
CrossWorks for ARM Reference Manual

Version: 4.10.9.2024031101.56016

Copyright 1997-2024 Rowley Associates Ltd.

CrossWorks for ARM Reference Manual

2

CrossWorks for ARM Reference Manual Contents

3

Contents
Introduction ... 33

What is CrossWorks? .. 34

What we don't tell you ... 36

Activating your product ... 37

Text conventions ... 39

Additional resources .. 41

Release notes .. 42

CrossStudio Tutorial ... 79

Activating CrossWorks .. 81

Managing support packages ... 83

Creating a project ... 86

Managing files in a project ... 92

Setting project options ... 96

Building projects ... 98

Exploring projects .. 101

Using the debugger ... 112

Low-level debugging .. 118

Debugging externally built applications ... 122

CrossStudio User Guide .. 127

CrossStudio standard layout ... 128

Menu bar .. 129

Title bar ... 130

Status bar ... 131

CrossWorks for ARM Reference Manual Contents

4

Editing workspace .. 133

Docking windows ... 134

Dashboard ... 135

CrossStudio help and assistance ... 136

Creating and managing projects ... 138

Solutions and projects ... 139

Creating a project .. 142

Adding existing files to a project .. 143

Adding new files to a project ... 144

Removing a file, folder, project, or project link .. 145

Building your application ... 146

Creating variants using configurations .. 148

Project properties .. 150

Configurations and property values .. 152

Project macros ... 154

Dependencies and build order .. 156

Precompile Header File support .. 157

Linking and section placement .. 158

Using source control ... 161

Source control capabilities ... 162

Configuring source-control providers ... 163

Connecting to the source-control system ... 164

File source-control status ... 165

Source-control operations .. 166

Adding files to source control .. 167

Updating files ... 168

Committing files ... 169

Reverting files .. 170

Locking files .. 171

Unlocking files ... 172

Removing files from source control ... 173

Showing differences between files .. 174

Source-control properties .. 175

Subversion provider .. 176

CVS provider ... 178

Package management .. 180

Exploring your application ... 184

Project explorer ... 185

Source navigator window .. 190

References window ... 192

Symbol browser window .. 193

CrossWorks for ARM Reference Manual Contents

5

Stack usage window ... 198

Memory usage window ... 199

Bookmarks window ... 202

Code Outline Window .. 203

Analyzing Source Code .. 204

Editing your code ... 205

Basic editing ... 206

Moving the insertion point ... 207

Adding text ... 209

Deleting text .. 210

Using the clipboard .. 211

Undo and redo .. 212

Drag and drop ... 213

Searching ... 214

Advanced editing ... 215

Indenting source code ... 216

Commenting out sections of code ... 218

Adjusting letter case .. 219

Using bookmarks .. 220

Find and Replace window .. 222

Clipboard Ring window ... 224

Mouse-click accelerators ... 226

Regular expressions .. 228

Debugging windows ... 230

Locals window ... 230

Globals window .. 232

Watch window ... 234

Register window ... 237

Memory window ... 240

Breakpoints window ... 244

Call Stack window .. 248

Threads window ... 251

Execution Profile window ... 255

Execution Trace window ... 256

Debug file search editor .. 257

Debug Terminal window .. 259

Debug Immediate window .. 260

Breakpoint expressions .. 261

Debug expressions ... 262

Utility windows .. 263

Output window ... 263

CrossWorks for ARM Reference Manual Contents

6

Properties window ... 264

Targets window ... 265

Terminal emulator window ... 269

Script Console window .. 270

Downloads window ... 271

Latest News window ... 272

Command-line options ... 273

-D (Define macro) ... 274

-noclang (Disable Clang support) .. 275

-noload (Disable loading of last project) ... 276

-packagesdir (Specify packages directory) .. 277

-permit-multiple-studio-instances (Permit multiple studio instances) ... 278

-rootuserdir (Set the root user data directory) .. 279

-save-settings-off (Disable saving of environment settings) ... 280

-set-setting (Set environment setting) .. 281

-templatesfile (Set project templates path) .. 282

Uninstalling CrossWorks for ARM .. 283

Uninstalling from Windows ... 283

Uninstalling from macOS .. 284

Uninstalling from Linux ... 285

ARM target support ... 287

Target startup code ... 289

Startup code .. 291

Section Placement .. 294

Project configurations .. 296

Target script file .. 299

Program loading ... 303

Debug Capabilities ... 304

Trace Capabilities .. 307

Target interfaces .. 311

ARM Simulator target interface ... 313

Amontec JTAGkey Target Interface .. 314

CMSIS-DAP Target Interface .. 316

CrossConnect Target Interface ... 318

Generic FT2232 Target Interface ... 320

Generic Target Interface .. 323

Olimex ARM-USB-OCD Target Interface ... 324

Kinetis OSJTAG Target Interface .. 326

P&E UNIT Interface DLL Target Interface ... 327

Segger J-Link Target Interface .. 328

Stellaris ICDI Target Interface ... 330

CrossWorks for ARM Reference Manual Contents

7

ST-LINK Target Interface .. 331

ST-LINK/V2 Target Interface ... 332

Macraigor Wiggler (20 and 14 pin) Target Interface ... 333

Using an external ARM GCC toolchain .. 335

C Library User Guide .. 337

Floating point ... 338

Multithreading .. 339

Thread safety in the CrossWorks library .. 340

Implementing mutual exclusion in the C library .. 341

Input and output ... 343

Customizing putchar ... 344

Locales .. 349

Unicode, ISO 10646, and wide characters ... 350

Multi-byte characters .. 351

The standard C and POSIX locales .. 352

Additional locales in source form .. 353

Installing a locale .. 354

Setting a locale directly ... 356

Complete API reference ... 357

<assert.h> ... 359

__assert ... 360

assert .. 361

<complex.h> ... 362

cabs ... 364

cabsf ... 365

cacos ... 366

cacosf ... 367

cacosh .. 368

cacoshf .. 369

carg ... 370

cargf .. 371

casin .. 372

casinf .. 373

casinh ... 374

casinhf ... 375

catan ... 376

catanf ... 377

catanh .. 378

catanhf .. 379

ccos ... 380

ccosf .. 381

CrossWorks for ARM Reference Manual Contents

8

ccosh .. 382

ccoshf ... 383

cexp .. 384

cexpf ... 385

cimag .. 386

cimagf .. 387

clog ... 388

clogf .. 389

conj ... 390

conjf .. 391

cpow ... 392

cpowf ... 393

cproj ... 394

cprojf .. 395

creal .. 396

crealf ... 397

csin .. 398

csinf .. 399

csinh ... 400

csinhf .. 401

csqrt .. 402

csqrtf .. 403

ctan ... 404

ctanf .. 405

ctanh .. 406

ctanhf ... 407

<ctype.h> ... 408

isalnum .. 410

isalnum_l .. 411

isalpha ... 412

isalpha_l .. 413

isblank ... 414

isblank_l .. 415

iscntrl ... 416

iscntrl_l .. 417

isdigit ... 418

isdigit_l .. 419

isgraph .. 420

isgraph_l ... 421

islower ... 422

islower_l .. 423

CrossWorks for ARM Reference Manual Contents

9

isprint ... 424

isprint_l ... 425

ispunct ... 426

ispunct_l ... 427

isspace ... 428

isspace_l ... 429

isupper .. 430

isupper_l ... 431

isxdigit ... 432

isxdigit_l ... 433

tolower .. 434

tolower_l .. 435

toupper ... 436

toupper_l .. 437

<debugio.h> .. 438

debug_abort ... 441

debug_break .. 442

debug_clearerr .. 443

debug_clock ... 444

debug_enabled ... 445

debug_evaluate .. 446

debug_exit .. 447

debug_fclose .. 448

debug_feof .. 449

debug_ferror .. 450

debug_fflush .. 451

debug_fgetc .. 452

debug_fgetpos .. 453

debug_fgets .. 454

debug_filesize .. 455

debug_fopen .. 456

debug_fprintf ... 457

debug_fprintf_c .. 458

debug_fputc ... 459

debug_fputs ... 460

debug_fread ... 461

debug_freopen .. 462

debug_fscanf .. 463

debug_fscanf_c ... 464

debug_fseek ... 465

debug_fsetpos ... 466

CrossWorks for ARM Reference Manual Contents

10

debug_ftell .. 467

debug_fwrite .. 468

debug_getargs .. 469

debug_getch .. 470

debug_getchar .. 471

debug_getd .. 472

debug_getenv .. 473

debug_getf .. 474

debug_geti .. 475

debug_getl .. 476

debug_getll ... 477

debug_gets ... 478

debug_getu ... 479

debug_getul ... 480

debug_getull .. 481

debug_kbhit ... 482

debug_loadsymbols .. 483

debug_perror ... 484

debug_printf .. 485

debug_printf_c .. 486

debug_putchar .. 487

debug_puts ... 488

debug_remove .. 489

debug_rename .. 490

debug_rewind .. 491

debug_runtime_error ... 492

debug_scanf ... 493

debug_scanf_c ... 494

debug_system .. 495

debug_time ... 496

debug_tmpfile ... 497

debug_tmpnam .. 498

debug_ungetc .. 499

debug_unloadsymbols .. 500

debug_vfprintf ... 501

debug_vfscanf ... 502

debug_vprintf .. 503

debug_vscanf ... 504

<errno.h> .. 505

EDOM ... 506

EILSEQ .. 507

CrossWorks for ARM Reference Manual Contents

11

EINVAL ... 508

ENOMEM ... 509

ERANGE ... 510

errno ... 511

<float.h> ... 512

DBL_DIG .. 513

DBL_EPSILON ... 514

DBL_MANT_DIG .. 515

DBL_MAX ... 516

DBL_MAX_10_EXP ... 517

DBL_MAX_EXP ... 518

DBL_MIN ... 519

DBL_MIN_10_EXP ... 520

DBL_MIN_EXP .. 521

DECIMAL_DIG ... 522

FLT_DIG ... 523

FLT_EPSILON ... 524

FLT_EVAL_METHOD .. 525

FLT_MANT_DIG ... 526

FLT_MAX ... 527

FLT_MAX_10_EXP ... 528

FLT_MAX_EXP .. 529

FLT_MIN .. 530

FLT_MIN_10_EXP .. 531

FLT_MIN_EXP .. 532

FLT_RADIX ... 533

FLT_ROUNDS .. 534

<intrinsics.h> .. 535

__breakpoint .. 541

__cdp .. 542

__cdp2 ... 543

__clrex ... 544

__clz .. 545

__dbg ... 546

__disable_fiq .. 547

__disable_interrupt ... 548

__disable_irq .. 549

__dmb .. 550

__dsb .. 551

__enable_fiq ... 552

__enable_interrupt .. 553

CrossWorks for ARM Reference Manual Contents

12

__enable_irq ... 554

__fabs ... 555

__fabsf ... 556

__fma ... 557

__fmaf .. 558

__get_APSR ... 559

__get_BASEPRI ... 560

__get_CONTROL .. 561

__get_CPSR ... 562

__get_FAULTMASK .. 563

__get_PRIMASK ... 564

__isb ... 565

__ldc ... 566

__ldc2 ... 567

__ldc2_noidx .. 568

__ldc2l ... 569

__ldc2l_noidx ... 570

__ldc_noidx ... 571

__ldcl .. 572

__ldcl_noidx .. 573

__ldrbt ... 574

__ldrex ... 575

__ldrexb .. 576

__ldrexd .. 577

__ldrexh .. 578

__ldrht ... 579

__ldrsbt ... 580

__ldrsht ... 581

__ldrt .. 582

__mcr ... 583

__mcr2 ... 584

__mcrr .. 585

__mcrr2 ... 586

__mrc ... 587

__mrc2 ... 588

__mrrc .. 589

__mrrc2 ... 590

__nop ... 591

__pld ... 592

__pli .. 593

__qadd ... 594

CrossWorks for ARM Reference Manual Contents

