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

1. Click the Windows Start button.

283

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

S T

Type %LOCALAPPDATA% in the search field and press enter to open the local application data folder.
Open the Rowley Associates Limited folder.

Open the CrossWorks for ARM folder.

Delete the v4 folder.

If you want to delete user data for all versions of the software, delete the CrossWorks for ARM folder as

well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

vk N =

If CrossStudio is running, click File > Exit to shut it down.

Click the Start Menu and select Control Panel. The Control Panel window will open.

In the Control Panel window, click the Uninstall a program link under the Programs section.
From the list of currently installed programs, select CrossWorks for ARM 4.10.

To begin the uninstall, click the Uninstall button at the top of the list.

Uninstalling CrossWorks for ARM from macOS

Removing user data and settings

Uninstalling does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.

To remove user data using CrossStudio:

1.
2.

Start CrossStudio.

Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

1. Open Finder.

2. Go to the SHOME/Library/Rowley Associates Limited/CrossWorks for ARM directory.
3.
4

. If you want to delete user data for all versions of the software, drag the CrossWorks for ARM folder to the

Drag the v4 folder to the Trash.

Trash as well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

284

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

1.
2.
3.

If CrossStudio is running, shut it down.
Open the Applications folder in Finder.
Drag the CrossWorks for ARM 4.10 folder to the Trash.

Uninstalling CrossWorks for ARM from Linux

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.

To remove user data using CrossStudio:

1.
2.

Start CrossStudio.
Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

> W

. Open a terminal window or file browser.

Go to the SHOME/.rowley_associates_limited/CrossWorks for ARM directory.
Delete the v4 directory.
If you want to delete user data for all versions of the software, delete the CrossWorks for ARM directory as

well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

1. If CrossStudio is running, click File > Exit to shut it down.
2. Open a terminal window.

3.
4

. Run sudo ./uninstall to start the uninstaller.

Go to the CrossWorks for ARM bin directory (this is /usr/share/crossworks_for_arm_4.10/bin by default).

285

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

286

CrossWorks for ARM Reference Manual ARM target support

ARM target support

When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

Target_St art up. s The target-specific startup code. See Target startup code.

crt0.s/thunb_crt 0. s The CrossWorks standard C runtime. See Startup code.
Target_MemoryMap.xml The target-specific memory map file for the board. See Section Placement. Note
that, for some targets, a general linker placement file may not be suitable. In these cases, there will be two
memory-map files: one for a flash build and one for a RAM build.

fl ash_pl acenent . xm The linker placement file for a flash build.

sram pl acenent . xm The linker placement file for a RAM build.

Target_Tar get . j s The target script file. See Target script file.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,
select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a
writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.
The following list describes the typical flow of a C program created with CrossStudio's project templates:

The processor jumps to the reset_handler label in the target-specific startup code, which configures the
target (see Target startup code).

When the target is configured, the target-specific startup code jumps to the _start entry point in the C
runtime code, which sets up the C runtime environment (see Startup code).

When the C runtime environment has been set up, the C runtime code jumps to the C entry-point

function, main.

287

CrossWorks for ARM Reference Manual ARM target support

When the program returns from main, it re-enters the C runtime code, executes the destructors and

enters an endless loop.

288

CrossWorks for ARM Reference Manual ARM target support

Target startup code

The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file
containing the default startup code for the target will be added to the project. Initially, a shared version of this
file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM and Cortex-A/Cortex-R startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it
is can be placed at a specific address which is usually 0x00000000 or the start of Flash memory. The vector
table contains jump instructions to the particular exception handlers. It is recommended that absolute
jumpinstructions are used | dr pc, =handl er _addr ess rather than relative branch instructions b
hand| er _addr ess since many devices shadow the memory at address zero to start execution but the
program will be linked to run at a different address.

reset_handler The reset handler will usually carry out any target-specific initialization and then will jump
to the _start entry point. In a C system, the _start entry point is in the crtO0.s file. During development it
is usual to replace the reset handler with an endless loop which will stop the device running potentially
dangerous in-development code directly out of reset. In development the debugger will start the device
from the specified debug entry point.

undef_handler This is the default, undefined-instruction exception handler.*
swi_handler This is the default, software-interrupt exception handler.*
pabort_handler This is the default, prefetch-abort exception handler.”
dabort_handler This is the default, data-abort exception handler.”
irg_handler This is the default, IRQ-exception handler.*

fig_handler This is the default, FIQ-exception handler.*

" Declared as a weak symbol to allow the user to override the implementation.

Note that ARM and Cortex-A/Cortex-R exception handlers must be written in ARM assembly code. The CPU
or board support package of the project you have created will typically supply an ARM assembly-coded

irq_handler implementation that will enable you to write interrupt service routines as C functions.

Cortex-M startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

289

CrossWorks for ARM Reference Manual ARM target support

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it
can be placed at a specific address which is usually 0x00000000 or the start of Flash memory.

The vector table is structured as follows:

The first entry is the initial value of the stack pointer.

The second entry is the address of the reset handler function. The reset handler will usually carry out any
target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point
isinthet hunb_crt 0. s file. During development it is usual to replace this jump with an endless loop
which will stop the device running potentially dangerous in-development code directly out of reset. In
development the debugger will start the device from the specified debug entry point.

The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the
SysTick_ISR entry.

Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can
implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to
rename the symbol in the startup code if you have existing code with different exception handler names e.g.
SysTick_ISR=SysTick_Handler.

290

CrossWorks for ARM Reference Manual ARM target support

Startup code

The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M/Thumb

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s/
thumb_crtO.s file is added to the project. Initially, a shared version of this file is added to the project. If you want
to modify this file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy

the file to your project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.
The C runtime carries out the following actions:

Initialize the stacks.

If required, copy the contents of the .data (initialized data) section from non-volatile memory.

If required, copy the contents of the .fast section from non-volatile memory to SRAM.

Initialize the .bss section to zero.

Initialize the heap.

Call constructors.

If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set
registers to supply argc and argv to main.

Call the main entry point.

On return from main or when exit is called

If compiled with FULL_LIBRARY, call destructors.

If compiled with FULL_LIBRARY, call atexit functions.

If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.
Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description
.vectors The exception vector table.
init Startup code that runs before the call to the

application's main function.

.ctors Static constructor function table.
.dtors Static destructor function table.
text The program code.

291

CrossWorks for ARM Reference Manual ARM target support

fast Code to copy from flash to RAM for fast execution.
.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.
ARM.exidx The C++ exception table.

.thss Thread local storage zero'd data followed by

.tdata Thread local storage initialised data.

Stacks

ARM and Cortex-A/Cortex-R devices have six separate stacks. The position and size of these stacks are specified

in the project's section-placement or memory-map file by the following program sections:

Section name Linker size symbol Description

. stack ___STACKSI ZE__ System and User mode stack.
.stack_svc __STACKSI ZE_SVC__ Supervisor mode stack
.stack_irq ___STACKSI ZE | RQ__ IRQ mode stack
.stack_fiq __STACKSI ZE FI Q FIQ mode stack

. stack_abt ___STACKSI ZE_ABT__ Abort mode stack
.stack_und __STACKSI ZE_UND__ Undefined mode stack

Cortex-M devices have the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description
. stack ___STACKSI ZE__ Main stack.
. stack_process ___STACKSI ZE _PROCESS Process stack.

The crt0.s/thumb_crt0.s startup code references these sections and initializes each of the stack-pointer registers
to point to the appropriate location. To change the location in memory of a particular stack, the section should

be moved to the required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt 0. s/ t hunb_crt 0. s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would
be in a flash-based application in order to allow the program to run from reset, thecrt 0. s/t hunb_crt0. s
startup code will copy the .data section from the load address to the run address before calling the main entry

point.

292

CrossWorks for ARM Reference Manual ARM target support

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast
memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load
address, thecrt 0. s/t hunb_crt 0. s startup code will copy the .fast section from the load address to the run
address before calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup codeincrt 0. s/ t hunb_crt 0. s references the

.bss section and sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the
.heap program section.

The startup codeincrt 0. s/t hunb_crt 0. s references this section and initializes the heap. To change the
position of the heap, the section should be moved to the required position in the section-placement or memory-
map file.

There is a Heap Size linker project property you can modify in order to alter the heap size. For compatibility with
earlier versions of CrossStudio, you can also specify the heap size using the heap section's Size property in the

section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-

map file or set the size to zero and remove the heap-initialization code from the crt 0. s/ t hunb_crt 0. s file.

293

CrossWorks for ARM Reference Manual ARM target support

Section Placement

Section placement files map program sections used in your program into the memory spaces defined in the
memory map or in the Memory Segments project property. For instance, it's common for code and read-only
data to be programmed into non-volatile flash memory, whereas read-write data needs to be mapped onto

either internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable
projects by the Memory Map File project property. Section-placement files are provided in the base CrossWorks

distribution.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project property.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

ARM section placement
The following placement files are supplied for ARM targets:

File Description

Single FLASH segment with internal RAM segment and

fl ash_pl acenment . xni
P optional external RAM segment.

flash_run_text fromram pl acenent. xm Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

i nternal _sram pl acenent . xm Single internal RAM segment.

mul ti _flash_pl acenent. xni Two FLASH segments with internal RAM segment and
optional external RAM segment.

sram pl acenment . xm Internal RAM segment and optional external RAM
segment.

tcm pl acenment . xm Data and Instruction tightly coupled memory
segments.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description
fl ash_pl acenent . xni Two FLASH segments and two RAM segments.
flash_pl acenent _tcm xmni One FLASH segments, two RAM segments, Data and

Instruction tightly coupled memory segments.

294

CrossWorks for ARM Reference Manual ARM target support

flash_pl acenent 2. xni One FLASH segment and two RAM segments.

flash_to_ram pl acenent . xni One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

flash to ram pl acenent _tcm xm One FLASH segment, two RAM segments, Data and
Instruction tightly coupled memory segments. Text
section is copied from FLASH to RAM.

flash_to_ram pl acenent 2. xm One FLASH segment and two RAM segments. Text
section is copied from FLASH to RAM.

flash_to_tcm pl acenent . xm Two FLASH segments, two RAM segments, Data and
Instruction tightly coupled memory segments.

ram pl acenent . xni Two RAM segments.

tcm pl acenent . xm Data and Instruction tightly coupled memory
segments.

295

CrossWorks for ARM Reference Manual ARM target support

Project configurations

When you create a new project a default set of build configurations are created. These configurations vary

depending on the CPU support package you are using and the type of project you create.

Executable project types

For Executable projects, some CPU support packages include the memory configuration in the build
configuration. The following describes the default set of project configurations for this type of project:

Private configurations

Configuration name Description

Compile and assemble for ARM

ARM instruction set. Link ARM version of
libraries.

THUMB Compile and assemble for Thumb
instruction set. Link Thumb version
of libraries.

Flash Load into, and run from, flash
memory.

RAM Load into, and run from, RAM.

Debug Compile and assemble with debug
information and with optimization
disabled.

Release Compile and assemble without

debug information and with
optimization enabled at level 1.

Public configurations

Configuration Name Inherited configurations
ARM Flash Debug ARM, Flash, Debug

ARM Flash Release ARM, Flash, Release

ARM RAM Debug ARM, RAM, Debug

ARM RAM Release ARM, RAM, Release
THUMB Flash Debug THUMB, Flash, Debug
THUMB Flash Release THUMB, Flash, Release
THUMB RAM Debug THUMB, RAM, Debug
THUMB RAM Release THUMB, RAM, Release

296

CrossWorks for ARM Reference Manual ARM target support

For Executable project types with CPU support packages that do not specify the memory configuration in the

build configuration, you will project will have the following configurations:

Configuration Name Description

Compile/assemble for ARM instruction set. Link ARM
ARM Debug version of libraries. Compile/assemble with debug
information and with optimization disabled.

ARM Release Compile/assemble for ARM instruction set. Link ARM
version of libraries. Compile/assemble without debug
information and with optimization enabled.

Thumb Debug Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble with
debug information and with optimization disabled.

Thumb Release Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble without
debug information and with optimization enabled.

The CPU support packages that create configurations which have no memory configuration will provide a

project Placement property that enables the memory configuration to be selected.

Note: Cortex-M CPU support packages will not create any ARM configurations.

Library project types

CrossWorks for ARM provides two library project types with associated build configurations. The Static Library
project will create configurations based on combinations of ARM/THUMB and Debug/Release. When you have
created a library project of this form, you will need to set the required ARM architecture, byte order (endian) and
floating-point ABI project properties. The Static Library with Configurations project will create configurations
based on combinations of:

ARM architecture.

ARM vs THUMB.

Byte order (endianness).
Floating-point ABI.

ABI type.

Double as float.

Optimization for speed vs size. Debug vs Release.

For example, V5TE VFP ARM LE SoftFP EABI Fast Debug is a configuration for a V5TE architecture device
with a VFP, ARM instruction set, little-endian byte order, soft floating point, EABI procedure calling, double is
supported, do speed optimization rather than size optimization, and include debug information.

The CPU support package you are using may support a library project typein this case the project configurations
created will be based on combinations of ARM/THUMB and Debug/Release.

297

CrossWorks for ARM Reference Manual ARM target support

Externally Built Executable project types

The set of build configurations created with Externally Built Executable project types will either match those
created for an Executable project types, or will have no build configurations created. The memory configuration
selected for debug will be specified by the build configuration, or if no build configurations are available, by the

value of the Placement project property.

298

CrossWorks for ARM Reference Manual ARM target support

Target script file

The target-interface system uses CrossStudio's JavaScript (ECMAScript) interpreter to support board-specific and

target-specific behavior.

The main use for this is to support non-standard target and board reset schemes and to configure the target

after reset using the Reset Script and Loader Reset Script facilities, described later.

The target script system can also be used to carry out target-specific operations when the target interface
connects or disconnects, or when the debugger uses the Connect, Disconnect, Stop, and Run scripts, described
later.

In order to reduce script duplication, when the target interface runs a reset, attach, run, or stop script, it first
looks in the current active project for a file whose project property File Type is set to Reset Script. If a file of this
type is found, it will be loaded prior to executing the scripts; each of the scripts can then call functions defined in
this script file.

Attach script

The Attach Script property in the Target project-property group specifies the script to be executed when
the debugger first attaches to an application. This can be after a download or reset before the program is
run, or after an attach to a running application. The aim of the attach script is to carry out any target-specific

configuration before the debugger first attaches to the application being debugged.

See arm_target_script_Targetinterface for a description of the Targetinterface object the attach script uses to

access the target hardware.

Connect script

The Connect Script property in the Target project-property group specifies the script to be executed when the

user connects to the target interface.

See arm_target_script_Targetinterface for a description of the Targetinterface object the connect script uses

to access the target hardware.

Disconnect script

The Disconnect Script property of the Target project-property group specifies the script to be executed when

the user disconnects from the target interface.

See arm_target_script_Targetinterface for a description of the Targetinterface object the disconnect script

uses to access the target hardware.

299

CrossWorks for ARM Reference Manual ARM target support

Loader reset script

The Loader Reset Script property in the Target project-property group specifies the script to be executed in
order to reset and configure the target prior to downloading a loader application. It does essentially the same
job as the Reset Script property, but it will be used only prior to downloading a loader application, thereby
allowing a loader to have a different reset script than the application. If this property is not defined, the script
defined by the Reset Script property will be used.

See arm_target_script_Targetinterface for a description of the Targetinterface object the loader reset script

uses to access the target hardware.

Reset script

The Reset Script property in the Target project-property group defines a script to execute in order to reset and
configure the target.

The aim of the reset script is to get the processor into a known state. When the script has executed, the

processor should be reset, stopped on the first instruction and configured appropriately.

As an example, the following script demonstrates the reset script for an Evaluator 7T target board with

a memory configuration that re-maps SRAM to start from 0x00000000. The Evaluator7T_Reset function
carries out the standard ARM reset and stops the processor prior to executing the first instruction. The
Evaluator7T_ResetWithRamAtZero function calls this reset function and then configures target memory by
accessing the configuration registers directly. See arm_target_script_Targetinterface for a description of the

Targetinterface object the reset script uses to access the target hardware.

function Eval uator7T_Reset ()

{
Target I nterface. set NSRST(O0) ;
Target I nt erface. set | CEBr eaker Br eakpoi nt (0, 0x00000000, OxFFFFFFFF,
0x00000000, OxFFFFFFFF, 0x100, OxF7);
Target I nterface. set NSRST(1) ;
Target I nterface. wai t For DebugSt at e(1000) ;
Targetinterface.trst();
}

function Eval uator7T_Reset Wt hRamAt Zer o()

{
Eval uat or 7T_Reset () ;

/***

* Register settings for the follow ng menory configuration:

*

* froscocoscoosooasosanso +

S | ROMCONO - 512K FLASH | 0x01800000 - 0x0187FFFF
* doococoocooooooooco0ooo0 +

k5 | ROMCON2 - 256K SRAM | 0x00040000 - OxO007FFFF
* fecsccoscoosscsassaasso +

L | ROMCONL - 256K SRAM | 0x00000000 - OxOOO03FFFF
* docoococoooooo00o000000 +

*

300

CrossWorks for ARM Reference Manual ARM target support

***/

Tar get I nt er f ace. pokeWor d(0Ox0O3FF0000, OxO07FFFFAQ); // SYSCFG
Target I nterface. pokeWsr d(0Ox0O3FF3000, 0x00000000); // CLKCON
Target I nt erface. pokeWsr d(0x0O3FF3008, 0x00000000); // EXTACONO
Target I nt erface. pokeWor d(0xO3FF300C, 0x00000000); // EXTACONL
Target | nt er f ace. pokeWsr d(0Ox03FF3010, O0x0000003E); // EXTDBW DTH
Target I nterface. pokeWsr d(0x03FF3014, 0x18860030); // ROMCONO
Tar get I nt er face. pokeWdr d(0x03FF3018, 0x00400010); // ROVCONL
Target I nt erface. pokeWsr d(0x03FF301C, 0x00801010); // ROVCON2
Tar get I nt erface. pokeWor d(0x0O3FF3020, 0x08018020); // ROMVCON3
Target I nterface. pokeWsr d(0x03FF3024, 0x0A020040); // ROMCON4
Target I nterface. pokeWsr d(0Ox03FF3028, 0x0C028040); // ROMCONS
Target I nt erface. pokeWsr d(0xO3FF302C, 0x00000000); // DRAMCONO
Target I nt erface. pokeWsr d(0xO3FF3030, 0x00000000); // DRAMCONL
Target I nterface. pokeWr d(0x03FF3034, 0x00000000); // DRAMCON2
Target I nterface. pokeWsr d(0x03FF3038, 0x00000000); // DRAMCON3
Target I nt erface. pokeWor d(0OxO3FF303C, 0x9C218360); // REFEXTCON

Run script

The Run Script property in the Target Script Options project-property group is used to define a script to be
executed when the target enters run state. This can be when the application is run for the first time or when the
Debug > Go operation is carried out after the application has hit a breakpoint or was stopped using the Debug
> Break operation. The aim of the run script is to carry out any target-specific operations after the debugger has
finished accessing target memory. This can be useful, for example, to re-enable caches previously disabled by

the stop script.

See arm_target_script_Targetinterface for a description of the Targetinterface object the run script uses to

access the target hardware.

Stop script

The Stop Script property in the Target Script Options project-property groups is used to define a script that

is executed when the target enters debug/stopped state. This can be after the application hits a breakpoint or
when the Debug > Break operation is carried out. The aim of the stop script is to carry out any target-specific
operations before the debugger starts accessing target memory. This is particularly useful when debugging
applications that have caches enabled, because the script can disable and flush the caches, giving the debugger

access to the current memory state.

See arm_target_script_Targetinterface for a description of the Targetinterface object the stop script uses to

access the target hardware.

Debug Interface Reset Script

The Debug Interface Reset Script property held in the Target Script Options project property groups is used

to define a script that is executed when CrossWorks resets the debug interface. This should not affect the target

301

CrossWorks for ARM Reference Manual ARM target support

processor and will be executed for example when the debugger attaches to a running target. Use this script if
you don't want CrossWorks to execute a TRST to reset the JTAG TAP, for example if the device has a JTAG router.

See arm_target_script_Targetinterface for a description of the Targetinterface object which is used by the
debug interface reset script to access the target hardware.

TAP Reset Script

The TAP Reset Script property held in the Target Script Options project-property groups is used to define a
script that is executed when CrossWorks resets the JTAG connection when exploring the JTAG chain. This script

can be used to configure a JTAG router that would be reset when the standard TRST sequence is applied.

See arm_target_script_Targetinterface for a description of the Targetinterface object the TAP Reset Script uses

to access the target hardware.

302

CrossWorks for ARM Reference Manual ARM target support

Program loading

CrossStudio for ARM supports flash programming (and subsequent debugging) by loading a programthe loader

executable, or loaderinto the target's RAM and transmitting to it the data to be programmed.

The Loader File Path project property is part of a project's configuration. It specifies the location of the loader
executable to be used; if this property is defined, the loader executable will be downloaded and run on the

target prior to downloading the main application.

To write your own loader programs, see LIBMEM loader library.

303

CrossWorks for ARM Reference Manual

Debug Capabilities

ARM target support

The particular debugging capabilities provided in CrossWorks for ARM depends upon the particular ARM device

being used. The following table summarizes the CrossStudio debug facilities available for each ARM device type:

ARM Debug

Software

Hardware

Break on

Memory

Monitor M |

Architecture Breakpoints Breakpoints Exception onitor Mode Access Debug l/O
Unlimited 2 No Yes StopCPUor Stop CPU or

ARM7 (1 hardV\{are Monitor Mode DCC
breakpoint
used)

ARM9 Unlimited 2 Yes Yes Stop CPU or Stop CPU or
(1 hardware Monitor Mode DCC
breakpoint
used on
ARM920T/

ARM922T)
ARM11 Unlimited 8 (6 Yes No Stop CPU Stop CPU or
instruction DCC
and 2 data)

Cortex-M3 Unlimited Max. 12 (8 Yes No Real Time Stop CPU or
instruction, 4 Real Time
data)

Cortex-M1/M0 Unlimited Max. 6 (4 Yes No Real Time Stop CPU or
instruction, 2 Real Time
data)

Cortex-A/R Unlimited 8(6 Yes No Stop CPU Stop CPU or
instruction DCC
and 2 data)

XScale Unlimited 4(2 Yes No Stop CPU Stop CPU
instruction, 2
data)

Common debug features

Single stepping is implemented by setting a hardware breakpoint on the next instruction that will execute in the
current execution thread. Therefore, you will not single step into a different thread of execution, unless code is

shared; and, if you have used all the hardware breakpoints, you won't be able to single step.

Software breakpoints are implemented by overwriting the instruction at the desired breakpoint address with
a breakpoint instruction. Restarting from a software breakpoint uses the built-in ARM simulator, unless the

instruction cannot be simulated, in which case the instruction is written back to memory and single stepped.
The project properties Read-only Software Breakpoints and Read-write Software Breakpoints control how

304

CrossWorks for ARM Reference Manual ARM target support

software breakpoints are used in memory areas marked ReadOnly and ReadWrite in the current project's

memory-map file.

The project property Startup Completion Point is used to specify the address of a symbol that has a breakpoint
on it. When the startup completion point is hit, software breakpoints will be used and debug input/output will

be enabled. This enables you to debug an application that copies code into RAM on startup.

ARM7 and ARM9

These ARM devices provide two hardware-breakpoint units that can be configured as program or data

breakpoints.

There is no software-breakpoint instruction on ARM7TDMI, ARM720T, and ARM920T devices. To implement
software breakpoints, one of the hardware-breakpoint units is programmed to break on the execution of the
ARM opcode Oxdf f f df f f or Oxdf f edf f e and, consequently, the Thumb opcode Oxdf f f and Oxdf f e.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have
breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. Data-

valued breakpoints such as count==3 are supported, as are masked data-valued breakpoints such as (x & 1)==1.

The hardware breakpoints can be chained together to allow breakpoint sequencing. When you are connected to
the target, use the breakpoint-edit dialog or the breakpoint properties to change the Action to Set Chain on the
first breakpoint, and change the Action of the second breakpoint to Stop (When Chain Set).

ARMO9 devices have a vector-catch capability that can be set in the exceptions group of the Breakpoints window

to enable a breakpoint when an exception occurs.