13

__qadd16 ... 595

__qadd8 .. 596

__qasx .. 597

__qdadd .. 598

__qdbl .. 599

__qdsub .. 600

__qflag ... 601

__qsax .. 602

__qsub ... 603

__qsub16 .. 604

__qsub8 .. 605

__rbit .. 606

__rev ... 607

__rev16 .. 608

__revsh .. 609

__rintn ... 610

__rintnf .. 611

__sadd16 .. 612

__sadd8 ... 613

__sasx ... 614

__sel .. 615

__set_APSR .. 616

__set_BASEPRI ... 617

__set_CONTROL .. 618

__set_CPSR .. 619

__set_FAULTMASK ... 620

__set_PRIMASK .. 621

__sev .. 622

__shadd16 ... 623

__shadd8 .. 624

__shasx .. 625

__shsax .. 626

__shsub16 .. 627

__shsub8 .. 628

__smlabb .. 629

__smlabt ... 630

__smlad ... 631

__smladx .. 632

__smlalbb ... 633

__smlalbt .. 634

__smlald .. 635

CrossWorks for ARM Reference Manual Contents

14

__smlaldx ... 636

__smlaltb .. 637

__smlaltt ... 638

__smlatb ... 639

__smlatt .. 640

__smlawb ... 641

__smlawt .. 642

__smlsd ... 643

__smlsdx ... 644

__smlsld .. 645

__smlsldx .. 646

__smuad ... 647

__smuadx ... 648

__smulbb .. 649

__smulbt ... 650

__smultb ... 651

__smultt .. 652

__smulwb ... 653

__smulwt .. 654

__smusd .. 655

__smusdx ... 656

__sqrt ... 657

__sqrtf .. 658

__ssat ... 659

__ssat16 .. 660

__ssax ... 661

__ssub16 ... 662

__ssub8 ... 663

__stc .. 664

__stc2 ... 665

__stc2l .. 666

__stc_noidx ... 667

__stcl .. 668

__strbt ... 669

__strex ... 670

__strexb .. 671

__strexd .. 672

__strexh .. 673

__strht .. 674

__strt .. 675

__swp ... 676

CrossWorks for ARM Reference Manual Contents

15

__swpb .. 677

__sxtab16 ... 678

__sxtb16 ... 679

__uadd16 ... 680

__uadd8 .. 681

__uasx .. 682

__uhadd16 ... 683

__uhadd8 ... 684

__uhasx ... 685

__uhsax ... 686

__uhsub16 ... 687

__uhsub8 .. 688

__uqadd16 ... 689

__uqadd8 ... 690

__uqasx ... 691

__uqsax ... 692

__uqsub16 ... 693

__uqsub8 .. 694

__usad8 ... 695

__usad8a .. 696

__usat .. 697

__usat16 ... 698

__usax .. 699

__usub8 .. 700

__uxtab16 .. 701

__uxtb16 ... 702

__wfe .. 703

__wfi ... 704

__yield ... 705

<iso646.h> ... 706

and .. 707

and_eq ... 708

bitand .. 709

bitor .. 710

compl ... 711

not ... 712

not_eq ... 713

or .. 714

or_eq .. 715

xor ... 716

xor_eq .. 717

CrossWorks for ARM Reference Manual Contents

16

<itm.h> .. 718

ITM_base .. 719

ITM_channel_enabled .. 720

ITM_send_byte .. 721

ITM_send_half_word .. 722

ITM_send_pc ... 723

ITM_send_word ... 724

<libarm.h> .. 725

libarm_dcc_read ... 726

libarm_dcc_write .. 727

libarm_disable_fiq ... 728

libarm_disable_irq ... 729

libarm_disable_irq_fiq ... 730

libarm_enable_fiq .. 731

libarm_enable_irq .. 732

libarm_enable_irq_fiq .. 733

libarm_get_cpsr .. 734

libarm_isr_disable_irq .. 735

libarm_isr_enable_irq ... 736

libarm_mmu_flat_initialise_level_1_table .. 737

libarm_mmu_flat_initialise_level_2_small_page_table .. 738

libarm_mmu_flat_set_level_1_cacheable_region ... 739

libarm_mmu_flat_set_level_2_small_page_cacheable_region ... 740

libarm_restore_irq_fiq ... 741

libarm_run_dcc_port_server ... 742

libarm_set_cpsr ... 743

libarm_set_fiq .. 744

libarm_set_irq .. 745

<limits.h> .. 746

CHAR_BIT ... 747

CHAR_MAX .. 748

CHAR_MIN ... 749

INT_MAX ... 750

INT_MIN .. 751

LLONG_MAX ... 752

LLONG_MIN ... 753

LONG_MAX .. 754

LONG_MIN ... 755

MB_LEN_MAX ... 756

SCHAR_MAX .. 757

SCHAR_MIN ... 758

CrossWorks for ARM Reference Manual Contents

17

SHRT_MAX ... 759

SHRT_MIN .. 760

UCHAR_MAX ... 761

UINT_MAX .. 762

ULLONG_MAX .. 763

ULONG_MAX .. 764

USHRT_MAX .. 765

<locale.h> ... 766

lconv ... 767

localeconv .. 769

setlocale .. 770

<math.h> .. 771

acos ... 775

acosf ... 776

acosh .. 777

acoshf ... 778

asin .. 779

asinf .. 780

asinh ... 781

asinhf ... 782

atan ... 783

atan2 .. 784

atan2f ... 785

atanf ... 786

atanh .. 787

atanhf ... 788

cbrt .. 789

cbrtf .. 790

ceil ... 791

ceilf .. 792

copysign ... 793

copysignf .. 794

cos ... 795

cosf .. 796

cosh ... 797

coshf ... 798

erf .. 799

erfc .. 800

erfcf ... 801

erff ... 802

exp .. 803

CrossWorks for ARM Reference Manual Contents

18

exp2 .. 804

exp2f .. 805

expf ... 806

expm1 .. 807

expm1f .. 808

fabs ... 809

fabsf .. 810

fdim ... 811

fdimf ... 812

floor .. 813

floorf ... 814

fma .. 815

fmaf ... 816

fmax .. 817

fmaxf .. 818

fmin ... 819

fminf ... 820

fmod ... 821

fmodf .. 822

fpclassify ... 823

frexp ... 824

frexpf .. 825

hypot .. 826

hypotf .. 827

ilogb ... 828

ilogbf .. 829

isfinite .. 830

isgreater .. 831

isgreaterequal .. 832

isinf ... 833

isless ... 834

islessequal .. 835

islessgreater .. 836

isnan ... 837

isnormal .. 838

isunordered ... 839

ldexp .. 840

ldexpf ... 841

lgamma ... 842

lgammaf .. 843

llrint .. 844

CrossWorks for ARM Reference Manual Contents

19

llrintf ... 845

llround ... 846

llroundf ... 847

log ... 848

log10 .. 849

log10f ... 850

log1p .. 851

log1pf ... 852

log2 ... 853

log2f ... 854

logb ... 855

logbf ... 856

logf .. 857

lrint .. 858

lrintf .. 859

lround .. 860

lroundf ... 861

modf ... 862

modff .. 863

nearbyint .. 864

nearbyintf .. 865

nextafter ... 866

nextafterf ... 867

pow ... 868

powf .. 869

remainder .. 870

remainderf ... 871

remquo .. 872

remquof .. 873

rint ... 874

rintf ... 875

round ... 876

roundf .. 877

scalbln .. 878

scalblnf .. 879

scalbn ... 880

scalbnf ... 881

signbit .. 882

sin .. 883

sinf ... 884

sinh ... 885

CrossWorks for ARM Reference Manual Contents

20

sinhf .. 886

sqrt .. 887

sqrtf .. 888

tan ... 889

tanf .. 890

tanh ... 891

tanhf ... 892

tgamma ... 893

tgammaf ... 894

trunc ... 895

truncf .. 896

<setjmp.h> ... 897

longjmp ... 898

setjmp .. 899

<stdarg.h> .. 900

va_arg .. 901

va_copy ... 902

va_end ... 903

va_start ... 904

<stddef.h> .. 905

NULL ... 906

max_align_t .. 907

offsetof .. 908

ptrdiff_t ... 909

size_t .. 910

<stdio.h> ... 911

getchar .. 912

gets ... 913

printf .. 914

putchar .. 919

puts ... 920

scanf ... 921

snprintf .. 925

sprintf .. 926

sscanf ... 927

vprintf .. 928

vscanf ... 929

vsnprintf ... 930

vsprintf .. 931

vsscanf ... 932

<stdlib.h> ... 933

CrossWorks for ARM Reference Manual Contents

21

EXIT_FAILURE ... 935

EXIT_SUCCESS .. 936

MB_CUR_MAX .. 937

RAND_MAX .. 938

abs ... 939

atexit .. 940

atof .. 941

atoi .. 942

atol .. 943

atoll ... 944

bsearch .. 945

calloc .. 946

div .. 947

div_t .. 948

exit .. 949

free .. 950

itoa .. 951

labs .. 952

ldiv .. 953

ldiv_t .. 954

llabs .. 955

lldiv ... 956

lldiv_t ... 957

lltoa ... 958

ltoa .. 959

malloc .. 960

mblen ... 961

mblen_l ... 962

mbstowcs ... 963

mbstowcs_l ... 964

mbtowc ... 965

mbtowc_l ... 966

qsort ... 967

rand .. 968

realloc .. 969

srand .. 970

strtod .. 971

strtof ... 972

strtol ... 973

strtoll .. 975

strtoul .. 977

CrossWorks for ARM Reference Manual Contents

22

strtoull ... 979

ulltoa .. 981

ultoa ... 982

utoa ... 983

<string.h> ... 984

memccpy .. 986

memchr ... 987

memcmp .. 988

memcpy .. 989

memcpy_fast .. 990

memmove .. 991

mempcpy ... 992

memset ... 993

strcasecmp ... 994

strcasestr .. 995

strcat .. 996

strchr .. 997

strcmp .. 998

strcpy ... 999

strcspn ... 1000

strdup .. 1001

strerror .. 1002

strlcat ... 1003

strlcpy .. 1004

strlen .. 1005

strncasecmp ... 1006

strncasestr ... 1007

strncat ... 1008

strnchr ... 1009

strncmp ... 1010

strncpy .. 1011

strndup ... 1012

strnlen ... 1013

strnstr .. 1014

strpbrk ... 1015

strrchr .. 1016

strsep ... 1017

strspn ... 1018

strstr ... 1019

strtok ... 1020

strtok_r ... 1021

CrossWorks for ARM Reference Manual Contents

23

<time.h> ... 1022

asctime .. 1023

asctime_r .. 1024

clock_t ... 1025

ctime .. 1026

ctime_r .. 1027

difftime ... 1028

gmtime ... 1029

gmtime_r ... 1030

localtime .. 1031

localtime_r .. 1032

mktime .. 1033

strftime ... 1034

time_t .. 1036

tm .. 1037

<wchar.h> .. 1038

WCHAR_MAX ... 1040

WCHAR_MIN ... 1041

WEOF ... 1042

btowc ... 1043

btowc_l ... 1044

mbrlen ... 1045

mbrlen_l ... 1046

mbrtowc ... 1047

mbrtowc_l ... 1048

mbsrtowcs ... 1049

mbsrtowcs_l ... 1050

msbinit .. 1051

wchar_t ... 1052

wcrtomb ... 1053

wcrtomb_l ... 1054

wcscat .. 1055

wcschr ... 1056

wcscmp ... 1057

wcscpy ... 1058

wcscspn .. 1059

wcsdup .. 1060

wcslen ... 1061

wcsncat ... 1062

wcsnchr ... 1063

wcsncmp .. 1064

CrossWorks for ARM Reference Manual Contents

24

wcsncpy .. 1065

wcsnlen ... 1066

wcsnstr .. 1067

wcspbrk .. 1068

wcsrchr .. 1069

wcsspn .. 1070

wcsstr ... 1071

wcstok ... 1072

wcstok_r ... 1073

wctob ... 1074

wctob_l ... 1075

wint_t .. 1076

wmemccpy .. 1077

wmemchr ... 1078

wmemcmp .. 1079

wmemcpy .. 1080

wmemmove .. 1081

wmempcpy ... 1082

wmemset ... 1083

wstrsep ... 1084

<wctype.h> ... 1085

iswalnum .. 1087

iswalnum_l .. 1088

iswalpha ... 1089

iswalpha_l .. 1090

iswblank ... 1091

iswblank_l .. 1092

iswcntrl ... 1093

iswcntrl_l .. 1094

iswctype ... 1095

iswctype_l .. 1096

iswdigit ... 1097

iswdigit_l .. 1098

iswgraph .. 1099

iswgraph_l ... 1100

iswlower ... 1101

iswlower_l ... 1102

iswprint ... 1103

iswprint_l ... 1104

iswpunct ... 1105

iswpunct_l ... 1106

CrossWorks for ARM Reference Manual Contents

25

iswspace ... 1107

iswspace_l ... 1108

iswupper .. 1109

iswupper_l ... 1110

iswxdigit ... 1111

iswxdigit_l ... 1112

towctrans ... 1113

towctrans_l ... 1114

towlower .. 1115

towlower_l .. 1116

towupper ... 1117

towupper_l .. 1118

wctrans ... 1119

wctrans_l .. 1120

wctype ... 1121

<xlocale.h> .. 1122

duplocale ... 1123

freelocale ... 1124

localeconv_l .. 1125

newlocale ... 1126

C++ Library User Guide .. 1127

Standard template library .. 1129

Subset API reference .. 1130

<new> - memory allocation .. 1131

operator delete ... 1132