The debug communication channel (DCC) can be used to implement debug I/0, which depends on the setting
of the DebuglO Implementation project property. Using the DCC to implement debug I/0 enables interrupts to
be serviced during debug 1/0.

The DCC is also used to implement communications with the debug handler, if the project property Use Debug

Handler is set. You can build the debug handler into your application by adding the file $(St udi oDi r) /

sour ce/ ARMDI DebugHandl er . s to your project. When you have the debug handler in your project,

you can enable the project property Monitor Mode Debug to allow interrupts to be serviced when a

breakpoint is hit. To do this, you must set the prefetch and data-abort exception vectors to jump to the symbols

dbg_pabort_handler and dbg_dabort_handler, respectively. You can also enable the project property Monitor
Mode Memory, in which case CrossWorks will access memory using the debug handler when the application

is running. You must arrange for your application to call the function dbg_poll at regular intervals, which will

enable interrupts to be serviced while the debugger is accessing memory.

ARM11

These devices provide 6 hardware instruction breakpoints and 2 hardware data breakpoints. Data-valued

breakpoints are not supported.

Vector catching is supported

305

CrossWorks for ARM Reference Manual ARM target support

Debug I/0 is supported by stopping the CPU or the DCC.
Memory access is supported by stopping the CPU.
Monitor mode is not supported.

Cortex-M

Cortex-M devices have a variable number of instruction breakpoints and data breakpoints. Typically, Cortex-
M3 parts have six instruction breakpoints and four data breakpoints, Cortex-M1/MO parts have four instruction
and two data breakpoints. Note that the instruction breakpoints work only on the internal code memory of the
Cortex-M devices. If you have external flash on your Cortex-M device and software breakpoints in flash aren't

supported, a data breakpoint is used, which will stop the processor after the instruction has executed.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have
breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. One

data-valued breakpoint, such as count==3, is optionally supported on some Cortex-M3 devices.

Vector catching is supported.

Debug I/0O is supported by stopping the CPU or polling memory.

The internal data and system memories and the external memories of Cortex-M devices can be accessed
without stopping the CPU. When accessing the internal code memory of Cortex-M devices, the CPU is
stopped.

Monitor mode is not supported.

Cortex-A and Cortex-R

Cortex-A and Cortex-R devices provide six hardware instruction breakpoints and two hardware data breakpoints.
Data-valued breakpoints are not supported.

Vector catching is supported.
Debug I/0 is supported by stopping the CPU or the DCC.
Memory access is supported by stopping the CPU.

Monitor mode is not supported.

XScale

XScale devices have two instruction breakpoints and two data breakpoints. The data breakpoints are supported
on int and long variables only.

Vector catching is supported.
Debug I/0O is supported by stopping the CPU.
Memory access is supported by stopping the CPU.

Monitor mode is not supported.

Semihosting

The debugger supports the ARM semihosting interface. The operations SYS_READC and SYS_READ from
standard input will return immediately i.e. they do not block.

306

CrossWorks for ARM Reference Manual ARM target support

Trace Capabilities

The following tracing capabilities are supported in CrossStudio

Instruction tracing using the simulator target interface.

Instruction and data tracing using ETMv1 on ARM7/ARM9 to ETB or external trace port.

Instruction tracing using ETMv3 on Cortex-M to ETB or external trace port.

Instruction tracing using MTB on Cortex-MO.

Instruction and data tracing using ETMv3 on Cortex-A to ETB.

Instrumentation, data tracing, exception tracing and program counter sampling using ITM/DWT on
Cortex-M to ETB, external trace port or single wire output.

Program counter sampling using the debug port on Cortex-M.

Tracing is controlled by the CrossStudio debugger i.e. tracing starts when a programs runs or restarts from a
breakpoint and stops when the program stops on a breakpoint. With ETM tracing it is also possible to start/stop

tracing and to include/exclude functions using trace breakpoints.

Trace output from the last run is displayed in the Execution Trace window and instruction counts are
accumulated in the Execution Profile window for each each run of a debug session.

Simulator Tracing

The simulator maintains a list of the last N instructions that were executed or not executed if the condition failed.
The size of the list is specified using the simulator project property Num Trace Entries.

ETM Tracing

The target trace project property ETM TracelD should be non-zero to enable the ETM when the target interface

is connected.

For ARM7/ARM9 the ETB is assumed to follow the debug TAP on the JTAG scan chain. For Cortex-M/Cortex-A
the ETB will be identified by the CoreSight ROM table. ETB tracing is selected by setting the target trace project
property Trace Interface Type to be ETB when the target interface is connected.

The external trace port is assumed to be a four-bit half-rate clocked port and is selected by setting the target
trace project property Trace Interface Type to be TracePort when the target interface is connected.

You can start and stop tracing with breakpoints by setting hardware breakpoints and specifying the breakpoint
action to be Trace Start and Trace Stop.

You can choose to include/exclude functions by setting hardware breakpoints on the functions and specifying
the breakpoint action to be Trace Include or Trace Exclude. Note that you cannot mix include and exclude

ranges.

307

CrossWorks for ARM Reference Manual ARM target support

ITM/DWT Tracing

The target trace project property ITM TracelD should be non-zero to enable the ITM when the target interface is
connected.

The target trace project properties ITM Stimulus Ports Enable and ITM Stimulus Ports Privilege are used to
specify which ITM channels can be accessed. The library <itm.h> can be used to write to the ITM channels. The

following ITM channels are treated specially by CrossStudio:

Channel O:printable characters written to this channel will be buffered to implement printf-style output.
Channel 28:words written to this channel will be considered to be program counter values.

Channel 29 and 30:words written to these channels will be considered to be the start addresses of a
function. Channel 30 indicates function entry and 29 indicates function exit. This functionality is used to
implement the Instrument Functions compilation project property.

Channel 31:words written to this channel are considered to be thread scheduling information and as such
are interpreted by the threads script.

You can enable local and/or global timestamping on the ITM packets using the ITM Timestamping and ITM

Global Timestamping Frequency target trace project properties.

You can specify DWT program counter sampling and exception tracing using the DWT PC Sampling and DWT
Trace Exceptions target trace project properties.

Like ETM tracing the ITM/DWT tracing can be directed to an ETB or a TracePort but it can also be directed to a
single wire output (SWO) pin using the Trace Interface Type target trace project property. When the SWO pin is
used the Trace Clock Speed target trace project property should be set to speed of the TRACECLKIN signal which
is typically the processor clock speed.

Data Tracing

You can trace specific data items by setting a data breakpoint and specifying the action to be Trace Data.

Configuring Hardware for Tracing

The script contained in the target trace project property Trace Initialize Script will be executed when debug
start or debug attach are selected. This script has the macro $(TracelnterfaceType) expanded with the value of
the Trace Interface Type target trace project property. This script, for example, can be used to set up the pins for
the external trace port. The Board/CPU support package should provide an implementation of this in the target
script.

Supported Trace Capture Devices

The Segger J-Trace ARM and J-Trace Cortex-M supports trace capture from 4-bit half-rate clocked external Trace
Ports.

The Segger J-Link - JTAG/SWD supports SWO trace capture.

308

CrossWorks for ARM Reference Manual ARM target support

The STLink/V2 supports SWO trace capture.

Some FTDI-2232 based devices have the second UART channel connected to the SWO. Since this is a target
interface independent capability CrossStudio supports this for all target interfaces.

309

CrossWorks for ARM Reference Manual ARM target support

310

CrossWorks for ARM Reference Manual Target interfaces

Target interfaces

A target interface is a mechanism for communicating with, and controlling, a target. A target can be either a
physical hardware device or a software simulation of a device. CrossStudio has a Targets window for viewing
and manipulating target interfaces. For more information, see Targets window.

Before you can use a target interface, you must connect to it. You can only connect to one target interface at a

time. For more information, see Connecting to a target.

All target interfaces have a set of properties. The properties provide information on the connected target and

allow the target interface to be configured. For more information, see Viewing and editing target properties.

Target Cortex-M Cortex-M
Interface ARM7 ARM9 ARM11 XScale UTAG) (SWD) Cortex-A/R
CrossConnec Yes Yes Yes Yes Yes Yes Yes
for ARM

Generic Yes Yes Yes No Yes Yes Yes
ARM Debug

Interface

Generic Yes Yes Yes Yes Yes Yes Yes
FT2232

Device

Macraigor Yes Yes Yes Yes Yes Yes Yes
Systems's

Wiggler for

ARM

Segger J- Yes Yes No No Yes Yes Yes

Link

311

CrossWorks for ARM Reference Manual Target interfaces

CrossStudio Yes Yes Yes Yes Yes Yes Yes
ARM

Simulator

ST-Link No No No No Yes Yes No
ST-Link/V2 No No No No Yes Yes No
PandE UNIT No No No No Yes No No
Interface

DLL

Kinetis No No No No Yes No No
OSJTAG

Stellaris No No No No Yes No No
ICDI

CMSIS-DAP Yes Yes Yes Yes Yes Yes Yes

Note that the Amontec JTAGkey and Olimex ARM-USB-OCD are FT2232-based devices.
See Debug Capabilities for details about the debug support CrossWorks provides for the various devices.

Note that the Segger J-Link, ST-Link, and PandE UNIT Interface DLL target interfaces require other files that are
supplied by the vendor of the target interface.

The Segger J-Link target interface's J-Link DLL File property should point at the file JLi nkARM dI | on
Windows and to JLi nkARM so0 on Linux. Go to http://www.segger.com/cms/jlink-software.html for the latest

downloads.

The ST-Link's ST-LINK DLL File property should point at the file STLi nkUSBDr i ver . dl | thatis suppliedin
the ST-Link Utility, found here:

http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_ PROGRAMMER/um0892.zip

The PandE UNIT Interface DLL's File Path property should point to the file uni t _ngs_arm dl | . Contact
Rowley Associates for the latest information on where to find this.

Do not copy the above files into the CrossWorks distributionjust reference the files where they have been

installed.

312

http://www.segger.com/cms/jlink-software.html
http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_PROGRAMMER/um0892.zip

CrossWorks for ARM Reference Manual Target interfaces

ARM Simulator target interface

The ARM Simulator target interface provides access to CrossStudio's ARM instruction set simulator (ISS). The ISS
simulates the ARM V4T, ARM V5TE, ARM V6-M, ARM V7-M, ARM V7-EM, ARM V7A and ARMV7R instruction sets, as
defined in the appropriate ARM Architecture Reference Manuals. The ARM architecture, core type and memory
byte order to be simulated are specified by the project's code-generation properties.

The ISS supports a limited subset of VFP instructions (CP10 and CP11) that enables C programs that use the VFP
to execute. NEON instructions are not simulated.

The instruction set simulator (ISS) supports MCR and MRC access to the 16 primary registers of the System
Control coprocessor (CP15), as defined in the ARM Architecture Reference Manual. The ISS supports MCR and
MRC access to the Debug Communication Channel (CP14), as defined in the ARM7TDMI Technical Reference
Manual.

The instruction set simulator (ISS) simulates the PPB, bit banding and systick capabilities of the ARM V6-M, ARM
V7-M and ARM V7-EM architectures.

The memory system simulated by the ISS is implemented by the dynamic link library specified by the Memory
Simulation Filename and Memory Simulation Parameter defined in the project's simulator properties. Any access

to memory not defined by the memory system is reported as an error.

The ISS supports program loading and debugging with an unlimited number of breakpoints. The ISS supports

instruction tracing, execution counts, exception-vector trapping, and exception-vector triggering.

313

CrossWorks for ARM Reference Manual

Target interfaces

Amontec JTAGkey Target Interface

Interface

Property

Serial Number
connect edSeri al Nunber String

Use Serial Number
connect ToSer i al Nurber String

Version
i nt erfaceVer si onString

JTAG

Property

Adaptive Clocking
adapt i ved ocki ngEnumeration

JTAG Clock Divider
j tagDi vi der IntegerRange

nSRST Open Drain
sr st QpenDr ai nBoolean

nTRST Open Drain
tr st OpenDr ai nBoolean

Target

Property

Device Type
String

Description
The serial number of the currently connected FT2232.

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

The target interface version number.

Description

Specifies whether JTAG adaptive clocking should be
used.

The amount to divide the JTAG clock frequency.
Specifies whether the nSRST signal is open-drain or
push-pull.

Specifies whether the nTRST signal is open-drain or
push-pull.

Description

The detected type of the currently connected target
device.

314

CrossWorks for ARM Reference Manual

Fast Memory Accesses
f ast Menor yAccessesEnabl edBoolean

Memory Access Timeout
nmenor yAccessTi neout IntegerRange

Trace

Property

UART-SWO COM Port
UARTSWOPor t COMPort

Target interfaces

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto

the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you

may experience problems reading from or writing

to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

The timeout period for memory accesses in
milliseconds.

Description

Name of COM port that SWO is connected to.

315

CrossWorks for ARM Reference Manual

Target interfaces

CMSIS-DAP Target Interface

Interface

Property

CMSIS-DAP Capabilities
cnsi sDapCapabi | i ti esString

CMSIS-DAP Protocol Version
crsi sDapPr ot ocol Ver si onString

Serial Number
connect edSeri al Nunber String

Use Serial Number
connect ToSer i al Nurber String

JTAG/SWD

Property

Speed
speedintegerRange

Target

Property

Device Type
String

USB

Property

Connected Interface Mode
connect edUsbl nt er f aceMbdeString

HID Report Length
hi dReport Lengt hintegerRange

Interface Mode
usbl nt er f aceModeEnumeration

Description

The capabilities of the currently connected CMSIS-DAP
interface.

The CMSIS-DAP Protocol version of the currently
connected CMSIS-DAP interface.

The serial number of the currently connected CMSIS-
DAP.

The serial number of the CMSIS-DAP device you
want to connect to. If multiple CMSIS-DAP devices
are connected to your system, this property allows
you to specify which one to use. If no serial number
is specified, the first matching available CMSIS-DAP
device will be used.

Description

The maximum JTAG/SWD clock frequency in Hz (O for
best possible).

Description

The detected type of the currently connected target
device.

Description

The CMSIS-DAP USB interface mode currently being
used.

Specifies the HID report length in bytes (0 for the
interface's default value).

The CMSIS-DAP USB interface mode to use.

316

CrossWorks for ARM Reference Manual Target interfaces

The maximum number of USB packets that can be
buffered for a single operation (0 for the interface's
default value).

Maximum Packet Count
usbPacket Count IntegerRange

Specifies the USB product ID of the CMSIS-DAP device.

PID If USB vendor and product IDs are both unspecified,
usbPi dString the first matching available CMSIS-DAP device will be
used.

Specifies the USB vendor ID of the CMSIS-DAP device.

VID If USB vendor and product IDs are both unspecified,
usbVi dString the first matching available CMSIS-DAP device will be
used.

317

CrossWorks for ARM Reference Manual

Target interfaces

CrossConnect Target Interface

Interface

Property

Information
i nterfacel nformati onString

Model
nodel | nf or mat i onString

Serial Number
connect edSeri al Nunber String

Target Voltage
target _vol t ageString

Version
i nt er f aceVer si onString

JTAG

Property

Adaptive Clocking
adapt i ved ocki ngEnumeration

JTAG Clock Divider
j tagDi vi der IntegerRange

Target

Property

Device Type
String

Description

Interface connection information.

CrossConnect Model.

The serial number of the currently connected
CrossConnect.

The target's JTAG reference voltage.

The target interface version number.

Description
Specifies whether JTAG adaptive clocking should be

used.

The amount to divide the JTAG clock frequency.

Description

The detected type of the currently connected target
device.

318

CrossWorks for ARM Reference Manual

Fast Memory Accesses
f ast Menor yAccessesEnabl edBoolean

Host Connection
Connect i onEnumeration

Memory Access Timeout
menor yAccessTi neout IntegerRange

Trace

Property

Current SWO Speed
cur r ent SwoSpeedIntegerRange

Current Trace Buffer Size
current Tr aceBuf f er Si zelntegerRange

SWO Speed
swoSpeedIntegerRange

Trace Buffer Size
traceBuf f er Si zelntegerRange

Target interfaces

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto

the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you

may experience problems reading from or writing

to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

The USB serial number of the CrossConnect to use.

The timeout period for memory accesses in
milliseconds.

Description

The current SWO speed.

The current size of the trace buffer.

The required SWO speed (0 for maximum supported).

The size of the trace buffer.

319

CrossWorks for ARM Reference Manual

Target interfaces

Generic FT2232 Target Interface

FT2232 Pin Configuration

Property

Connected LED Inversion Mask
connect edLedXORMaskIntegerHex

Connected LED Mask
connect edLedMasklIntegerHex

Disconnected Output Pins

di sconnect edCQut put Di r ect i onintegerHex

Disconnected Output Value

di sconnect edQut put Val uelntegerHex

Output Pins
out put Di r ect i onintegerHex

Output Value
out put Val uelntegerHex

Output Value 2
out put Val ue2IntegerHex

Running LED Inversion Mask
runni ngLedXORMaskIntegerHex

Running LED Mask
runni ngLedMaskIntegerHex

SWD Direction Inversion Mask
swdDi r ect i onXORMaskIntegerHex

SWD Direction Mask
swdDi r ect i onMasklIntegerHex

SWD Enable Inversion Mask
swdEnabl eXORMaskIntegerHex

SWD Enable Mask
swdEnabl eMaskIntegerHex

nSRST Inversion Mask
sr st XORMaskIntegerHex

nSRST Mask
sr st MaskIntegerHex

nTRST Inversion Mask
t r st XORMaskIntegerHex

nTRST Mask
t r st MasklntegerHex

Description

Specifies the FT2232 output pin(s) to invert when
setting 'connected' LED.

Specifies the FT2232 output pin(s) to use for the
‘connected' LED.

Specifies the FT2232 pins that are to be configured for
output when disconnected.

Specifies the value of the FT2232 output pins when
disconnected.

Specifies the FT2232 pins that are to be configured for
output.

Specifies the initial value of the FT2232 output pins on
connection.

If non-zero the 2nd initial value of the FT2232 output
pins on connection.

Specifies the FT2232 output pin(s) to invert when
setting the 'running' LED.

Specifies the FT2232 output pin(s) to use for the
‘running' LED

Specifies the FT2232 output pin(s) to invert to set serial
wire debug to output.

Specifies the FT2232 output pin(s) to use to set serial
wire debug to output.

Specifies the FT2232 output pin(s) to invert when
enabling serial wire .

Specifies the FT2232 output pin(s) to use when
enabling serial wire debug.

Specifies the FT2232 output pin(s) to invert when
setting the nSRST signal.

Specifies the FT2232 output pin(s) to use for the nSRST
signal.

Specifies the FT2232 output pin(s) to invert when
setting the nTRST signal.

Specifies the FT2232 output pin(s) to use for the nTRST
signal.

320

CrossWorks for ARM Reference Manual

FT2232 USB

Property

Channel
channel Enumeration

PID
usbPi dStringList

VID
usbVi dString

Interface

Property

Serial Number
connect edSeri al Nunber String

Use Serial Number
connect ToSer i al Nunber String

Version
i nt er f aceVer si onString

JTAG

Property

Adaptive Clocking
adapt i ved ocki ngEnumeration

JTAG Clock Divider
j tagDi vi der IntegerRange

Target

Property

Device Type
String

Target interfaces

Description

Specifies the FT2232 channel to use

Specifies the USB product ID of the FT2232 device.

Specifies the USB vendor ID of the FT2232 device.

Description
The serial number of the currently connected FT2232.

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

The target interface version number.

Description

Specifies whether JTAG adaptive clocking should be
used.

The amount to divide the JTAG clock frequency.

Description

The detected type of the currently connected target
device.

321

CrossWorks for ARM Reference Manual

Fast Memory Accesses
f ast Menor yAccessesEnabl edBoolean

Memory Access Timeout
nmenor yAccessTi neout IntegerRange

Trace

Property

UART-SWO COM Port
UARTSWOPor t COMPort

Target interfaces

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto

the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you

may experience problems reading from or writing

to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

The timeout period for memory accesses in
milliseconds.

Description

Name of COM port that SWO is connected to.

322

CrossWorks for ARM Reference Manual Target interfaces

Generic Target Interface

Generic

Property Description

Applicable Host OS
host StringList

Generic DLL File
DLLFi | eNaneFileName

The names of host OS that are supported.

The file path of the .dll to use.

323

CrossWorks for ARM Reference Manual

Target interfaces

Olimex ARM-USB-OCD Target Interface

Interface

Property

Serial Number
connect edSeri al Nunber String

Use Serial Number
connect ToSer i al Nurber String

Version
i nt erfaceVer si onString

JTAG

Property

Adaptive Clocking
adapt i ved ocki ngEnumeration

JTAG Clock Divider
j tagDi vi der IntegerRange

nTRST Open Drain
tr st OpenDr ai nBoolean

Target

Property

Device Type
String

Description
The serial number of the currently connected FT2232.

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

The target interface version number.

Description
Specifies whether JTAG adaptive clocking should be
used.

The amount to divide the JTAG clock frequency.

Specifies whether the nTRST signal is open-drain or
push-pull.

Description

The detected type of the currently connected target
device.

324

CrossWorks for ARM Reference Manual

Fast Memory Accesses
f ast Menor yAccessesEnabl edBoolean

Memory Access Timeout
nmenor yAccessTi neout IntegerRange

Trace

Property

UART-SWO COM Port
UARTSWOPor t COMPort

Target interfaces

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto

the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you

may experience problems reading from or writing

to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

The timeout period for memory accesses in
milliseconds.

Description

Name of COM port that SWO is connected to.

325

CrossWorks for ARM Reference Manual Target interfaces

Kinetis OSJTAG Target Interface

Kinetis OSJTAG

Property Description

Flr'mware Version The Firmware version of the Kinetis OSJTAG.

String
Target

Property Description

Device Type The detected type of the currently connected target
String device.

326

CrossWorks for ARM Reference Manual Target interfaces

P&E UNIT Interface DLL Target Interface

Generic

Property Description

Applicable Host OS
host StringList

Generic DLL File
DLLFi | eNaneFileName

The names of host OS that are supported.

The file path of the .dll to use.

327

CrossWorks for ARM Reference Manual

Target interfaces

Segger J-Link Target Interface

J-Link
Property

Additional J-Link Options
JLi nkExecut eComandStringList

Current Speed
IntegerRange

DLL Version
String

Enable Adaptive Clocking
adapt i veEnumeration

Exclude Flash Cache Range

JLi nkExcl udeFl ashCacheRangeString

Firmware Version
String

Hardware Version
String

J-Link DLL File
JLi nkARVDLLFi | eNamreFileName

Log File
JLi nkLogFi | eNaneFileName

Max SWO Speed
IntegerRange

Reset Type
r eset TypelntegerRange

Script File
JLi nkScri pt Fi | eNaneFileName

Description

Specify additional J-Link options to allow enabling or
disabling advanced features and fine tuning.
For more information see J-Link Command Strings

The JTAG/SWD clock frequency the J-Link is currently
using.

The J-Link DLL version.

Adaptive clocking is enabled.

Define a memory range that should not be cached by
J-Link.

Per default, all areas that J-Link knows to be Flash
memory, are cached. This means that it is assumed
that the contents of this areas do not change during
program execution.

If this assumption does not hold true, typically because
the target program modifies the flash content for data
storage, then the affected area should be excluded
from the cache.

This may slightly reduce the debugging speed.
Syntax: either 'start_address-end_address' or
‘address,size’. For example: 0x08000000,0x1000.

The J-Link firmware version.

The J-Link hardware version.

The file path of the libjlinkarm.so to use.

The file to output the J-Link log to.

The maximum supported SWO speed.

The reset strategy to use.

The file path of the optional J-Link script file to use.

328

https://wiki.segger.com/J-Link_Command_Strings

CrossWorks for ARM Reference Manual

Serial Number
String

Settings File
JLi nkPr oj ect Fi | eNameFileName

Show Log Messages In Output Window

showLogEnumeration

Speed
speedintegerRange

Supply Power
suppl yPower Enumeration

Target Voltage
String

Trace Buffer Size
traceBuf f er Si zelntegerRange

Use Built-in Flash Loader
JLi nkUseFl ashLoader Enumeration

Use Built-in RTT support
JLi nkUseRTTEnumeration

Use Built-in TRACE support
JLi nkUseSTRACEEnumeration

Verify Read Operations
checkModeAf t er ReadEnumeration

Target

Property

Device Type
String

Target interfaces

The serial number of the connected J-Link

The file path of the automatically generated J-Link
settings file to use.