operator new ... 1133

set_new_handler .. 1134

LIBMEM User Guide ... 1135

Using the LIBMEM library ... 1136

Light version of LIBMEM ... 1139

Writing LIBMEM drivers ... 1140

LIBMEM loader library .. 1144

Complete API reference .. 1145

<libmem.h> .. 1146

LIBMEM_ADDRESS_IN_RANGE .. 1151

LIBMEM_ADDRESS_IS_ALIGNED ... 1152

LIBMEM_ALIGNED_ADDRESS ... 1153

LIBMEM_CFI_CMDSET_AMD_EXTENDED .. 1154

LIBMEM_CFI_CMDSET_AMD_STANDARD ... 1155

LIBMEM_CFI_CMDSET_INTEL_EXTENDED .. 1156

LIBMEM_CFI_CMDSET_INTEL_STANDARD ... 1157

CrossWorks for ARM Reference Manual Contents

26

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED .. 1158

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD ... 1159

LIBMEM_CFI_CMDSET_NONE ... 1160

LIBMEM_CFI_CMDSET_RESERVED .. 1161

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE .. 1162

LIBMEM_CFI_CMDSET_WINBOND_STANDARD .. 1163

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES 1164

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD 1165

LIBMEM_INLINE .. 1166

LIBMEM_KB .. 1167

LIBMEM_MB ... 1168

LIBMEM_RANGE_OCCLUDES_RANGE ... 1169

LIBMEM_RANGE_OVERLAPS_RANGE .. 1170

LIBMEM_RANGE_WITHIN_RANGE .. 1171

LIBMEM_STATUS_CFI_ERROR .. 1172

LIBMEM_STATUS_ERROR ... 1173

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW ... 1174

LIBMEM_STATUS_INVALID_DEVICE .. 1175

LIBMEM_STATUS_INVALID_PARAMETER .. 1176

LIBMEM_STATUS_INVALID_RANGE ... 1177

LIBMEM_STATUS_INVALID_WIDTH ... 1178

LIBMEM_STATUS_LOCKED .. 1179

LIBMEM_STATUS_NOT_IMPLEMENTED ... 1180

LIBMEM_STATUS_NO_DRIVER ... 1181

LIBMEM_STATUS_SUCCESS ... 1182

LIBMEM_STATUS_TIMEOUT .. 1183

LIBMEM_VERSION_NUMBER ... 1184

_libmem_driver_functions_t .. 1185

_libmem_driver_handle_t ... 1186

_libmem_driver_paged_write_ctrlblk_t .. 1187

_libmem_ext_driver_functions_t ... 1188

_libmem_flash_info_t .. 1189

_libmem_geometry_t .. 1190

_libmem_sector_info_t ... 1191

libmem_busy_handler_fn .. 1192

libmem_busy_handler_fn_t .. 1193

libmem_cfi_get_info .. 1194

libmem_crc32 .. 1195

libmem_crc32_direct ... 1196

libmem_driver_crc32_fn_t .. 1197

libmem_driver_erase_fn_t .. 1198

CrossWorks for ARM Reference Manual Contents

27

libmem_driver_fill_fn_t .. 1199

libmem_driver_flush_fn_t ... 1200

libmem_driver_inrange_fn_t ... 1201

libmem_driver_lock_fn_t ... 1202

libmem_driver_page_write_fn_t .. 1203

libmem_driver_paged_write .. 1204

libmem_driver_paged_write_fill .. 1205

libmem_driver_paged_write_flush ... 1206

libmem_driver_paged_write_init ... 1207

libmem_driver_read_fn_t .. 1208

libmem_driver_unlock_fn_t ... 1209

libmem_driver_write_fn_t ... 1210

libmem_drivers ... 1211

libmem_enable_timeouts .. 1212

libmem_erase .. 1213

libmem_erase_all ... 1214

libmem_fill .. 1215

libmem_flush ... 1216

libmem_foreach_driver .. 1217

libmem_foreach_driver_fn_t .. 1218

libmem_foreach_sector .. 1219

libmem_foreach_sector_fn_t ... 1220

libmem_foreach_sector_in_range ... 1221

libmem_foreach_sector_in_range_ex .. 1222

libmem_get_driver ... 1223

libmem_get_driver_sector_size .. 1224

libmem_get_geometry_size ... 1225

libmem_get_number_of_regions .. 1226

libmem_get_number_of_sectors ... 1227

libmem_get_sector_info .. 1228

libmem_get_sector_number .. 1229

libmem_get_sector_size ... 1230

libmem_get_ticks .. 1231

libmem_get_ticks_fn ... 1232

libmem_get_ticks_fn_t ... 1233

libmem_lock .. 1234

libmem_lock_all ... 1235

libmem_read ... 1236

libmem_register_am29f200b_driver .. 1237

libmem_register_am29f200t_driver ... 1238

libmem_register_am29f400bb_driver ... 1239

CrossWorks for ARM Reference Manual Contents

28

libmem_register_am29f400bt_driver .. 1240

libmem_register_am29fxxx_driver ... 1241

libmem_register_am29lv010b_driver .. 1242

libmem_register_cfi_0001_16_driver ... 1243

libmem_register_cfi_0001_8_driver ... 1244

libmem_register_cfi_0002_16_driver ... 1245

libmem_register_cfi_0002_8_driver ... 1246

libmem_register_cfi_0003_16_driver ... 1247

libmem_register_cfi_0003_8_driver ... 1248

libmem_register_cfi_amd_driver ... 1249

libmem_register_cfi_driver ... 1251

libmem_register_cfi_intel_driver ... 1252

libmem_register_driver .. 1254

libmem_register_ram_driver .. 1255

libmem_register_sst39xFx00A_16_driver .. 1256

libmem_register_st_m28w320cb_driver .. 1257

libmem_register_st_m28w320ct_driver ... 1258

libmem_set_busy_handler .. 1259

libmem_ticks_per_second ... 1260

libmem_unlock ... 1261

libmem_unlock_all .. 1262

libmem_write .. 1263

<libmem_loader.h> .. 1264

LIBMEM_LOADER_VERSION_NUMBER ... 1265

LIBMEM_RPC_LOADER_FLAG_PARAM ... 1266

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE .. 1267

LIBMEM_RPC_LOADER_MAGIC_NUMBER ... 1268

LIBMEM_RPC_LOADER_OPTION_HOST_ERASE .. 1269

LIBMEM_RPC_LOADER_OPTION_HOST_WRITE .. 1270

libmem_rpc_loader_exit .. 1271

libmem_rpc_loader_start ... 1273

libmem_rpc_loader_start_ex ... 1275

Utilities Reference .. 1277

Command-Line Compiler .. 1278

File Naming .. 1278

Compilation .. 1278

Linking .. 1279

Target Selection .. 1280

Advanced ... 1280

Options ... 1280

Command-Line Project Builder .. 1287

CrossWorks for ARM Reference Manual Contents

29

Building with a CrossStudio project file .. 1288

Building without a CrossStudio project file ... 1290

Command-line options .. 1291

-batch (Batch build) .. 1292

-config (Select build configuration) .. 1293

-clean (Remove output files) .. 1294

-D (Define macro) .. 1295

-echo (Show command lines) ... 1296

-file (Build a named file) ... 1297

-packagesdir (Specify packages directory) ... 1298

-project (Specify project to build) .. 1299

-property (Set project property) ... 1300

-rebuild (Always rebuild) .. 1301

-show (Dry run, don't execute) .. 1302

-solution (Specify solution to build) .. 1303

-studiodir (Specify CrossStudio directory) .. 1304

-template (Specify project template) ... 1305

-time (Time the build) ... 1306

-threadnum (Specify number of build threads) ... 1307

-type (Specify project type) .. 1308

-verbose (Show build information) ... 1309

Command-Line Simulator ... 1310

Example .. 1310

Usage ... 1311

Command-Line Project Download and Debug ... 1313

Command line debugging ... 1315

Managing breakpoints .. 1316

Displaying state ... 1319

Locating the current context ... 1321

Controlling execution .. 1323

Support packages .. 1324

Command-line options .. 1325

-break (Stop execution at symbol) .. 1326

-config (Specify build configuration) .. 1327

-connection (Specify connection) ... 1328

-debug (Enter command line debugging) .. 1329

-eraseall (Erase all flash memory) .. 1330

-filetype (Specify load file type) .. 1331

-help (Display help) .. 1332

-listfiletypes (Display supported load file types) ... 1333

-listprojectprops (Display all project properties) .. 1334

CrossWorks for ARM Reference Manual Contents

30

-listprops (Display target properties) ... 1335

-listtargets (Display supported target interfaces) ... 1336

-loadaddress (Set load address) .. 1337

-loader (Specify loader configuration) ... 1338

-nodifferential (Inhibit differential download) ... 1339

-nodisconnect (Inhibit target disconnection) ... 1340

-nodownload (Inhibit download) ... 1341

-noverify (Inhibit verification) .. 1342

-packagesdir (Specify package directory) ... 1343

-project (Specify project name) ... 1344

-quiet (Be silent) ... 1345

-reset (Reset only) ... 1346

-script (Execute debug script) .. 1347

-serve (Run semihosting server) ... 1348

-setprop (Set target interface property) .. 1349

-solution (Specify solution file) ... 1350

-studiodir (Specify Studio directory) ... 1351

-target (Specify target interface) .. 1352

-verbose (Display additional status) ... 1353

Command-Line Scripting .. 1354

Command-line options .. 1355

-define (Define global variable) .. 1356

-help (Show usage) ... 1357

-load (Load script file) ... 1358

-define (Verbose output) .. 1359

CrossScript classes ... 1360

Example uses ... 1361

Embed .. 1362

Header file generator ... 1363

Using the header generator .. 1364

Command line options .. 1365

-regbaseoffsets (Use offsets from peripheral base) .. 1366

-nobitfields (Inhibit bitfield macros) ... 1367

Linker script file generator .. 1368

Command-line options .. 1369

-check-section-overflow ... 1370

-check-segment-overflow .. 1371

-disable-missing-runin-error ... 1372

-memory-map-macros ... 1373

-no-check-unplaced-sections ... 1374

-no-ctors .. 1375

CrossWorks for ARM Reference Manual Contents

31

-no-dtors .. 1376

-section-placement-file ... 1377

-section-placement-macros .. 1378

-symbols .. 1379

Package generator ... 1380

Package manager ... 1382

Appendices .. 1385

Technical .. 1386

File formats ... 1386

Memory Map file format .. 1387

Section Placement file format ... 1389

Project file format ... 1391

Project Templates file format .. 1392

Property Groups file format ... 1394

Package Description file format ... 1396

External Tools file format .. 1400

Debugger Type Interpretation file format ... 1403

Environment Options ... 1405

Building Environment Options .. 1405

Debugging Environment Options .. 1407

IDE Environment Options .. 1410

Programming Language Environment Options ... 1416

Source Control Environment Options .. 1420

Text Editor Environment Options .. 1422

Windows Environment Options .. 1434

Project Options ... 1447

Code Options .. 1447

Debug Options ... 1475

Macros ... 1486

System Macros .. 1486

Build Macros .. 1489

Script classes .. 1494

BinaryFile ... 1494

CWSys ... 1495

Debug ... 1496

ElfFile ... 1498

TargetInterface ... 1499

WScript ... 1504

CrossWorks for ARM Reference Manual Contents

32

CrossWorks for ARM Reference Manual Introduction

33

Introduction
This guide is divided into a number of sections:

Introduction
Covers installing CrossWorks on your machine and verifying that it operates correctly, followed by a brief

guide to the operation of the CrossStudio integrated development environment, debugger, and other

software supplied in the product.

CrossStudio Tutorial
Describes how to get started with CrossStudio and runs through all the steps from creating a project to

debugging it on hardware.

CrossStudio User Guide
Contains information on how to use the CrossStudio development environment to manage your projects,

build, and debug your applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in CrossWorks.

ARM target support
Contains a description of system files used for startup and debugging of ARM applications.

Target interfaces
Contains a description of the support for programming ARM microcontrollers.

CrossWorks for ARM Reference Manual Introduction

34

What is CrossWorks?
CrossWorks for ARM is a complete C/C++ development system for ARM and Cortex, microcontrollers and

microprocessors that runs on Windows, Mac OS and Linux.

C/C++ Compiler

CrossWorks comes with pre-built versions of both GCC and Clang/LLVM C and C++ compilers and assemblers.

The GNU linker and librarian are also supplied to enable you to immediately begin developing applications for

ARM.

CrossWorks C Library

CrossWorks for ARM has its own royalty-free ANSI and ISO C compliant C library that has been specifically

designed for use within embedded systems.

CrossWorks C++ Library

CrossWorks for ARM supplies a C++ library that implements STL containers, exceptions and RTTI.

CrossStudio IDE

CrossStudio for ARM is a streamlined integrated development environment for building, testing, and deploying

your applications. CrossStudio provides:

Source Code Editor:A powerful source code editor with multi-level undo and redo, makes editing your

code a breeze.

Project System:A complete project system organizes your source code and build rules.

Build System:With a single key press you can build all your applications in a solution, ready for them to be

loaded onto a target microcontroller.

Debugger and Flash Programming:You can download your programs directly into Flash and debug them

seamlessly from within the IDE using a wide range of target interfaces.

Help system:The built-in help system provides context-sensitive help and a complete reference to the

CrossStudio IDE and tools.

Core Simulator:As well as providing cross-compilation technology, CrossWorks provides a PC-based

fully functional simulation of the target microcontroller core so you can debug parts of your application

without waiting for hardware.

CrossWorks for ARM Reference Manual Introduction

35

CrossWorks Tools

CrossWorks for ARM supplies command line tools that enable you to build your application on the command

line and flash it to the target board using the same project file that the IDE uses.

CrossWorks for ARM Reference Manual Introduction

36

What we don't tell you
This documentation does not attempt to teach the C or assembly language programming; rather, you should

seek out one of the many introductory texts available. And similarly the documentation doesn't cover the ARM

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides

These are must-have books for any C programmer:

Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,

Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.

The original C bible, updated to cover the essentials of ANSI C (1990 version).

Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood

Cliffs, NJ, USA. ISBN 0-13-109802-0.

A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your

national standards body or directly from ISO at http://www.iso.ch/.

ARM microcontrollers

For ARM technical reference manuals, specifications, user guides and white papers, go to:

http://www.arm.com/Documentation.

GNU compiler collection

For the latest GCC documentation go to:

http://gcc.gnu.org/.

LLVM/Clang

For the latest LLVM/Clang documentation to to:

http://www.llvm.org

http://www.iso.ch/
http://www.arm.com/Documentation
http://gcc.gnu.org/
http://www.llvm.org

CrossWorks for ARM Reference Manual Introduction

37

Activating your product
Each copy of CrossWorks must be licensed and registered before it can be used. Each time you purchase a

CrossWorks license, you, as a single user, can use CrossWorks on the computers you need to develop and deploy

your application. This covers the usual scenario of using both a laptop and desktop and, optionally, a laboratory

computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To activate your software for

evaluation, follow these instructions:

Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.

Run the CrossStudio application.

Choose Tools > License Manager.

Click "Evaluate CrossWorks". If you have a default mailer, click the By Mail button.

Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

If you don't have a default mailer, select the text underneath "Activation request".

Send the registration key to the e-mail address license@rowley.co.uk.

By return you will receive an activation key. To activate CrossWorks for evaluation, do the following:

Run the CrossStudio application.

Choose Tools > License Manager.

Click Activate CrossWorks.

Type in or paste the returned activation key into the dialog and click Install License.

If you need more time to evaluate CrossWorks, simply request a new evaluation key when the issued one expires

or is about to expire.

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a distributor, you will be issued a

Product Key which uniquely identifies your purchase

To permanently activate your software:

Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.

Run the CrossStudio application.

Choose Tools > License Manager.

Click "Request Activation After Purchasing". If you have a default mailer, click the By Mail button.

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

38

Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

If you don't have a default mailer, select the text underneath "Activation request".

Send the registration key to the e-mail address license@rowley.co.uk.

By return you will receive an activation key. Then, complete the activation process:

Run the CrossStudio application.

Choose Tools > License Manager.

Click Activate CrossWorks.

Type in or paste the returned activation key into the dialog and click Install License.

As CrossWorks is licensed per developer, you can install the software on any computer that you use such as a

desktop, laptop, and laboratory computer, but on each of these you must go through activation using your

issued product key.

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for ARM Reference Manual Introduction

39

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often

see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see

references to the Standard toolbar which is positioned at the top of the CrossStudio window, just below the

menu bar on Windows and Linux.

When you are directed to select an item from a menu in CrossStudio, we use the form menu-name > item-name.

For instance, File > Save means that you need to click the File menu in the menu bar and then select the Save

item. This form extends to items in sub-menus, so File > Open With Binary Editor has the obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. CrossStudio uses

standard Windows and Mac OS keyboard accelerators wherever possible.

Windows and Linux have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P means that

you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that you should

hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are (command), (option), (control), and (shift). Generally there is a one-

to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrl is , Alt is , and Shift is .

CrossStudio on Mac OS has its own set of unique key sequences using (control) that have no direct Windows

equivalent.

CrossStudio on Windows and Linux also uses key chords to expand the set of accelerators. Key chords are key

sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means that you should

type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by Ctrl+Z. Mac OS

does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the

computer: for example, pieces of C text, commands to the operating system, or responses from the computer.

In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:

hcl source-file

This means that the command consists of:

The word hcl, typed exactly like that.

A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

CrossWorks for ARM Reference Manual Introduction

40

Whenever commands to and responses from the computer are mixed in the same example, the commands

(i.e. the items which you enter) will be presented in this typeface. For example, here is a dialog with the

computer using the format of the compilation command given above:

c:\code\examples>hcl -v myprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the

computer responds with the rest.

CrossWorks for ARM Reference Manual Introduction

41

Additional resources
With software as complex as CrossWorks, it's almost inevitable that you will need assistance at some point. Along

with the documentation that comes with CrossWorks for ARM, there are a variety of other resources you can use

to find out more.

CrossWorks for ARM website

http://www.rowley.co.uk/arm/index.htm

Support

If you need some help working with CrossWorks, or if something you consider a bug, go to:

http://rowley.zendesk.com/

You can subscribe to our RSS newsfeed here:

http://www.rowley.co.uk/rss.xml

Suggestions

If you have any comments or suggestions regarding the software or documentation, you can make suggestions

on our suggestion forum:

https://rowley.zendesk.com/forums/171704-Suggestions

Finding your way around

CrossStudio is a complex program in many ways, but we have tried to simplify it so that it's easy to use. It's very

easy to get started and CrossStudio scales well to complex multi-programmer projects that need to manage

large code bases and the inevitable software variants.

In the tutorial you were presented with a whistle-stop tour of CrossStudio to get you up and running. Here we

dig deeper into the corners of CrossStudio so you can get the best from it.

http://www.rowley.co.uk/arm/index.htm
http://rowley.zendesk.com/
http://www.rowley.co.uk/rss.xml
https://rowley.zendesk.com/forums/171704-Suggestions

CrossWorks for ARM Reference Manual Introduction

42

Release notes

Version 4.10.9

Build

Add support for assembly file dependencies with .incbin directives.

Fix use of Memory Segments in preference to Memory Map Files in linker script generation.

Debug

Add Continue All Execution and Break All debug buttons.

Fixed download and debug when using FT4232H based target interface devices.

Add Stop All to breakpoint properties.

Editor

Fixed incremental find always starting from the beginning of the file.

Fixed Text Editor > Visual Appearance > Mate Match Off Screen option.

IDE

Fixed sporadic failures when checking CrossKey licenses (Linux only).

Version 4.10.8

Build

Fixed undefining __clang__ when used with clang-tidy.

Debug

Fixed data breakpoint support for Cortex-M33 devices.

Version 4.10.7

Build

Changed default Warning Level to Level 2.

Fixed __cxa_throw and __cxa_rethrow corrupting callee save registers.

CrossWorks for ARM Reference Manual Introduction

43

Fixed restoring saved VFP registers on __cxa_throw and __cxa_rethrow.

Debug

Add max command line option to instruction set simulator.

Fixed debugger bitfield display of compiler generated DW_AT_data_bit_offset debug info.

Add Don't to debugger Start From Entry Point Symbol which doesn't start execution.

Fixed connecting to multi-drop SWD targets from a multi-core project using CrossConnect Neo, CMSIS-

DAP and FTDI target interfaces.

IDE

Frame buffer window now supports non-word aligned frame widths.

Fixed incorrect positioning of combo box menus on multi display systems where the displays have been

positioned at different offsets (Linux only).

Outline window now refreshes if file being viewed is reloaded.

Version 4.10.6

Build

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 12.3.Rel1 source release.

Debug

Fixed errors when reconnecting to CrossConnect Neo.

Editor

Added Edit > Folding > Collapse Level n Folds menu commands.

IDE

Fixed editor not locating cursor in the centre of the screen when selecting a result in the find window and

the cursor is off screen.

Fixed crash on startup when running on macOS Sonoma.

Version 4.10.5

Build

Updated the LLVM/Clang tools build to use the 16.0.5 source release.

Add support for C++ 20 modules.

CrossWorks for ARM Reference Manual Introduction

44

Add support for a single project precompiled header file.

Add support for -Oz with gcc compilers.

Add None (do not supply) to project properties.

Add gcc compatible argument processing to command-line compiler driver.

Add Add Property Group Options property to disable supplying property group preprocessor defines.

Debug

Fixed debugger incorrectly accessing VBAR register on Cortex-R devices.

Fixed ST-Link Connect With Reset.

Fixed TargetInterface.setDebugInterfaceProperty() when used with ST-Link/J-Link.

Fixed ST-Link connection with firmware upgraded by ST-LinkUpgrade v3.12.3

Add J-Link APB access with Cortex-M devices (STM32H DBGMCU).

Fixed target mismatch warning when used with J-Link with Built-in Flash Loader used.

Add -count and -trace options to command-line simulator.

Editor

Fixed incorrect movement of multi-line cursor when cursor is below a collapsed fold.

IDE

String list property editor now removes text formatting when pasting.

Find and replace window now opens editor when locating to a match found in a project file.

Variable, disassembly and memory window address colors can now be customized using the Address

color scheme entry.

Fixed incorrect positioning of popup menus on multi display systems where the displays have been

positioned at different offsets (Linux only).

System Requirements

Linux versions now require GLIBC 2.27 and CXXABI 1.3.11 or later.