Display the J-Link log messages to the output window.

The required JTAG/SWD clock frequency in kHz (0 to
auto-detect best possible).

The J-Link supplies power to the target.

The target reference voltage.

The size of the trace buffer

The built-in debug component identify, flash loader
and breakpoint support is used.

The built-in RTT handling is used

The built-in trace handling is used

The CPU mode is checked after each read operation.

Description

The detected type of the currently connected target
device.

329

CrossWorks for ARM Reference Manual Target interfaces

Stellaris ICDI Target Interface

Target

Property Description

Device Type The detected type of the currently connected target
String device.

330

CrossWorks for ARM Reference Manual Target interfaces

ST-LINK Target Interface

Generic

Property Description

Applicable Host OS
host StringList

Generic DLL File
DLLFi | eNaneFileName

The names of host OS that are supported.

The file path of the .dll to use.

331

CrossWorks for ARM Reference Manual Target interfaces

ST-LINK/V2 Target Interface

ST-LINK

Property Description

Firmware Version

. The Main, JTAG and SWIM firmware versions.
String

Target

Property Description
Device Type The detected type of the currently connected target
String device.

Host Connection

. . A number specifying the device to connect to.
Connect i onEnumeration

Speed

Stpr;eg The target JTAG/SWD clock frequency in kHz.
Vo.Itage The target reference voltage.

String

332

CrossWorks for ARM Reference Manual

Target interfaces

Macraigor Wiggler (20 and 14 pin) Target Interface

Connection

Property

Parallel Port
por t NaneString

Parallel Port Address
por t Addr essString

Parallel Port Sharing
port Shar i ngBoolean

Interface

Property

Version
i nt er faceVer si onString

JTAG

Property

Invert nSRST
i nvert NSRSTBoolean

JTAG Clock Divider
j tagDi vi der IntegerRange

Target

Property

Device Type
String

Description

The parallel port connection to use to connect to
target.

The base address of the currently connected parallel
port.

Specifies whether sharing of the parallel port with
other device drivers or programs is permitted.

Description

The target interface version number.

Description

Specify whether the nSRST signal should be inverted.

The amount to divide the JTAG clock frequency.

Description

The detected type of the currently connected target
device.

333

CrossWorks for ARM Reference Manual

Fast Memory Accesses
f ast Menor yAccessesEnabl edBoolean

Memory Access Timeout
nmenor yAccessTi neout IntegerRange

Target interfaces

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto

the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you

may experience problems reading from or writing

to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

The timeout period for memory accesses in
milliseconds.

334

CrossWorks for ARM Reference Manual Using an external ARM GCC toolchain

Using an external ARM GCC toolchain

You can use CrossStudio for ARM with a third party supplied ARM GCC toolchain. To do this you must set the
project properties Build > Use External GCC to Yes, the Build > GCC Prefix to arm-none-eabi- and Build > Tool
Chain Directory to the directory containing the gcc executable for example C:/Program Files (x86)/GNU Tools
ARM Embedded/4.7 2012q4/bin.

To be able to use the code completion and source navigation features you can set the project property Source
Code > Additional Code Completion Compiler Options to specify the directories that the ARM GCC toolchain
will access for example -isystemC:/Program Files (x86)/GNU Tools ARM Embedded/4.7 2012q4/arm-none-

eabi/include.

335

CrossWorks for ARM Reference Manual Using an external ARM GCC toolchain

336

CrossWorks for ARM Reference Manual C Library User Guide

C Library User Guide

This section describes the library and how to use and customize it.

The libraries supplied with CrossWorks have all the support necessary for input and output using the standard C
functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point, and are capable
of being used in a multi-threaded environment. However, to use these facilities effectively you will need to
customize the low-level details of how to input and output characters, what to do when an assertion fails, how
to provide protection in a multithreaded environment, and how to use the available hardware to the best of its
ability.

337

CrossWorks for ARM Reference Manual C Library User Guide

Floating point

The CrossWorks C library uses IEEE floating point format as specified by the ISO 60559 standard with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications
that need to run quickly and not consume precious resources in limited environments. The library does not
implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-
nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable
approximations and do their best to cater ill-conditioned inputs.

338

CrossWorks for ARM Reference Manual Multithreading

Multithreading

The CrossWorks libraries support multithreading, for example, where you are using CTL or a third-party real-time
operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded
applications there may be several flows of control which access the same functions, or the same resources,
concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be
reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.
For this type of function, the caller provides all the data that the function requires, such as pointers to any
workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are
held in processor registers or are on the stack. Any function that does not use static data, or other shared
resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

339

CrossWorks for ARM Reference Manual Multithreading

Thread safety in the CrossWorks library

In the CrossWorks C library:

some functions are inherently thread-safe, for example strcmp.

some functions, such as malloc, are not thread-safe by default but can be made thread-safe by
implementing appropriate lock functions.

other functions are only thread-safe if passed appropriate arguments, for example tmpnam.
some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library
in a multi-threaded system and combine it with the CrossWorks C library, you will need to ensure that the third-
party library can be made thread-safe in just the same way that the CrossWorks C library can be made thread-
safe.

340

CrossWorks for ARM Reference Manual Multithreading

Implementing mutual exclusion in the C library

The CrossWorks C library ships as standard with callouts to functions that provide thread-safety in a
multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the CrossWorks C library,

you must implement the following locking functions:

__heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,
and realloc.

__printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

__scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

__debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the
CrossStudio I/0 function.

If you create a CTL project using the New Project wizard, CrossWorks provides implementations of these using

CTL event sets. You're free to reimplement them as you see fit.

If you use a third-party RTOS with the CrossWorks C library, you will need to use whatever your RTOS provides for

mutual exclusion, typically a semaphore, a mutex, or an event set.

341

CrossWorks for ARM Reference Manual Multithreading

342

CrossWorks for ARM Reference Manual Input and output

Input and output

The Clibrary provides all the standard C functions for input and output except for the essential items of where to
output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan
functions, you need to customize the low-level input and output functions.

343

CrossWorks for ARM Reference Manual Input and output

Customizing putchar

To use the standard output functions putchar, puts, and printf, you need to customize the way that characters
are written to the standard output device. These output functions rely on a function __putchar that outputs a
character and returns an indication of whether it was successfully written.

The prototype for __putchar is

int __putchar(int ch, __printf_t *ctx);

Sending all output to the CrossStudio virtual terminal

The default implementation of the __putchar function uses debug_putchar if the debuglO library is used in
the project. You can remove usage of the debuglO library from your project by setting the Library > Debug 1/0
Implementation property to None.

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

If the character cannot be written for any reason, putchar must return EOF. Just because a character can't
be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait
until the character is ready to be written.

The higher layers of the library do not translate C's end of line character "\\n' before passing it to putchar.
If you are directing output to a serial line connected to a terminal, for instance, you will most likely need
to output a carriage return and line feed when given the character \\n' (ASCll code 10).

The standard functions that perform input and output are the printf and scanf functions.These functions
convert between internal binary and external printable data. In some cases, though, you need to read and write
formatted data on other channels, such as other RS232 ports. This section shows how you can extend the 1/0

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTSs, numbered 0 and 1, and we have a functions
uartO_putc and uart1_putc that do just that and whose prototypes are:

int vartO_putc(int ch, __printf_t *ctx);
int vuartl_putc(int ch, _ printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an
error. The second parameter, ct X, is the context that the high-level formatting routines use to implement the C

standard library functions.

344

CrossWorks for ARM Reference Manual Input and output

Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uartO_printf(const char *fnmt, ...)

{
char buf[80], *p;
va_list ap;
va_start (ap, fnt);
vsnprintf(buf, sizeof(buf), fnt, ap);
for (p = buf; *p; ++p)
uart0 _putc(*p, 0); // null context
va_end(ap);

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it
requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce
the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters
that can be output by a single call to uart0_printf is also reduced. What would be good is a way to output

characters to one of the UARTs without requiring an intermediate buffer.

CrossWorks printf-style output

CrossWorks provides a solution for just this case by using some internal functions and data types in the
CrossWorks library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct _ printf_tag
{

size_t charcount;

size_t maxchars;

char *string;

int (*output_fn)(int, struct _ _printf_tag *ctx);
} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need
to output. If st r i ng is non-zero, the character is appended is appended to the string pointed to by string; if
out put _f nis non-zero, the character is output through the function output_fn with the context passed as the

second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum

number of characters output by the formatting routine __vfprintf.
We can use this type and function to rewrite uart0_printf:

int vuartO _printf(const char *fnt, ...)
{

int n;

va_list ap;

__printf_t iod;

va_start (ap, fnt);

iod.string = 0;

345

CrossWorks for ARM Reference Manual Input and output

i od. maxchars = | NT_NMAX;
iod.output_fn = uartO_putc;

n=_ viprintf(\& od, fnt, ap);
va_end(ap);

return n;

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it
calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters
isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.
We can adapt this function to take a UART number as a parameter:

int vart_printf(int uvart, const char *fnt, ...)
{

int n;

va_list ap;

__printf_t iod;

va_start (ap, fmt);

iod.is_string = 0;

i od. maxchars = | NT_NAX;

iod.output_fn = uart ? uartl_putc : uartO_putc;

n=_ vfprintf(\& od, fnt, ap);

va_end(ap);

return n;

Now we can use:

vart_printf(0, "This is uart %\n...", 0);
vart _printf(1, "..and this is uvart %\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the
uart_printf routine return void.

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a
string into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the
CrossWorks library for formatted input without requiring the intermediate buffer.

The type __stream_scanf_t is:

typedef struct
{

char is_string;

int (*getc_fn)(void);

int (*ungetc_fn)(int);
} __streamscanf t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.

346

CrossWorks for ARM Reference Manual

Here's an implementation of functions to read and write from a single UART:

static int uartO_ungot = ECF;

int uart0_getc(void)

{ i f (uartO_ungot)

{ int ¢ = uart0O_ungot;
uart0_ungot = EOF;
return c;

}

el se
return read_char_fromuart (0);
}
int uvartO_ungetc{int c)
{
uart0_ungot = c;
}

You can use these two functions to perform formatted input using the UART:

int uartO_scanf(const char *fnt, ...)
{

__stream scanf _t iod;

va_list a;

int n;

va_start(a, fnt);

iod.is_string = 0;

iod.getc_fn = uart0_getc;

iod.ungetc_fn = uartO_ungetc;

n = _ vfscanf((__scanf_t *)\& od, (const unsigned char *)fnt,
va_end(a);

return n;

Input and output

Using this template, we can add functions to do additional formatted input from other UARTSs or devices, just as

we did for formatted output.

347

CrossWorks for ARM Reference Manual Input and output

348

CrossWorks for ARM Reference Manual Locales

Locales

The CrossWorks C library supports wide characters, multi-byte characters and locales. However, as not all
programs require full localization, you can tailor the exact support provided by the CrossWorks C library to suit
your application. These sections describe how to add new locales to your application and customize the runtime
footprint of the C library.

349

CrossWorks for ARM Reference Manual Locales

Unicode, ISO 10646, and wide characters

The ISO standard 10646 is identical to the published Unicode standard and the CrossWorks C library uses the
Unicode 6.2 definition as a base. Hence, whenever you see the term Unicode in this document, it is equivalent to
Unicode 6.2 and ISO/IEC 10646:2011.

The CrossWorks C library supports both 16-bit and 32-bit wide characters, depending upon the setting of wide
character width in the project.

When compiling with 16-bit wide characters, all characters in the Basic Multilingual Plane are representable
in a singlewchar _t (values 0 through OxFFFF). When compiling with 32-bit wide characters, all characters in
the Basic Multilingual Plane and planes 1 through 16 are representable in a single wchar_t (values 0 through
0x10FFFF).

The wide character type will hold Unicode code points in a locale that is defined to use Unicode and character

type functions such as iswalpha will work correctly on all Unicode code points.

350

CrossWorks for ARM Reference Manual Locales

Multi-byte characters

CrossWorks supports multi-byte encoding and decoding of characters. Most new software on the desktop uses
Unicode internally and UTF-8 as the external, on-disk encoding for files and for transport over 8-bit mediums
such as network connections.

However, in embedded software there is still a case to use code pages, such as ISO-Latin1, to reduce the

footprint of an application whilst also providing extra characters that do not form part of the ASCII character set.