Version 4.10.4

Debug

Added CrossConnect Neo support to Windows arm64 version.

Editor

Fixed Edit > Format command using incorrect start directory for .clang-format file search.

Fixed cursor positioning when moving cursor by mouse click on Linux.

C/C++ syntax highlighter now highlights arm_neon.h and arm_mve.h types.

CrossWorks for ARM Reference Manual Introduction

45

Only one editor will now be opened if the same file is opened from multiple linked locations.

Fixed opening of files when using the source file navigation operations.

Version 4.10.3

Build

Updated the LLVM/Clang tools build to use the 16.0.0 source release.

Add support for aligned_alloc.

The debugio library will not be linked when Debug I/O Implementation is set to None.

Add linker property Treat Libraries As Object Files.

Debug

Added CrossConnect Neo SWO support.

Fixed SWO prescaler calculation.

Add Use Built-in TRACE support target property to SEGGER J-Link target.

Fixed CrossLoad usage of loader files.

Editor

Syntax colorer now colors single line doxygen style comments.

Fixed syntax colorer ignoring the end of a multiline doxygen style comment when it comes after an

incomplete command.

Fixed delete key deleting incorrect text if auto indenting is enabled, there is only whitespace to the left of

the cursor and the whitespace contains tab characters.

Added Text Editor > Save > Format On Save environment option.

The Edit > Format command no longer saves the editor contents prior to running the formatter.

IDE

Fixed code completion and code outline window not treating a .h file as a C++ file when used in a C++

project.

Variable, register and memory window value colors can now be customized using the Value and Value

Changed color scheme entries.

Project file is sorted with case insensitivity.

Version 4.10.2

Editor

Added smart indenting for XML files.

CrossWorks for ARM Reference Manual Introduction

46

Added Languages > XML environment options.

Delete key now unindents when auto indenting is enabled.

Added preprocessor directive folding.

IDE

Fixed opening the frame buffer window's context menu when another window is focused.

Fixed crash when updating packages and a third party package is installed.

Version 4.10.1

Build

Updated the LLVM/Clang tools build to use the 15.0.7 source release.

Add -no-ctors and -no-dtors to mkld.

Debug

Fixed single stepping of V8.1-M loop instructions.

Fixed Debug | Step Over not doing build up to date check.

Fixed not loading the target loader when Default Loader was the empty string.

Fixed J-Link debug setting device type multiple times.

Editor

Added EditToggleHeaderCodeFile command (Ctrl+K,Ctrl+O).

Fixed delimiter matching when there is a string or character literal containing an escaped backslash

character between the delimiters.

IDE

Added save and copy commands to frame buffer window.

Fixed find strings not being added to history when operation is started from outside of the find and

replace window.

Fixed invalid characters in target property values causing errors when loading target window settings.

Version 4.10.0

Build

Add support for importing CMSIS project description files.

Rebuild of Externally Built projects will now run the clean command before the build command.

CrossWorks for ARM Reference Manual Introduction

47

Add language specific preprocessor properties.

Add language specific include files preprocessor properties.

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 12.2.Rel1 source release.

Updated the LLVM/Clang tools build to use the 15.0.6 source release.

Add ARMv8.1-M Mainline library builds.

Add stdnoreturn.h header file and __noreturn macro.

Debug

Add support for multiple loader configurations.

Add support for STLDR flash loaders.

Fixed ST-Link access to STM32H7 APB-AP.

IDE

Find and replace window will now replace in files not currently being edited.

Fixed multiple "Project modified externally" dialogs when project has been modified externally and an

editor has been modified.

Fixed the dashboard window's list of recent projects not being immediately updated when a new project

is created or a non-existent project is loaded.

Fixed crash when upgrading from a package version that has been removed from the package repository.

The package upgrade button now automatically selects the latest package versions in the package

manager.

Added support for ARGB32, RGB32, RGB888, RGB565, RGB666, RGB555, RGB444 and monochrome

formats to frame buffer window.

Added auto-refresh, auto-evaluate, zoom and pixel information tooltip to frame buffer window.

Fixed clipping of project window columns when using dark theme.

Version 4.9.1

Build

Add support for 0X hexadecimal prefix in debug expressions.

Add "Supply Input Character Set" and "Supply Execution Character Set" project properties.

An error is now displayed when Code > Linker > Check For Memory Section Overflow is enabled and the

section size is not a multiple of the section alignment.

Fix C++ exception catching.

Fixed section renaming when using Clang compiler.

Editor

Fixed editor scrolling to the end of the file when Edit > Format inserts lines.

CrossWorks for ARM Reference Manual Introduction

48

Version 4.9.0

What's New

Numerous enhancements to the editor including code folding and split screen editing.

Native 64-bit ARM Windows, Linux and macOS versions.

Improved appearance on high DPI monitors.

Faster builds.

Enhanced support for UNICODE directory paths and file names.

Package versions can now be selected in package manager.

Command line package manager.

Improved user interface themes and color scheme customization.

New look dashboard window.

Build

Updated the GCC/BINUTILS tools build to use the Arm GNU Toolchain 11.3.Rel1 source release.

Updated the LLVM/Clang tools build to use the 15.0.4 source release.

Added Analyze Command project properties.

Added Color Diagnostics and Show Caret project properties to control diagnostic output.

Added Stack Sizes project property which when enabled displays stack sizes in object/elf file

disassembly.

Debug

Added support for Dwarf-5 debug format.

Fixed use of floating point format in debug_scanf.

Fixed simulator clearing the execution trace on debug go.

Execution trace window now locates to the last entry by default.

Fixed executing Kinetis target script from CrossLoad

IDE

Stack usage window now has Go To Call Site action.

Code outline and source navigator windows now have Show Function Arguments option.

Fixed graying of inactive code for header and assembly code files.

Version 4.8.8

Build

Fixed Source Navigator/Analyze command lines for libcxx projects.

CrossWorks for ARM Reference Manual Introduction

49

Fixed use of "Unwind Tables" with clang compiler.

Debug

Fixed error accessing registers when using DAPLink interfaces in Bulk/WinUSB interface mode.

Improved detection of Bulk/WinUSB CMSIS-DAP interfaces.

Added CMSIS-DAP > USB > HID Report Length target property.

Fixed CMSIS-DAP interface locking up when connecting to some Xplained Pro boards from Linux and

macOS.

Version 4.8.7

Build

Fixed quoted zero length command line arguments being discarded when spawning processes.

The macro $(SEGMENT_SIZE_REMAINING) can now be used in section placement size attributes.

Added Code > Linker > Check For Memory Section Overflow project property.

Debug

Fixed TargetInterface.setDeviceTypeProperty with J-Link target interface.

Version 4.8.6

Build

Fixed supplying Linker Script files twice for External GCC projects.

Debug

Fixed crash when displaying static const member data of the same type as the class that it is declared in.

IDE

Fixed crash importing IAR projects.

Version 4.8.5

Build

Added "Generate Listing File" project property.

CrossWorks for ARM Reference Manual Introduction

50

Fixed mkld support for end_symbol in memory segments.

Fixed Clean executing pre/post build commands.

Updated the LLVM/Clang tools build to use the 13.0.1 source release.

Debug

Fixed display of FP registers for Cortex-M33 using J-Link target interface.

Editor

Fixed crash using Edit > Selection > Increase Line Endent when virtual space is enabled and a block of

text is selected extending past the end of the file.

Fixed syntax coloring of integer literals containing single quote separators.

C/C++ syntax highlighter now highlights stdint.h types.

IDE

Fixed the 'Flat Search Result Output' checkbox in the find and replace window's settings dropdown not

showing the current state.

Version 4.8.4

Build

Add macro $(MemorySegments) to link pre/post build commands.

The macro $(LibExt) is now available for External GCC link commands.

Debug

The macro $(MemorySegments) is now the default memory simulation parameter.

Editor

Improved performance of delimiter matching when editing a large file.

IDE

Fixed paste keyboard accelerator being handled by editor when focused in the find in files dialog (macOS

only).

Added support for CrossKey USB license key.

Installer

Fixed Linux file association.

CrossWorks for ARM Reference Manual Introduction

51

Version 4.8.3

Build

Updated the LLVM/Clang tools build to use the 13.0.0 source release.

Updated the GCC/BINUTILS tools build to use the GNU ARM Embedded Toolchain 10.3-2021.10 source

release.

Debug

Added support for CMSIS-DAP v2.

Fixed size display of unsized arrays in variables display.

Display C file level statics and C++ static members in globals window.

Added support for SWD multi-drop with CrossConnect, CMSIS-DAP and FTDI target interfaces.

Editor

Fixed tab characters not being inserted when in block selection mode.

Fixed positioning of cursor when carrying out a block insertion past the end of a line and the Use Tabs

option is set to Yes.

Editor now syntax colors files with .html file extensions.

IDE

Fixed problem reading the environment.xml file on certain systems.

Project Explorer context menu action Save Solution As... now generates a sorted project file.

The Set Active Project dialog now initially selects the current active project.

Version 4.8.2

Build

Fixed removing of project output files when project items are removed/added/excluded.

Updated the GCC/BINUTILS tools build to use the GNU ARM Embedded Toolchain 10.3-2021.07 source

release.

Debug

Display secure/non-secure MSPLIM, PSPLIM in CPU register group.

Fixed crash when displaying libcxx containers.

Fixed simulated pkhbt, pkhtb instructions.

Fixed variable view tooltip truncating uint64_t decimal values to 19 digits.

CrossWorks for ARM Reference Manual Introduction

52

Fixed crash when passing a null format pointer to debug_vprintf, debug_vfprintf, debug_vscanf and

debug_vfscanf functions.

Editor

Fixed syntax coloring of numerical escape codes.

Fixed syntax coloring of #include filenames.

Fixed incorrect indentation when inserting a tab character before another tab character.

IDE

Fixed the find in files dialog not remembering the "Search In" selection between sessions.

Fixed the find in files dialog not enabling the find button under certain circumstances.

Fixed font selection when using macOS 12 (Monterey) BETA.

The project explorer's build configuration combo box now displays the configuration name as the tooltip

if the configuration name is wider than the combo box.

The build configuration search now matches on each word rather than the entire string.

Assembly code syntax colorer now colors FIXME, ATTENTION and Lint comment tags.

Package manager groups can now be collapsed and expanded.

Double clicking in terminal windows now selects words.

Added BuildLinkProject command (Ctrl+P, K).

Added OpenLinkerMapFile command (Ctrl+P, M).

Added "Show Labels In Disassembly" and "Show Source In Disassembly" environment options to

disassembly window context menu.

Fixed project window keyboard accelerators not being enabled and disabled correctly when selecting

project nodes.

Fixed manual package installation not selecting all dependee packages for installation.

Fixed display of find and replace window results containing tabs.

Version 4.8.1

Build

Fixed BinaryFile.pokeUint32() script function ignoring the littleEndian option.

Add support for ARMv8.1-M architecture and Cortex-M55 processor.

The build macro $(RelInputDir) is set to dot for files that are not relative to the project.

Fixed 'dot moved backwards' linker warning when placing 'run in' sections.

Add project property Compile C Files As C++.

Add project property Enable Use Of __cxa_atexit.

Add project property Vector Extension for ARMv8.1-M architecture projects.

Set the compiler property Use Builtins default to Yes.

CrossWorks for ARM Reference Manual Introduction

53

Updated the LLVM/Clang tools build to use the 12.0.1 source release.

Debug

Changing the PC value in the registers window will now updated the debugger windows.

The registers window splits up the cfbp register group into individual registers.

Copy text selection in the memory window now copies the exact text to the clipboard.

Fixed syntax coloring of disassembly when visible whitespace option is enabled.

Add support for ITM_RxBuffer/ITM_RXBUFFER_EMPTY for target input.

Add simulator support for FPv5 vrint/vcvt instructions.

Editor

Fixed syntax coloring of XML comments.

Fixed incorrect syntax coloring of certain C/C++ comments containing ampersand characters.

Fixed syntax coloring of XML documents when visible whitespace option is enabled.