The CrossWorks C library can support both models and you can choose a combination of models, dependent
upon locale, or construct a custom locale.

351

CrossWorks for ARM Reference Manual Locales

The standard C and POSIX locales

The standard Clocale is called simply C. In order to provide POSIX compatibility, the name POSIX is a synonym
for C.

The Clocale is fixed and supports only the ASCII character set with character codes 0 through 127. There is no
multi-byte character support, so the character encoding between wide and narrow characters is simply one-
to-one: a narrow character is converted to a wide character by zero extension. Thus, ASCIl encoding of narrow
characters is compatible with the ISO 10646 (Unicode) encoding of wide characters in this locale.

352

CrossWorks for ARM Reference Manual Locales

Additional locales in source form

The CrossWorks C library provides only the C locale; if you need other locales, you must provide those by linking
them into your application. We have constructed a number of locales from the Unicode Common Locale Data
Repository (CLDR) and provided them in source form in the $(St udi oDi r) / sour ce folder for you to include
in your application.

A Clibrary locale is divided into two parts:

the locale's date, time, numeric, and monetary formatting information

how to convert between multi-byte characters and wide characters by the functions in the C library.

The first, the locale data, is independent of how characters are represented. The second, the code set in use,

defines how to map between narrow, multi-byte, and wide characters.

353

CrossWorks for ARM Reference Manual Locales

Installing a locale

If the locale you request using setlocale is neither C nor POSIX, the C library calls the function
__user_find_locale to find a user-supplied locale. The standard implementation of this function is to return a
null pointer which indicates that no additional locales are installed and, hence, no locale matches the request.

The prototype for __user_find_locale is:
const _ RAL locale_ t * user_find_|ocal e(const char *locale);

The parameter locale is the locale to find; the locale name is terminated either by a zero character or by a
semicolon. The locale name, up to the semicolon or zero, is identical to the name passed to setlocale when you

select a locale.

Now let's install the Hungarian locale using both UTF-8 and ISO 8859-2 encodings. The UTF-8 codecs are
included in the CrossWorks C library, but the Hungarian locale and the ISO 8859-2 codec are not.

You will find the file locale_hu_HU.c in the source directory as described in the previous section. Add this file to

your project.

Although this adds the data needed for the locale, it does not make the locale available for the C library: we need

to write some code for __user_find_locale to return the appropriate locales.
To create the locales, we need to add the following code and data to tie everything together:

#i ncl ude <__crossworks. h>

static const _ RAL locale t hu HU utf8 = {
"hu_HU. ut f 8",
& RAL_hu_HU | ocal e,
& RAL _codeset _utf8

b

static const __RAL |ocale_t hu_HU iso 8859 2 = {
"hu_HU. i so_8859_2",
& RAL_hu_HU | ocal e,
&codeset i so_8859 2

¥

const _ RAL locale_t *
__user_find_| ocal e(const char *I|ocal e)

{
if (__RAL _conpare_|l ocal e_nane(l ocal e, hu_HU utf8. name) == 0)
return &hu_HU utf8;
else if (__RAL conpare_l ocal e_nane(l ocale, hu_HU iso_8859 2. nanme) == 0)
return &u_HU i so_8859 2;
el se
return O;
}

The function __RAL_conpar e_| ocal e_nane matches locale names up to a terminating null character, or
a semicolon (which is required by the implementation of set | ocal e in the Clibrary when setting multiple
locales using LC_ALL).

354

CrossWorks for ARM Reference Manual Locales

In addition to this, you must provide a buffer, __user | ocal e_nane_buf f er, for locale names encoded
by setlocale. The buffer must be large enough to contain five locale names, one for each category. In the
above example, the longest locale name is hu_HU. i so_8859 2 which is 16 characters in length. Using this
information, buffer must be at least (16+1)5 = 85 characters in size:

const char __user_| ocal e_nane_buffer[85];

355

CrossWorks for ARM Reference Manual Locales

Setting a locale directly

Although we support setlocale in its full generality, most likely you'll want to set a locale once and forget about
it. You can do that by including the locale in your application and writing to the instance variables that hold the
underlying locale data for the CrossWorks C library.

For instance, you might wish to use Czech locale with a UTF codeset:

static _ RAL_locale_t cz_locale =
{

"cz_CZ.utf8",

& RAL_cs_CZ | ocal e,

& RAL codeset _utf8
b

You can install this directly into the locale without using setlocale:

__RAL_gl obal _| ocal e. __cat egory[LC_COLLATE]
__RAL gl obal | ocale. __category[LC CTYPE]

[&cz_| ocal e;
[
__RAL gl obal _| ocal e. __cat egory[LC_MONETARY]
[
[

&cz | ocal €;
&cz | ocal e;
&cz | ocal €;
&cz_| ocal e;

__RAL gl obal _| ocal e. __cat egory[LC_NUVERI C]
__RAL_gl obal _| ocal e. __category[LC_TI ME]

356

CrossWorks for ARM Reference Manual

Complete API reference

Complete API reference

This section contains a complete reference to the CrossWorks C library API.

File
<assert.h>

<debugio.h>

<ctype.h>

<errno.h>

<float.h>

<intrinsics.h>
<itm.h>
<libarm.h>

<limits.h>

<locale.h>

<math.h>

Description

Describes the diagnostic facilities which you can build
into your application.

Describes the virtual console services and semi-
hosting support that CrossStudio provides to help you
when developing your applications.

Describes the character classification and
manipulation functions.

Describes the macros and error values returned by the
Clibrary.

Defines macros that expand to various limits and
parameters of the standard floating point types.

Describes ARM-specific intrinsic functions.
Describes ITM access library functions.
Describes ARM-specific library functions.

Describes the macros that define the extreme values of
underlying C types.

Describes support for localization specific settings.

Describes the mathematical functions provided by the
Clibrary.

357

CrossWorks for ARM Reference Manual

<setjmp.h>

<stdarg.h>

<stddef.h>
<stdio.h>

<stdlib.h>

<string.h>

<time.h>

<wchar.h>

Complete API reference

Describes the non-local goto capabilities of the C
library.

Describes the way in which variable parameter lists are
accessed.

Describes standard type definitions.
Describes the formatted input and output functions.

Describes the general utility functions provided by the
Clibrary.

Describes the string handling functions provided by
the Clibrary.

Describes the functions to get and manipulate date
and time information provided by the C library.

Describes the facilities you can use to manipulate wide
characters.

358

CrossWorks for ARM Reference Manual

<assert.h>

APl Summary

Macros

assert

Functions

__assert

Complete API reference

Allows you to place assertions and diagnostic tests into
programs

User defined behaviour for the assert macro

359

CrossWorks for ARM Reference Manual Complete API reference

__assert

Synopsis

void __assert(const char *expression,
const char *fil enane,
int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can
customize its behaviour without rebuilding the library. You must implement this function where expression
is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

360

CrossWorks for ARM Reference Manual Complete API reference

assert

Synopsis

#defi ne assert(e)

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert
macro is defined as:

#defi ne assert (ignore) ((void)O0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.

#define assert(e) ((e) ? (void)0O : _ assert(#e, __FILE , _ LINE))

When such an assert is executed and e is false, assert calls the __assert function with information about the
particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

361

CrossWorks for ARM Reference Manual

<complex.h>

APl Summary

Trigonometric functions
cacos

cacosf

casin

casinf

catan

catanf

ccos

ccosf

csin

csinf

ctan

ctanf

Hyperbolic trigonometric functions
cacosh

cacoshf

casinh

casinhf

catanh
catanhf

ccosh

ccoshf

csinh

csinhf

ctanh

ctanhf

Exponential and logarithmic functions
cexp

cexpf

clog

Complete API reference

Compute inverse cosine of a complex float
Compute inverse cosine of a complex float
Compute inverse sine of a complex float
Compute inverse sine of a complex float
Compute inverse tangent of a complex float
Compute inverse tangent of a complex float
Compute cosine of a complex float
Compute cosine of a complex float
Compute sine of a complex float

Compute sine of a complex float

Compute tangent of a complex float

Compute tangent of a complex float

Compute inverse hyperbolic cosine of a complex float
Compute inverse hyperbolic cosine of a complex float
Compute inverse hyperbolic sine of a complex float
Compute inverse hyperbolic sine of a complex float

Compute inverse hyperbolic tangent of a complex
float

Compute inverse hyperbolic tangent of a complex
float

Compute hyperbolic cosine of a complex float
Compute hyperbolic cosine of a complex float
Compute hyperbolic sine of a complex float
Compute hyperbolic sine of a complex float
Compute hyperbolic tangent of a complex float

Compute hyperbolic tangent of a complex float

Computes the base-e exponential of a complex float
Computes the base-e exponential of a complex float

Computes the base-e logarithm of a complex float

362

CrossWorks for ARM Reference Manual

clogf

Power and absolute value functions
cabs

cabsf

cpow

cpowf

csqrt

csqrtf

Manipulation functions
carg

cargf

cimag

cimagf

conj

conjf

Cproj

cprojf

creal

crealf

Complete API reference

Computes the base-e logarithm of a complex float

Computes the absolute value of a complex float
Computes the absolute value of a complex float
Compute a complex float raised to a power
Compute a complex float raised to a power
Compute square root of a complex float

Compute square root of a complex float

Compute argument of a complex float
Compute argument of a complex float
Compute imaginary part of a complex float
Compute imaginary part of a complex float
Compute conjugate of a complex float
Compute conjugate of a complex float
Compute projection on the Riemann sphere
Compute projection on the Riemann sphere
Compute real part of a complex float

Compute real part of a complex float

363

CrossWorks for ARM Reference Manual

cabs

Synopsis

doubl e cabs(doubl e conpl ex z);

Description

cabs returns the absolute value of z.

364

Complete API reference

CrossWorks for ARM Reference Manual

cabsf

Synopsis

float cabsf(float conplex z);

Description

cabsf returns the absolute value of z.

365

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

Ccacos

Synopsis

doubl e conpl ex cacos(doubl e conpl ex z);

Description

cacos returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically
unbounded on the imaginary axis.

366

CrossWorks for ARM Reference Manual Complete API reference

cacosf

Synopsis

fl oat conpl ex cacosf(float conplex z);

Description

cacosf returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically
unbounded on the imaginary axis.

367

CrossWorks for ARM Reference Manual Complete API reference

cacosh

Synopsis

doubl e conpl ex cacosh(doubl e conpl ex z);

Description

cacosh returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on
the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

368

CrossWorks for ARM Reference Manual Complete API reference

cacoshf

Synopsis

fl oat conpl ex cacoshf(float conplex _z);

Description

cacoshf returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on
the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

369

CrossWorks for ARM Reference Manual

carg

Synopsis

doubl e carg(doubl e conpl ex z);

Description

carg computes the argument of z with a branch cut along the negative real axis.

370

Complete API reference

CrossWorks for ARM Reference Manual

cargf

Synopsis

float cargf(float conplex z);

Description

cargf computes the argument of z with a branch cut along the negative real axis.

371

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

casin

Synopsis

doubl e conpl ex casi n(doubl e conpl ex z);

Description

casin returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the real axis.
The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically unbounded

on the imaginary axis.

372

CrossWorks for ARM Reference Manual Complete API reference

casinf

Synopsis

fl oat conpl ex casinf(float conplex z);

Description

casinf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,4+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically
unbounded on the imaginary axis.

373

CrossWorks for ARM Reference Manual Complete API reference

casinh

Synopsis

doubl e conpl ex casi nh(doubl e conpl ex z);

Description

casinh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on
the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

374

CrossWorks for ARM Reference Manual Complete API reference

casinhf

Synopsis

fl oat conpl ex casinhf(float conplex z);

Description

casinhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on
the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

375

CrossWorks for ARM Reference Manual Complete API reference

catan

Synopsis

doubl e conpl ex catan(doubl e conpl ex z);

Description

catan returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically
unbounded on the imaginary axis.

376

CrossWorks for ARM Reference Manual Complete API reference

catanf

Synopsis

float conpl ex catanf(float conplex z);

Description

catanf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,4+1] on the
real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically
unbounded on the imaginary axis.

377

CrossWorks for ARM Reference Manual Complete API reference

catanh

Synopsis

doubl e conpl ex cat anh(doubl e conpl ex z);

Description

catanh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1] on
the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in the

interval [-i,+i] on the imaginary axis.