Fixed highlighting of text containing tab characters.

Fixed highlighting of text containing whitespace characters when visible whitespace option is enabled..

Fixed syntax coloring of single line comments started with the '@' character in ARM assembly code.

The editor now supports highlighting of C/C++ raw string literals.

Improved graying of inactive code on lines containing C preprocessor directives.

Fixed duplicated " or < characters when selecting #include code suggestions.

Scroll wheel can now be used while selecting text with the mouse.

Auto-indentation now uses the indentation level of the last non-empty line if enter is pressed on an

empty line.

Go to definition and declaration operations now highlight the symbol being searched for.

Fixed the previous horizontal scroll position not being correctly restored when opening a solution and

the editor is not docked in the default dock site.

Fixed the previous cursor column position not being restored when opening a solution.

C/C++ syntax coloring is now applied to files with no extension.

Added "String", "String Delimiter", "String Escape", "XML Delimiter", "Spelling Error", "Line Number" and

"Line Number Highlight" to customizable color scheme.

Added EditDeleteLine command (Ctrl+Shift+L).

Fixed text appearing behind editor scroll bars when using dark theme.

IDE

Project Explorer context menu action Convert to Regular Folder now operates recursively and can

subsequently be modified like a regular folder.

Fixed edit actions (cut, copy etc) on project nodes in Project Explorer.

Fixed Code Outline window not updating when editor is saved.

Manual package installation now warns of package dependency errors when the depdendee package is

unknown to the package system.

CrossWorks for ARM Reference Manual Introduction

54

Added Export to Text Editor to debug terminal.

Line editor now scrolls when cursor reaches button or status message rather than removing it.

Fixed file selector combo box not moving file list if parent window is moved.

Fixed file selector combo box keeping file list on top of all windows.

Fixed selecting of files from the file selector combo box file list when using the mouse.

Find dialogs now preserve the state of the show options button.

Fixed drag and drop of files on macOS.

Fixed crash after closing disassembly window.

Fixed crash when using find in files to search in the current document and there is no editor currently

focused.

Build log can now handle colored compiler diagnostics.

Floating point registers will now be displayed in floating point format when Decimal format is selected.

Manual package install now removes existing version of package if already installed.

Improved appearance of macOS combo box dropdowns containing icons.

Fixed external tools not appearing when the match element is omitted from the tool definition in external

tools file.

Fixed crash when carrying out clipboard operations on files located in output files folder.

Fixed display of tab characters in terminal emulator window.

Fixed property values in project explorer not updating when modified using dark theme.

The selected folder in the find and replace window is now persistent between sessions.

Opening the new project wizard while debugging now shows the "Stop debugging?" prompt.

Fixed editor grouping C/C++ source and header files together in the "Single Title Button For All

Documents" file selection menu.

Version 4.8.0

Build

The build macros $(RelInputDir) and $(RelInputPath) are now defined for project level build commands.

Fixed section renaming when using clang compiler.

Escape ; in exported build commands on Linux/macOS.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 10-2020-q4-major

source release.

Replace Run Static Code Analyzer with Analyze action on project explorer context menu.

clang-tidy now used for Static Code Analyzer, checks are specified in project property Clang Tidy

Checks.

Add project property Analyze After Compile to enable the analyzer to run when a source file is compiled.

Debug

Fixed simulator setting carry flag on thumb2 register shifted lsls, lsrs, asrs and rors instructions.

CrossWorks for ARM Reference Manual Introduction

55

Add support for displaying double precision registers d16-d31 with J-Link target interface.

Added 64-bit view to memory window.

Add support in registers window to display double precision registers in various NEON formats.

Add debug support for restrict types.

IDE

Debug terminal no longer erases line if the line been output ends with "\r\r\n".

Version 4.7.3

Build

rtti can now be used without exceptions enabled.

Fixed crash when adding files to project folder with no project node selected.

Updated the LLVM/Clang tools build to use the 11.0.0 source release.

Fixed clang/segger-cc compiler option for Merge Globals.

Add Disable Function Inlining option to code generation options.

Optimization levels 0-4 are now supplied to the llvm LTO compiler.

Add Linker Search Path option to linker options.

Fixed double counting of initialized data size statistic in project explorer.

Fixed lock up when removing Externally Built projects that have the Clean Command property set.

Debug support added to gcc LTO built executables.

Fixed gcc LTO support for C++ programs that have the same symbol defined multiple times.

Fixed llvm LTO support discarding weak symbol definitions.

Debug

Fixed NaN detection in simulator.

Improved disassembly window's update speed when scrolling.

Fixed umaal implementation in simulator.

Fixed Debugger > Restrict Memory Access using ELF file to determine target address ranges.

Improved type interpretation for STLPort, libstdc++ and added support for libc++.

Added debug_evaluate to debugIO.

Add support for .debug_macinfo debug sections.

Fixed exception when running CrossLoad with expired license support period.

Editor

Fixed matching of delimiters that are within strings.

Fixed tab characters not being used for auto indentation when tabs are enabled.

CrossWorks for ARM Reference Manual Introduction

56

Fixed loading of files from a file system that does not support file locking (Windows only).

IDE

Fixed opening of package source files from help contents window.

Fixed file selector dialog not remembering selected file type filter.

Fixed GUI locking up when find in files on large files.

Improved appearance of memory usage windows when window is small.

Version 4.7.2

Build

Add support for ARMv8 architectures to intrinsics.h.

Fixed passing Additional Assembler Options to compile step assembler command.

Add Run Preprocessor option to assembler options.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 9-2020-q2-update

source release.

Added BinaryFile.loadAppend() script function.

Symbol renaming of __vfprintf/__vfscanf/__do_debug_operation done by linker command-line rather

than in generated ld script.

Updated the LLVM/Clang tools build to use the 10.0.1 source release.

Debug

Fixed watch windows resetting the radix of child nodes when parent node is selected.

Replace Clear Disassembly Breakpoints On Debug Stop with Disassembly Breakpoints environment

option.

Source breakpoints are shown in the disassembly window and vice-versa.

Add debugger project option Alternative LDR Disassembly.

Object file disassembly now contains intermixed source code.

Editor

Fixed syntax coloring of assembly files not working when visible whitespace is enabled.

Shift+Tab now reduces indentation of current line when no text has been selected.

Text editor's horizontal scroll bar now uses maximum line length for maximum scroll value.

Changed the Linux version's default keyboard shortcut for the EditUppercase command to "Ctrl+K, U" in

order to avoid a clash with the Ibus input method's default Unicode Code Point shortcut. The original key

sequence of "Ctrl+Shift+U" remains defined as an alternative shortcut.

Added Edit > Selection > Toggle Comment (Ctrl+K, Ctrl+/) command.

CrossWorks for ARM Reference Manual Introduction

57

Selection comment and uncomment operations now add and remove comments at indentation level of

selection rather than only at the start of the line.

Added syntax highlighting for Python source files.

Fixed inactive code coloring being cleared when file is saved.

Fixed navigation commands being disabled when file is saved.

The Edit > Others > Duplicate (Ctrl+D) command will now duplicate selected text.

Spell check now ignores camel case words.

Fixed extension of multi-line cursor after multi-line text insert.

IDE

Symbol browser, watch, trace and register windows now save exported text files to the project directory

by default.

Memory usage window now shows the percentage used of segments and sections.

Build summary now shows size of segments.

Memory window columns are now grouped in auto column mode.

Fixed project explorer's Open With > System Web Browser menu option doing nothing on Linux.

Version 4.7.1

Build

Fixed vfscanf implementation always including support for character classes.

Added missing wide character, float point implementations of vfprintf.

IDE

Fixed errors when loading 3rd-party dynamic libraries on macOS Catalina.

Version 4.7.0

Build

Fixed lock up when removing Externally Built projects that have the Clean Command property set.

Fixed new project wizard's build configuration selector selecting incorrect configurations with some

project templates.

Fixed and improved definitions of wchar_t, WCHAR_MAX and WCHAR_MIN in header files.

Fixed output of floating point numbers using printf when precision value is 1 and the Code > Printf/Scanf

> Printf Floating Point Supported project property is set to Float.

CrossWorks for ARM Reference Manual Introduction

58

Updated the LLVM/Clang tools build to use the 10.0.0 source release.

Added Windows > Project Explorer > Check Solution Target option.

Files now appear in alphabetical order when dragging and dropping them into a project explorer folder.

Fixed Left-justify printf format directive.

Correct names of 64-bit clz/ctz helper functions.

Debug

Fixed crash with ElfDwarf files containing .debug_types section.

Fixed timeout problems with TargetInterface.runFromToAddress (and variants) when used with J-Link

target interface.

Fixed source file identification when debugging multiple elf files.

Add Confirm Automatically Build Before Debug environment option.

Improve cast support in debug expressions.

Fixed Target > Attach Debugger setting breakpoints after Debug > Stop with no Target > Disconnect.

Editor

Fixed syntax coloring of hex floating point constants.

Added Text Editor > Visual Appearance > View Whitespace option.

Fixed block editing on lines containing tab characters.

Added Edit > Others > Toggle Column Guide.

Fixed code formatter corrupting characters that cannot be represented using Latin 1 character encoding.

Fixed code formatter marking file as modified when it has made no changes to the file.

Fixed code formatter removing all breakpoints and bookmarks.

Fixed file auto recovery appending characters to the end of recovered file in some circumstances.

Selection highlight is now visible on text that has a background color specified in the color scheme.

IDE

Fixed .elf files not appearing in the Target > Download File > Download Elf File... and Target > Verify

File > Verify Elf File... file browsers.

Keyboard options dialog now displays command descriptions as a tooltip.

Fixed crash after deleting entries from clipboard ring window.

Fixed default executable extension to be .axf for External GCC toolchain builds.

Fixed appearance of memory usage windows when window is small.

Fixed display of non-printable characters in binary editor.

The binary editor font can now be specified using the Environment > User Interface > Application

Monospace Font option.

macOS application bundle paths can now be used when specifying the location of external executables.

Fixed display of non-printable characters in binary editor.

Fixed the restoring of main window position when located on a display arranged above or to the left of

the display containing the menu bar (macOS only).

CrossWorks for ARM Reference Manual Introduction

59

Fixed context menus not appearing on a display arranged above the display containing the menu bar

(macOS only).

Fixed crash when starting and stopping the debugger using the editor toolbar buttons.

Version 4.6.0

Build

Fixed generation of projects from a project template when file nodes have parent folder nodes

containing no files.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 9-2019-q4-major source

release.

Removed Use External GCC environment option and the -gcc command line option on crossstudio and

crossbuild. See how to use an Using an External ARM GCC toolchain documentation for project property

settings.

Added Use External GCC and GCC Prefix project properties.

Added Use Compiler Driver project property.

Added fixed point implementation of expf selected when Library Optimization is set to Fast.

Project explorer code and data size is now displayed as bytes when less than 1K.

Project property Access Variables Within Memory Map Only changed to Restrict Memory Access.

Changing the ARM Core Type project property now updates the ARM Architecture property.

The User Include Directories are supplied to the assembler to support .include and .incbin directives.

Updated the LLVM/Clang tools build to use the 9.0.1 source release.

Debug

Fixed crash when PC Sampling used with J-Link.

Increased the nested structure depth that can be displayed in watch windows.

Add Load Begin Script and Load End Script project properties.

SVD dim elements can now be specified as hex numbers.

Add cJTAG to Target Interface Type project property.

Fixed displaying breakpoints on code lines in startup completion symbol before startup completion has

occured.

Editor

Fixed text editor auto recovery duplicating end-of-line terminators when file being edited is in DOS

format on a UNIX system.

Fixed incorrect calculation of caret width when using proportional fonts.

Added missing close button on code editor find and replace dialog.

Fixed block uppercase and lowercase operations when block has been marked from top right to bottom

left.

CrossWorks for ARM Reference Manual Introduction

60

Installer

Added additional file icons in order to improve appearance at smaller sizes (Linux only).

Version 4.5.1

Build

stddef.h offsetof macro now uses _builtin_offsetof.