378

CrossWorks for ARM Reference Manual Complete API reference

catanhf

Synopsis

float conpl ex catanhf(float conplex z);

Description

catanhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1]
on the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in

the interval [-i,+i] on the imaginary axis.

379

CrossWorks for ARM Reference Manual Complete API reference

CCos

Synopsis

doubl e conpl ex ccos(doubl e conpl ex z);

Description

ccos returns the complex cosine of z.

380

CrossWorks for ARM Reference Manual Complete API reference

ccosf

Synopsis

fl oat conpl ex ccosf(float conplex z);

Description

ccosf returns the complex cosine of z.

381

CrossWorks for ARM Reference Manual

ccosh

Synopsis

doubl e conpl ex ccosh(doubl e conpl ex z);

Description

ccosh returns the complex hyperbolic cosine of z.

382

Complete API reference

CrossWorks for ARM Reference Manual

ccoshf

Synopsis

fl oat conpl ex ccoshf(float conplex z);

Description

ccoshf returns the complex hyperbolic cosine of z.

383

Complete API reference

CrossWorks for ARM Reference Manual

cexp

Synopsis

doubl e conpl ex cexp(doubl e conpl ex z);

Description

cexp returns the complex base-e exponential value of z.

384

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

cexpf

Synopsis

fl oat conpl ex cexpf(float conplex z);

Description

cexpf returns the complex base-e exponential value of z.

385

CrossWorks for ARM Reference Manual Complete API reference

cimag

Synopsis

doubl e ci mag(doubl e conpl ex) ;

Description

cimag computes the imaginary part of z.

386

CrossWorks for ARM Reference Manual Complete API reference

cimagf

Synopsis

float cinmagf(float conplex);

Description

cimagf computes the imaginary part of z.

387

CrossWorks for ARM Reference Manual

clog

Synopsis

doubl e conpl ex cl og(doubl e conpl ex z);

Description

clog returns the complex base-e logarithm value of z.

388

Complete API reference

CrossWorks for ARM Reference Manual

clogf

Synopsis

float conplex clogf(float conplex z);

Description

clogf returns the complex base-e logarithm value of z.

389

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

conj

Synopsis

doubl e conpl ex conj (doubl e conpl ex) ;

Description

conj computes the conjugate of z by reversing the sign of the imaginary part.

390

CrossWorks for ARM Reference Manual Complete API reference

conjf

Synopsis

fl oat conplex conjf(float conplex);

Description

conjf computes the conjugate of z by reversing the sign of the imaginary part.

391

CrossWorks for ARM Reference Manual Complete API reference

cpow
Synopsis
doubl e conpl ex cpow doubl e conpl ex x

doubl e conpl ex y);

Description

cpow computes x raised to the power y with a branch cut for the x along the negative real axis.

392

CrossWorks for ARM Reference Manual Complete API reference

cpowf

Synopsis

float conpl ex cpowf (float conplex x,
float conplex y);

Description

cpowf computes x raised to the power y with a branch cut for the x along the negative real axis.

393

CrossWorks for ARM Reference Manual Complete API reference

cproj

Synopsis

doubl e conpl ex cproj (doubl e conpl ex) ;

Description

cproj computes the projection of z on the Riemann sphere.

394

CrossWorks for ARM Reference Manual Complete API reference

cprojf

Synopsis

float conplex cprojf(float conplex);

Description

cprojf computes the projection of z on the Riemann sphere.

395

CrossWorks for ARM Reference Manual

creal

Synopsis

doubl e creal (doubl e conpl ex) ;

Description

creal computes the real part of z.

396

Complete API reference

CrossWorks for ARM Reference Manual

crealf

Synopsis

float creal f(float conplex);

Description

crealf computes the real part of z.

397

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

csin

Synopsis

doubl e conpl ex csin(doubl e conpl ex z);

Description

csin returns the complex sine of z.

398

CrossWorks for ARM Reference Manual Complete API reference

csinf

Synopsis

float conplex csinf(float conplex z);

Description

csinf returns the complex sine of z.

399

CrossWorks for ARM Reference Manual

csinh

Synopsis

doubl e conpl ex csinh(doubl e conpl ex z);

Description

csinh returns the complex hyperbolic sine of z.

400

Complete API reference

CrossWorks for ARM Reference Manual

csinhf

Synopsis

float conpl ex csinhf(float conplex z);

Description

csinhf returns the complex hyperbolic sine of z.

401

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

csqrt

Synopsis

doubl e conpl ex csqrt (doubl e conpl ex z);

Description

csqrt computes the complex square root of z with a branch cut along the negative real axis.

402

CrossWorks for ARM Reference Manual Complete API reference

csqrtf

Synopsis

float conplex csqrtf(float conplex z);

Description

csqrtf computes the complex square root of z with a branch cut along the negative real axis.

403

CrossWorks for ARM Reference Manual Complete API reference

ctan

Synopsis

doubl e conpl ex ctan(doubl e conpl ex z);

Description

ctan returns the complex tangent of z.

404

CrossWorks for ARM Reference Manual Complete API reference

ctanf

Synopsis

float conplex ctanf(float conplex z);

Description

ctanf returns the complex tangent of z.

405

CrossWorks for ARM Reference Manual Complete API reference

ctanh

Synopsis

doubl e conpl ex ctanh(doubl e conpl ex z);

Description

ctanh returns the complex hyperbolic tangent of z.

406

CrossWorks for ARM Reference Manual

ctanhf

Synopsis

float conpl ex ctanhf(float conplex z);

Description

ctanhf returns the complex hyperbolic tangent of z.

407

Complete API reference

CrossWorks for ARM Reference Manual

<ctype.h>

APl Summary

Classification functions
isalnum

isalpha

isblank

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

Conversion functions
tolower

toupper

Classification functions (extended)
isalnum_|

isalpha_l

isblank_|

iscntrl_|

isdigit_|

isgraph_|

islower_|

isprint_|

ispunct_|

isspace_|

isupper_|

isxdigit_|

Conversion functions (extended)

tolower |

Complete API reference

Is character alphanumeric?

Is character alphabetic?

Is character a space or horizontal tab?
Is character a control?

Is character a decimal digit?

Is character any printing character except space?
Is character a lowercase letter?

Is character printable?

Is character a punctuation mark?

Is character a whitespace character?
Is character an uppercase letter?

Is character a hexadecimal digit?

Convert uppercase character to lowercase

Convert lowercase character to uppercase

Is character alphanumeric?

Is character alphabetic?

Is character a space or horizontal tab?
Is character a control character?

Is character a decimal digit?

Is character any printing character except space?
Is character a lowercase letter?

Is character printable?

Is character a punctuation mark?

Is character a whitespace character?
Is character an uppercase letter?

Is character a hexadecimal digit?

Convert uppercase character to lowercase

408

CrossWorks for ARM Reference Manual Complete API reference

toupper_| Convert lowercase character to uppercase

409

CrossWorks for ARM Reference Manual Complete API reference

isalnum

Synopsis

int isalnumiint c);

Description

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

410

CrossWorks for ARM Reference Manual

isalnum_|

Synopsis

int isalnuml(int c,
locale_t loc);

Description

Complete API reference

isalnum_I returns nonzero (true) if and only if the value of the argument c is a alphabetic or numeric character in

locale loc.

411

CrossWorks for ARM Reference Manual Complete API reference

isalpha

Synopsis

int isal pha(int c);

Description

isalpha returns true if the character cis alphabetic. That is, any character for which isupper or islower returns
true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iscntrl, isdigit, ispunct, or isspace is true.

In the Clocale, isalpha returns nonzero (true) if and only if isupper or islower return true for value of the

argument c.

412

CrossWorks for ARM Reference Manual

isalpha_l
Synopsis
int isalpha_|(int c,

locale_t loc);

Description

Complete API reference

isalpha_l returns nonzero (true) if and only if isupper or islower return true for value of the argument cin locale

loc.

413

CrossWorks for ARM Reference Manual Complete API reference

isblank

Synopsis

int isblank(int c);

Description

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (') or the
horizontal tab character (" \\ t').

414

CrossWorks for ARM Reference Manual Complete API reference

isblank_|

Synopsis

int isblank_ | (int c,
locale_t loc);

Description

isblank_I returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the
horizontal tab character (' \\ t ') in locale loc.

415

CrossWorks for ARM Reference Manual Complete API reference

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters
have values 0 through 31 and the single value 127.

416

CrossWorks for ARM Reference Manual Complete API reference

iscntrl_|

Synopsis

int iscntrl_I(int c,
locale_t loc);

Description

iscntrl_I returns nonzero (true) if and only if the value of the argument c is a control character in locale loc.

417

CrossWorks for ARM Reference Manual Complete API reference
isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

418

CrossWorks for ARM Reference Manual Complete API reference
isdigit_|

Synopsis

int isdigit_|(int c,

locale_t loc);

Description

isdigit_| returns nonzero (true) if and only if the value of the argument c is a decimal digit in locale loc.

419

CrossWorks for ARM Reference Manual

isgraph

Synopsis

int isgraph(int c);

Description

Complete API reference

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

).

420

CrossWorks for ARM Reference Manual

isgraph_|
Synopsis
int isgraph_Il (int c,

locale_t loc);

Description

Complete API reference

isgraph_l returns nonzero (true) if and only if the value of the argument c is any printing character except space

(" ")inlocaleloc.

421

CrossWorks for ARM Reference Manual Complete API reference

islower

Synopsis

int islower(int c);

Description

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

422

CrossWorks for ARM Reference Manual Complete API reference

islower |

Synopsis

int islower_|(int c,
locale_t loc);

Description

islower_| returns nonzero (true) if and only if the value of the argument c is an lowercase letter in locale loc.

423

CrossWorks for ARM Reference Manual Complete API reference

isprint

Synopsis

int isprint(int c);

Description

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

¢ ")

424

CrossWorks for ARM Reference Manual

isprint_|I
Synopsis
int isprint_I|(int c,

locale_t loc);

Description

Complete API reference

isprint_| returns nonzero (true) if and only if the value of the argument c is any printing character including

space (')in locale loc.

425

CrossWorks for ARM Reference Manual Complete API reference

ispunct

Synopsis

int ispunct(int c);

Description

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

426

CrossWorks for ARM Reference Manual

ispunct_|
Synopsis
int ispunct_I(int c,

locale_t loc);

Description

Complete API reference

ispunct_I returns nonzero (true) for every printing character for which neither isspace nor isalnum is true in in

locale loc.

427

CrossWorks for ARM Reference Manual Complete API reference

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.
The standard white-space characters are space (' '), formfeed (' \\ f'), new-line (' \\ n'), carriage return (' \
\r'), horizontaltab (" \\ t '), and verticaltab (" \ v').

428

CrossWorks for ARM Reference Manual

isspace_|
Synopsis
int isspace_ | (int c,

locale_t loc);

Description

Complete API reference

isspace_l returns nonzero (true) if and only if the value of the argument c is a standard white-space character in

in locale loc..

429

CrossWorks for ARM Reference Manual Complete API reference

isupper

Synopsis

int isupper(int c);

Description

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

430

CrossWorks for ARM Reference Manual Complete API reference

isupper_|
Synopsis
int isupper_I(int c,

locale_t loc);

Description

isupper_I returns nonzero (true) if and only if the value of the argument cis an uppercase letter in locale loc.

431

CrossWorks for ARM Reference Manual Complete API reference
isxdigit

Synopsis

int isxdigit(int c);

Description

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

432

CrossWorks for ARM Reference Manual Complete API reference

isxdigit_|
Synopsis
int isxdigit_|I(int c,

locale t loc);

Description

isxdigit_I returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit in locale loc.

433

CrossWorks for ARM Reference Manual Complete API reference

tolower

Synopsis

int tolower(int c);

Description

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for
which isupper is true and there are one or more corresponding characters, as specified by the current locale, for
which islower is true, the tolower function returns one of the corresponding characters (always the same one for

any given locale); otherwise, the argument is returned unchanged.

Note that even though isupper can return true for some characters, tolower may return that uppercase

character unchanged as there are no corresponding lowercase characters in the locale.

434

CrossWorks for ARM Reference Manual

tolower |

Synopsis

int tolower_ | (int c,
locale_t loc);

Description

Complete API reference

tolower_| converts an uppercase letter to a corresponding lowercase letter in locale loc. If the argument cis a

character for which isupper is true in locale loc, tolower_| returns the corresponding lowercase letter; otherwise,

the argument is returned unchanged.