Fixed Windows > Project Explorer > Read Only Data in Code option working the wrong way around.

Debug

Fixed crash when using CMSIS-DAP target interface on latest versions of macOS.

Editor

Fixed auto-complete suggestion being inserted when enter key is pressed immediately after closing

suggestion dialog with mouse click.

IDE

Fixed find in files dialog not disabling find button when search text field is empty.

Fixed crash when using Find References on a preprocessor definition defined on the command line.

Fixed project explorer not sorting tree when files are added using drag and drop.

Fixed menu descriptions not appearing on status bar (Windows and Linux only).

Version 4.5.0

Build

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 8-2019-q3-update

source release.

Add Generate Assembler Listing File project property.

Updated the LLVM/Clang tools build to use the 9.0.0 source release.

Debug

Add support for CoreSight SWO on Cortex-M devices.

Fix clearing trace output when Debug > Break is used.

CrossWorks for ARM Reference Manual Introduction

61

Add support for ARM semihosting.

Fixed simulator leaving pc on next instruction on b . detection.

Add Load Additional Projects project property to enable a project to load the outputs of other projects.

The property Debug Dependent Projects has changed to Debug Additional Projects the value Yes

maintains the old behaviour.

Editor

Editor now displays number of lines and columns selected when selecting text.

Fixed the Replace in selection option not appearing on the find and replace dialog when only a single line

is selected.

Fixed selected text not adjusting size when carrying out a replace in selection.

Fixed crash when using Edit > Column Tidy and a comment is selected.

Version 4.4.5

Build

Fixed CrossScript crash when the BinaryFile.resize() function is called without previously calling the

BinaryFile.load() function.

Fixed crash when creating a new external built executable project.

Fixed crash when creating an empty solution.

Editor

Editor no longer outputs syntax errors to stderr when carrying out code completion.

IDE

Help window search now updates while typing.

Version 4.4.4

Build

Build log window's memory usage summary now displays small sizes in bytes.

Removed option to select linker variant.

Fixed crash when LTO processing of big endian object files.

Fixed -template option on crossbuild.

The preprocessor define __HEAP_SIZE__ is now set to the value of the Heap Size project property.

CrossWorks for ARM Reference Manual Introduction

62

Debug

Fix watch window latching the initial size of array variables.

Added Debug > Debugger > Debug Terminal Log File project property.

Editor

Code editor will no longer match braces, brackets or parenthesis located within comments.

Fixed incorrect syntax coloring of C comments introduced with the /*!< character sequence.

Fixed crash when starting a build with a keyboard accelerator whilst the code suggestion popup is visible.

Fixed breakpointable line markers not appearing on lines that have a temporary breakpoint set.

Fixed delete forward key deleting two characters when code suggestion dialog is visible.

Fixed caret not being visible with certain fonts when located at the end of a line and an underline caret

style is selected.

IDE

New project file selection puts files into the folders.

Register window's group selector popup now displays a scroll bar if there are more groups available than

will fit on the display.

Fixed crash if delete key is pressed in target window without having a target interface selected.

Version 4.4.3

Build

Fixed "V8M Mainline" and "FPv5-SP-D16" library build variants.

Pre-Build and Post-Build commands no longer apply to clean operation.

Fixed vfprintf %f format when Printf Floating Point Supported is set to Float.

Debug

Added environment option Switch Project To Text Editor to enable multi-project debugging switch on

editor focus.

Target device status shows multiple device status when multi-project debugging.

Added Debug Location toolbar.

Added additional Debug Symbols File and Debug Symbols Load Address project properties.

Fixed LIBMEM RPC loader instability when downloading to V8M architectures.

Editor

Fixed caret not being visible with certain fonts when located in virtual space.

CrossWorks for ARM Reference Manual Introduction

63

Significantly improved speed of selection deletion when editing large files.

Added Hide/Show toolbar on editor context menu.

Fixed goto definition opening a relative include file under certain circumstances.

IDE

Fixed open with external browser (macOS only).

Automatic column resizing in properties window is now disabled if column splitter is moved.

Package manager can now be opened from the new project dialog.

Version 4.4.2

Build

Added LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES option.

Add stdatomic.h and helper functions to C library.

Fix include file dependency generation when Keep Preprocessor Output is enabled.

Fixed linker script generation and memory usage display when memory segment ends at 0xFFFFFFFF.

Debug

Added TargetInterface.setTCK() target script function.

Added Debug > Target Loader > Loader Type project property.

Fixed crash clearing execution profile window when not debugging.

Fixed FTDI based target interfaces not setting the Target > Fast Memory Accesses target property to Yes

by default.

Editor

Added Text Editor > Visual Appearance > Mate Match Off Screen option.

IDE

Removed text menu separators on macOS.

Fixed the recent projects list not being updated when project is opened from the recent projects window.

Fixed pinning of projects not working in the recent projects window.

Improved resizing of dynamic folder properties window.

Fixed crash when docking windows.

Fixed crash when attempting to create a directory on a Windows drive that does not exist.

Improved appearance of list view titles when using dark theme.

Added Internet > HTTP Caching environment option.

Added Package Manager > Verify Package Downloads environment option.

CrossWorks for ARM Reference Manual Introduction

64

Fixed waypoint back and forward keyboard accelerators not working on macOS.

Version 4.4.1

Build

Add support for ARMv8-A/R AAarch32 architecture.

Add __clz*i2, __ctz*i2, __popcount*i2 and __parity*i2 helper functions to C library.

Debug

Add support for Cortex-A53 executing in AArch32 non-secure state.

Debugger will display data on debug terminal that is written to the ARM/CortexA/R DCC channel when

debugio is not enabled.

Added USB > Maximum Packet Count CMSIS-DAP target property.

Fixed lock up when using some CMSIS-DAP devices on Windows 10 and macOS.

Improved CMSIS-DAP performance when entering and exiting debug state.

Fixed crash when using FLM loaders on Linux and macOS.

Fixed crash with ST-LINK/V2 that has earlier than V2.J28 firmware.

Editor

The colour of column guide bars can now be modified.

Fixed caret not being visible with certain fonts when an underline caret style is selected.

Editor keyboard accelerators will now activate when code suggestion popup is visible.

IDE

Fixed reassignment of FindUsingGoogle command shortcut not being remembered.

Version 4.4.0

Build

Fixed crash when calling character type functions and UTF-8 locale codeset has been selected.

Fixed link error when providing user defined __user_find_locale function.

Fixed iswspace function not recognising some characters as spaces when UTF-8 locale codeset has been

selected.

Added programNotSection parameter to ElfFile.peekBytes and ElfFile.crc32 JavaScript functions.

Fixed parseInt and parseFloat JavaScript functions.

CrossWorks for ARM Reference Manual Introduction

65

Fixed Date.getTime JavaScript function.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 8-2018-q4-major source

release.

Updated the LLVM/Clang tools build to use the 7.0.1 source release.

Pre-Build and Post-Build commands now work with solution and batch builds and on dependent projects.

Add project properties to enable external build commands to be used for compile and link.

Replaced environment options Enable All Warnings Command Line Options and Enforce ANSI

Checking Command Line Options with project properties Enable All Warnings Command Line Options,

Enable All Warnings C Compiler Only Command Line Options and Enable All Warnings C++ Compiler

Only Command Line Options.

Added Enforce ANSI Checking C Command Line Options and Enforce ANSI Checking C++ Command

Line Options.

Debug

Fixed saving of TI hex files from memory window.

Fixed memory window not updating after loading memory from a file.

Add support for Cortex-M7 ETB tracing.

Editor

Scroll line up and scroll line down operations now move cursor into visible area if it is off-screen.

Fixed crash when closing editors.

Fixed code suggestion dialog not highlighting selected item with correct colour when dark theme is

selected.

IDE

Improved terminal emulator receive performance when using high baud rates.

Added ProjectExplorerExcludeFromBuild keyboard command.

Debug terminal now handles carriage return characters.

Version 4.3.2

Build

Fixed slow building problem introduced in version 4.3.1.

IDE

Added option to open file with external editor to project explorer context menu.

Fixed package manager not correctly uninstalling legacy packages.

CrossWorks for ARM Reference Manual Introduction

66

Version 4.3.1

Build

Fixed use of section attributes in source code when the same section has been renamed using the section

name project properties.

Fixed linker script not being regenerated when Code > Linker > Additional Linker Script Generator

Options property is modified.

Setting the Code > Linker > Check For Memory Segment Overflow property to No no longer disables

unplaced sections checks from the GNU LD linker script. These checks can now be disabled by adding the

-no-check-unplaced-sections option to the Code > Linker > Additional Linker Script Generator Options

property.

Fixed --gap-fill option not being passed to objcopy if the Code > Linker > Additional Output File Gap Fill

Value property is set to 0x00. Clear this property if existing behaviour is required.

Added C++14 sized deallocation functions.

Debug

Added support for STLINK-V3 to ST-LINK/V2 and ST-LINK target interfaces.

Added Debug > Target Control > Check Load Sections Fit Target Description project property.

Fixed incorrect "load section does not fit the target description" error message.

Editor

Auto-surround text is no longer activated when using block selection.

IDE

Fixed incorrect font spacing in list view windows when display scaling is used.

Fixed crash when dragging a window icon over the icon of another window in the the same docking area.

Fixed register selection pins in register window doing nothing when clicked.

Fixed crash when closing editor windows with the code outline window active.

Version 4.3.0

Build

Fixed placement of .data_tcm_run section in default flash_to_tcm_placement.xml file.

Added "Unaligned Access Support" code generation option.

Added "Link Time Optimization" code generation option.

Updated the LLVM/Clang tools build to use the 7.0.0 source release.

CrossWorks for ARM Reference Manual Introduction

67

Fixed output of floating point numbers using printf when precision value is 1.

Debug

Fixed crash when evaluating certain dwarf information.

Fixed crash while disassembling a line with a long symbol name.

Fixed crash when target connection is lost or reset.

Fixed inheritance of the "Reset Script" property using the active build configuration.

Fixed watch window variables not being updated correctly after they have been modified.

Editor

Added Text Editor > Programmer Assistance > Code Completion Replaces Existing Word option.

Fixed Ctrl+F not focussing text editor find popup on some Linux distributions.

Fixed incorrectly displayed parameters in code suggestion popup when showing overloaded functions.

Fixed use of tab key when function prototypes are displayed in code suggestion popup.

Fixed crash if tab size gets set to 0.

Fixed potential crash when code suggestion popup is displayed and an Alt key combination is pressed.

Comments are no longer displayed as an italic font by default.

Improved IDE start up and project loading time when a lot of editors are open.

IDE

Added Environment > User Interface > Theme option (Windows and Linux versions only).

Fixed sporadic crash when IDE is starting up.

Editor tabs can now be reordered.

Editor tab order is now preserved in session file.

Project files can now be drag and dropped into the project explorer in order to load them.

Fixed missing environment settings when Japanese system locale is selected.

Fixed slow register window search.

Fixed list view windows not using the Environment > User Interface > Application Monospace Font

property.

Version 4.2.1

Build

Fixed Sentinel USB tokens not working after Windows 10 version 1803 update.

Fixed crash when building on a machine with more that 16 cores.

Batch builds are now done in parallel.

Updated the GCC/BINUTILS tools build to use the GCC ARM Embedded Toolchain 7-2018-q2-update

source release.

CrossWorks for ARM Reference Manual Introduction

68

Updated the LLVM/Clang tools build to use the 6.0.1 source release.

Added -disable-missing-runin-error linker script generator option.

Added Code > Linker > Additional Linker Script Generator Options project property.

Multiple run in sections can now be specified in section placement file.

Editor

Fixed using Alt+Tab when quick search window is visible (Linux only).

Added Text Editor > Programmer Assistance > Code Completion Selection Key option.

Added EditMoveSelectedLineUp and EditMoveSelectedLineDown commands and assigned them to Alt

+Up and Alt+Down keys.

IDE

Keyboard map is now saved with UTF-8 encoding.

Web browser links to text files now open in web browser rather than text editor.