435

CrossWorks for ARM Reference Manual Complete API reference

toupper

Synopsis

int toupper(int c);

Description

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument i s a character for
which islower is true and there are one or more corresponding characters, as specified by the current locale, for
which isupper is true, toupper returns one of the corresponding characters (always the same one for any given
locale); otherwise, the argument is returned unchanged. Note that even though islower can return true for some
characters, toupper may return that lowercase character unchanged as there are no corresponding uppercase
characters in the locale.

436

CrossWorks for ARM Reference Manual Complete API reference

toupper_l|

Synopsis

int toupper_|I (int c,
locale_t loc);

Description

toupper_| converts a lowercase letter to a corresponding uppercase letter in locale loc. If the argument ¢
is a character for which islower is true in locale loc, toupper_I returns the corresponding uppercase letter;

otherwise, the argument is returned unchanged.

437

CrossWorks for ARM Reference Manual

<debugio.h>

APl Summary

File Functions
debug_clearerr
debug_fclose
debug_feof
debug_ferror
debug_fflush
debug_fgetc
debug_fgetpos
debug_fgets
debug_filesize
debug_fopen
debug_fprintf
debug_fprintf_c
debug_fputc
debug_fputs
debug_fread
debug_freopen
debug_fscanf
debug_fscanf _c
debug_fseek
debug_fsetpos
debug_ftell
debug_fwrite
debug_remove
debug_rename
debug_rewind
debug_tmpfile
debug_tmpnam
debug_ungetc
debug_vfprintf
debug_vfscanf

Complete API reference

Clear error indicator

Closes an open stream

Check end of file condition
Check error indicator

Flushes buffered output
Read a character from a stream
Return file position

Read a string

Return the size of afile
Opens a file on the host PC
Formatted write

Formatted write

Write a character

Write a string

Read data

Reopens a file on the host PC
Formatted read

Formatted read

Set file position

Teturn file position

Return file position

Write data

Deletes a file on the host PC
Renames a file on the host PC
Set file position to the beginning
Open a temporary file
Generate temporary filename
Push a character

Formatted write

Formatted read

438

CrossWorks for ARM Reference Manual

Debug Terminal Output Functions
debug_printf
debug_printf_c
debug_putchar
debug_puts
debug_vprintf

Debug Terminal Input Functions
debug_getch
debug_getchar
debug_getd
debug_getf
debug_geti
debug_getl
debug_getll
debug_gets
debug_getu
debug_getul
debug_getull
debug_kbhit
debug_scanf
debug_scanf c
debug_vscanf
Debugger Functions
debug_abort
debug_break
debug_enabled
debug_evaluate
debug_exit
debug_getargs
debug_loadsymbols
debug_runtime_error
debug_unloadsymbols
Misc Functions
debug_clock

debug_getenv

Complete API reference

Formatted write
Formatted write
Write a character
Write a string

Formatted write

Blocking character read
Line-buffered character read
Line-buffered double read
Line-buffered float read
Line-buffered integer read
Line-buffered long read
Line-buffered long long read
String read

Line-buffered unsigned integer
Line-buffered unsigned long read
Line-buffered unsigned long long read
Polled character read

Formatted read

Formatted read

Formatted read

Stop debugging

Stop target

Test if debug input/output is enabled
Evaluate debug expression

Stop debugging

Get arguments

Load debugging symbols

Stop and report error

Unload debugging symbols

get clock

Get environment variable value

439

CrossWorks for ARM Reference Manual Complete API reference

debug_perror Display error
debug_system Execute command
debug_time get time

440

CrossWorks for ARM Reference Manual

debug_abort

Synopsis

voi d debug_abort (void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

441

Complete API reference

CrossWorks for ARM Reference Manual

debug_break

Synopsis

voi d debug_break(void);

Description

Complete API reference

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

442

CrossWorks for ARM Reference Manual Complete API reference

debug_clearerr

Synopsis

voi d debug_cl earerr (DEBUG FI LE *stream ;

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

443

CrossWorks for ARM Reference Manual

debug_clock

Synopsis

| ong debug_cl ock(voi d);

Description

debug_clock returns the number of milli-seconds since the start of execution.

444

Complete API reference

CrossWorks for ARM Reference Manual

debug_enabled

Synopsis

i nt debug_enabl ed(voi d);

Description

Complete API reference

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work. For this to work correctly, the Startup Completion Breakpoint project property needs to be

set to a point in the program where the startup code has finished initialising, this is typically main.

445

CrossWorks for ARM Reference Manual Complete API reference

debug_evaluate

Synopsis

voi d debug_eval uat e(const char *expression);

Description

debug_evaluate instructs the debugger to evaluate the expression and display it in the debug terminal.

446

CrossWorks for ARM Reference Manual Complete API reference

debug_exit

Synopsis

__noreturn void debug_exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

447

CrossWorks for ARM Reference Manual Complete API reference

debug_fclose

Synopsis

int debug fclose(DEBUG FILE *stream;

Description
debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

448

CrossWorks for ARM Reference Manual Complete API reference

debug_feof

Synopsis

i nt debug feof (DEBUG FI LE *stream ;

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

449

CrossWorks for ARM Reference Manual Complete API reference

debug_ferror

Synopsis

int debug ferror(DEBUG FI LE *stream;

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

450

CrossWorks for ARM Reference Manual

debug_fflush

Synopsis

int debug fflush(DEBUG FILE *stream;

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

451

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

debug_fgetc

Synopsis

int debug fgetc(DEBUG FI LE *stream ;

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

452

CrossWorks for ARM Reference Manual

debug_fgetpos
Synopsis
int debug fgetpos(DEBUG FI LE *stream

| ong *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

453

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

debug_fgets

Synopsis

char *debug_fgets(char *s,
int n,
DEBUG FI LE *stream ;

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input
stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

454

CrossWorks for ARM Reference Manual Complete API reference

debug_filesize

Synopsis

int debug filesize(DEBUG FILE *stream;

Description
debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

455

CrossWorks for ARM Reference Manual Complete API reference

debug_fopen

Synopsis

DEBUG FI LE *debug_f open(const char *fil enane,
const char *node);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a
host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

r open file for reading.

w create file for writing.

a open or create file for writing and position at the end of the file.

r+ open file for reading and writing.

w+ create file for reading and writing.

a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

t for a text file.
b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

456

CrossWorks for ARM Reference Manual Complete API reference

debug_fprintf

Synopsis

int debug fprintf(DEBUG FILE *stream
const char *format,

)

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent
arguments are converted for output. The format string is a standard C printf format string. The actual formatting
is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

457

CrossWorks for ARM Reference Manual Complete API reference

debug_fprintf_c

Synopsis

int debug fprintf_c(DEBUG FILE *stream
__code const char *format,

)

Description

debug_fprintf_cis equivalent to debug_fprintf with the format string in code memory.

458

CrossWorks for ARM Reference Manual

debug_fputc

Synopsis

int debug fputc(int c,
DEBUG FI LE *streamn;

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

459

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

debug_fputs

Synopsis

i nt debug_fputs(const char *s,
DEBUG FI LE *streamn;

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

460

CrossWorks for ARM Reference Manual Complete API reference

debug_fread

Synopsis

int debug fread(void *ptr,
int size,
int nobj,

DEBUG FI LE *strean);

Description
debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

461

CrossWorks for ARM Reference Manual Complete API reference

debug_freopen

Synopsis

DEBUG FI LE *debug_freopen(const char *fil enane,
const char *node,
DEBUG FI LE *stream ;

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened
file is then associated with the stream.

462

CrossWorks for ARM Reference Manual Complete API reference

debug_fscanf

Synopsis

i nt debug_fscanf(DEBUG FI LE *stream
const char *format,

)
Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how
subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual
formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

463

CrossWorks for ARM Reference Manual Complete API reference

debug_fscanf ¢

Synopsis

int debug fscanf_ c(DEBUG FILE *stream
__code const char *format,

DE

Description

debug_fscanf_cis equivalent to debug_fscanf with the format string in code memory.

464

CrossWorks for ARM Reference Manual Complete API reference

debug_fseek

Synopsis

int debug fseek(DEBUG FI LE *stream
| ong of fset,
int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.
The origin can be one of:

0 sets the position to offset bytes from the beginning of the file.
1 sets the position to offset bytes relative to the current position.
2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

465

CrossWorks for ARM Reference Manual Complete API reference

debug_fsetpos

Synopsis

int debug fsetpos(DEBUG FILE *stream
const |ong *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

466

CrossWorks for ARM Reference Manual

debug_ftell

Synopsis

| ong debug ftell (DEBUG FI LE *stream;

Description

debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

467

Complete API reference

CrossWorks for ARM Reference Manual Complete API reference

debug_fwrite

Synopsis

int debug fwite(const void *ptr,
int size,
int nobj,

DEBUG FI LE *stream;

Description
debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

468

CrossWorks for ARM Reference Manual Complete API reference

debug_getargs

Synopsis

i nt debug_get args(unsi gned bufsi ze,
unsi gned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a
maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the
number of entries is returned as the result.

469

CrossWorks for ARM Reference Manual

debug_getch

Synopsis

i nt debug _getch(void);

Description

Complete API reference

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

470

CrossWorks for ARM Reference Manual

debug_getchar

Synopsis

i nt debug_getchar (void);

Description

Complete API reference

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

471

CrossWorks for ARM Reference Manual Complete API reference

debug_getd

Synopsis

i nt debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to
by d.

debug_getd returns zero on success or -1 on error.

472

CrossWorks for ARM Reference Manual

debug_getenv

Synopsis

char *debug_get env(char *nane);

Description

Complete API reference

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

473

CrossWorks for ARM Reference Manual Complete API reference

debug_getf

Synopsis

int debug getf(float *f);

Description
debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

474

CrossWorks for ARM Reference Manual Complete API reference

debug_geti

Synopsis

int debug geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object
pointed to by i.

debug_geti returns zero on success or -1 on error.

475

CrossWorks for ARM Reference Manual Complete API reference

debug_getli

Synopsis

int debug getl (long *I);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object
pointed to by I.

debug_getl returns zero on success or -1 on error.

476

CrossWorks for ARM Reference Manual Complete API reference

debug_getli

Synopsis

int debug getll(long long *I1);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object
pointed to by II.

debug_getll returns zero on success or -1 on error.

477

CrossWorks for ARM Reference Manual

debug_gets

Synopsis

char *debug_gets(char *s);

Description

Complete API reference

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

478

CrossWorks for ARM Reference Manual Complete API reference

debug_getu

Synopsis

i nt debug_getu(unsi gned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with Ox it is interpreted
as a hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned
integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

479

CrossWorks for ARM Reference Manual Complete API reference

debug_getul

Synopsis

i nt debug_getul (unsi gned | ong *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with Ox it is interpreted as
a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object
pointed to by ul.

debug_getul returns zero on success or -1 on error.

480

CrossWorks for ARM Reference Manual Complete API reference

debug_getull

Synopsis

i nt debug _getull (unsigned |ong |Iong *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is
interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it
is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the
long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

481

CrossWorks for ARM Reference Manual

debug_kbhit

Synopsis

i nt debug_kbhit (void);

Description

Complete API reference

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

482

CrossWorks for ARM Reference Manual Complete API reference

debug_loadsymbols

Synopsis

voi d debug_| oadsynbol s(const char *fil enane,
const voi d *address,
const char *breaksynbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.
The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The
address is the load address which is required for debugging position independent executables, supply NULL for
regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on
or NULL.

483

CrossWorks for ARM Reference Manual Complete API reference

debug_perror

Synopsis

voi d debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the
errno value of the last Debug IO operation.

484

CrossWorks for ARM Reference Manual Complete API reference

debug_printf

Synopsis

int debug_printf(const char *fornmat,
)i

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies
how subsequent arguments are converted for output. The format string is a standard C printf format string. The
actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

485

CrossWorks for ARM Reference Manual Complete API reference

debug_printf_c
Synopsis
int debug printf_c(__code const char *format,

20)

Description

debug_printf_cis equivalent to debug_printf with the format string in code memory.

486

CrossWorks for ARM Reference Manual

debug_p