Add capability to import eclipse .project/.cproject files as supplied with STM32Cube sample projects.

Fixed crash when closing editor windows when code outline window is open.

Fixed processing of multiple backspace characters in text output windows.

Fixed crash in outline window when viewing certain C++ code.

Fixed missing clipboard operations from text output window's context menu.

Line edit property editors now initially selected.

Fixed crash in stack usage window viewing certain .elf files.

Version 4.2.0

Build

Updated the LLVM/Clang tools build to use the 6.0.0 source release.

Supplied versions of arm_neon.h that are compatible with the supplied gcc and clang compilers.

Command line builder now implements -verbose, default is to build silently.

Added Code Generation option "ARM Advanced SIMD Auto Vectorize" to enable loop vectorizing in the

compilers.

Added prototype for __putchar() to stdio.h.

sys/stat.h now declares mode_t and off_t types.

Added $(UnixTime) system macro.

Removed deprecated throw declarations in new header file.

Debug

Fixed inability to add items to the watch window when periodic update is enabled.

CrossWorks for ARM Reference Manual Introduction

69

Edited source files will not be used by the debugger.

The Debug option "Connect With Reset" is now ignored by the j-link target interface.

J-Link implemented breakpoints are now cleared on debug stop.

Linux version now using libusb-1.0 library for USB access.

The CrossConnect serial number can now be cleared when editing the Target > Host Connection target

property in the properties window.

Editor

Added Text Editor > International > Auto-Detect UTF-8 option.

Fixed text editor tooltip not working when word starts on first column.

Fixed goto definition not working correctly when definition has been selected.

Tab key now indents only if selection is multi-line.

Find in files dialog can now be opened using Ctrl+Shift+F from the incremental find dialog.

IDE

Fixed activation of keyboard accelerators from HUD windows.

Fixed automatic installation of packages when clicking on documentation links.

Fixed debug terminal find only carrying out search once.

Fixed bookmarks window updating bookmark line numbers when lines were inserted into or deleted

from a different file.

Fix command line supplied to clang static analyzer for ARM/Cortex-A/Cortex-R devices.

Fixed opening of project files when the File > File Open Action property is set to Web Browser.

Popup error message now displayed if package list cannot be downloaded when refreshing.

Added File Search > Collapse Results environment option.

Fixed crash when refreshing the outline window while editing an empty XML file.

Fixed setting propertyGroup defined properties on folder nodes when importing package files.

Installer

Fixed Windows installer failure when user name contains certain non-ASCII characters.

Fixed loss of icons and inability to start IDE from desktop if umask has been set preventing read and

execute permissions from being enabled for others (Linux only).

Version 4.1.1

Build

Added c++1z and gnu++1z C++ language standard options.

Replaced gcc c++ exception handling code with llvm equivalent.

Fixed command line generated when "Keep Preprocessor Output" is enabled.

CrossWorks for ARM Reference Manual Introduction

70

Improved parallel build performance on Linux and macOS hosts.

Debug

Word and half-word writes to SWO channel 0 are now displayed in the debug terminal.

Improve debug when compiler option "Supply Absolute File Path" is set to "No".

Fixed crash when quick watch used on a C++ struct containing member functions.

Enhanced Threads window to be able to display additional RTOS queues.

Editor

The Text Editor > Programmer Assistance > Check Spelling environment option now defaults to No.

Fixed code formatting of a selected block not working correctly when the Tab Cleanup On Save option is

enabled.

Fixed NULL being inserted into text file when CTRL+Space is pressed on Linux version of the code editor.

Added replace in selection to the find dialog's find options summary.

Fixed freezing of IDE when saving a large text file and the Delete Trailing Space On Save option is

enabled.

Improved performance of tabify and untabify operations.

Cursor now moved if it is on a location that is deleted by the code formatter.

Added Formatting > Empty Lines At End Of File option.

Fixed Find Extras context menu not correctly showing the text that will be searched for.

Added Text Editor > Formatting > Use .clang-format File formatting option.

Auto comment no longer activates when in block selection mode.

IDE

Fixed crash when using a display with a 16-bit color depth.

Fixed HUD windows not closing when all docked windows have been closed or removed.

Fixed crash when changing active projects while Source Navigator is running.

Check boxes in project system dialogs can now be toggled by a single click.

Fixed menu key not opening context menu in watch and register windows.

Improved appearance of list view check boxes when using display scaling.

Property editor dialogs can now be resized.

Remove .plist files created by clang static analyzer.

Fixed find window's file extension filter not being saved when using Find Extras options.

Fixed find window's additional options summary not being displayed when options are concealed.

Find window's additional options summary now includes file extension filter.

Full file path now displayed in find window's result list.

Fixed ordering of history in package release notes.

Fixed potential problem when multiple processes are accessing settings.

Fixed unresponsive GUI when build generates a lot of output.

Added File Search > Flat Search Result Output environment option.

CrossWorks for ARM Reference Manual Introduction

71

Fixed incorrectly located line edit in list views.

Installer

Fixed crash when running on an Ubuntu 14.04 system using KDE window manager.

Licensing

Fixed broken license activation and management when Use External GCC option is enabled.

Version 4.1.0

Build

Added Environment > Find and Replace > Greedy Regular Expressions environment option.

Add support for Cortex-R7, Cortex-R8, Cortex-A15 and Cortex-A17 processor cores.

Added "V8M Has DSP Instructions" project option.

Added "V8M Mainline" and "FPv5-SP-D16" library build variants.

Fix tdata placement in Cortex-M placement files.

Debug

Fixed crash when connecting to J-Link from 32-bit Windows variant.

Documented the file format for the "Type Interpretation File" project property.

Fixed crash if something is entered in the disassembly window's expression input when not debugging.

IDE

Fixed display of multi-line messages in output window's task view.

Code editor suggestions now inserted on all lines when in block edit mode.

Code editor replace all now only replaces text within block when in block selection mode.

WebKit web browser now uses display scaling factor.

Show Large Icons In Toolbars option now applies to docking windows.

Added keyboard shortcut editor to environment options dialog.

Fixed crash that occured when cancelling the new project wizard when on the edit common project

settings page.

Fixed code editor suggestion popup not restoring opacity when ctrl key is released.

Pasting of a block selection is now done as a block insertion even if text editor is not in block edit mode.

Fixed text terminal not staying at end of file when maximum line limit is reached.

Added missing close button on code editor find dialog.

Pasting of a block selection is now done as a block insertion even if the text editor has lost focus.

Add environment option to enable the text editor to display section headers of ELF files.

Fixed generation of unexpected characters when composing a character with ` ' or ^ keys.

CrossWorks for ARM Reference Manual Introduction

72

Licensing

Fixed wireless network interfaces not being included in list of network adapters on Windows.

Version 4.0.6

Build

Updated the LLVM/Clang tools build to use the 5.0.0 source release.

The inttypes.h header file now includes stdint.h as per the c99 standard.

Added "Math Errno" project option.

Dependency files are now deleted on project rebuild/clean.

Debug

Fixed generation of symbols when address_symbol and size_symbol attributes are used in a memory

map or section placement files.

Fixed "Raise Interrupt" with Cortex-M simulator.

Fixed crash with IAR v8 generated elf files.

Fixed usage of brackets in debug watch expressions.

Additional load files can be relative to the project directory.

Fixed crash when scrolling the disassembly window with the mouse wheel when debugger is not

running.

IDE

Added Text Editor > Formatting > Additional Formatting Styles environment option.

Added case sensitivity, whole word and regular expression options to code edit's incremental search

dialog.

Code editor's incremental search dialog no longer resets find dialog settings.

Fixed drag and drop of file onto a project explorer file node from an external program.

Fixed loss of focus when an expanded project explorer node is deleted.

Fixed renaming of build configurations not applying when clicking on another build configuration after

change.

Modified macOS text editor cursor key mapping to be more like other macOS text editors.

Double clicking on company logo images in package manager and new project wizard now has no effect.

Fixed update of registers window status message when no registers are selected.

Version 4.0.5

Build

Fixed running of build command lines containing a '>' output redirection character.

CrossWorks for ARM Reference Manual Introduction

73

Fixed command line property editor.

Added static_assert definition to assert.h.

Fixed crash when Folder Options node is selected in project explorer and Open Solution in Editor is

activated.

Dynamic macros are now expanded in property editor macro preview.

Added RelInputDir and FolderPath macros.

Added empty solution project template.

Added missing __powidf2 and __powisf2 compiler helper functions.

Debug

Fixed crash using Debug | Restart with the simulator target before startup breakpoint is hit.

Fixed crash using Target | Attach Debugger with J-Trace target.

Fixed bug in backtracing code which caused local variables to be displayed incorrectly.

CWSys object can now be used from crossload script.

Local, global, auto and watch window columns are now independently configurable.

Fixed display of signed 32-bit integer variables on 64-bit Linux and macOS hosts.

Fixed Cortex-M simulator return from exception when using both main and process stack.

Speed up single stepping of large programs when there are many unfound symbols in watch window.

Add "Auto" capability to SWO baud rate project property.

Changed values in variable and register windows are now identified by red text rather than a red

background.

Avoid memory and watch window update during download.

Improve speed of disassembly when source files cannot be found.

Added -reset option to CrossLoad.

IDE

Smaller up and down buttons in property window.

Shift+Tab now works when text editor is in block selection mode.

Indent when text editor is in block selection mode now aligns to the indent size setting.

Highlight all selected text now works when text is selected by keyboard.

Fixed opening of files using macOS Finder.

Improved opening of files from the command line.

Fixed crash in text editor when moving left a word at a time.

File extension comparisons for project, package and archive files are now case insensitive.

External diff tool runs as a detached process.

Fixed crash in code outline window when viewing an XML file containing a syntax error.

Add "Copy Full Path" to context menu in project explorer.

Find in files on solution will not search object and library files.

Fixed crash reporter hanging if report submission fails.

Environment option descriptions are now selectable.

CrossWorks for ARM Reference Manual Introduction

74

Improved performance of text editor brace matching in long files.

Version 4.0.4

Debug

Stop accessing address zero on debug reset on Cortex-M devices.

Add "Starting Stack Pointer Value" debug project property.

IDE

Macro viewer in property editor now has horizontal scroll bar.

Fixed blank entries in propery editor's build configuration combo box (macOS only).

Hyperlinks in property editor's description fields now open in an external browser.

Highlighted finds are now local to each text editor.

Fixed text editor match delimiter and extend selection operation (Shift+Ctrl+]).

Fixed moving of popup windows displayed when project is loading.

Fixed Delete key not deleting selected text when cursor is at the end of the file.

Fixed crash running installer on Linux when KDE plugins are installed on the system.

Windows version no longer requires the Universal C Runtime update to be installed.

Updated macOS code signing certificates.

Version 4.0.3

Build

Fix generating additional output file when building with "Use External GCC".

Updated the GCC/BINUTILS tools build to use GNU ARM Embedded Toolchain 6-2017-q2-update source

release.

Updated LLVM/Clang to version 4.0.1.

C runtime start code now has an optional call to an external function named

InitializeUserMemorySections if INITIALIZE_USER_SECTIONS is defined.

Debug

Fix bug locating to assembly code source files.

Locals window update when accessing variables that are in restricted memory ranges.

IDE

Check syntax option is now enabled on files with .html extension.

Find extras menu order now the same in context menu as it is in the main menu.

CrossWorks for ARM Reference Manual Introduction

75

Fixed certain Alt key accelerators not working on macOS.

Fixed index problems introduced in version 4.0.2.

Version 4.0.2

Debug

Memory window size warning can be disabled and is now only shown when the size changes.

Fixed crash when the memory diff dialog is shown after download verification has failed.

IDE

Fixed incorrect calculation of memory usage window cell height when using high DPI fonts.

Fixed crashes caused by uncaught exceptions (Linux only).

Fixed incorrect width of editor margin when using Windows scaling.

Fixed pressing tab key while in block edit mode.

Fixed occasional randomly placed tooltips in code editor.

Added Text Editor > Editing > Tab Key Indents Preprocessor Directives environment option.

Fixed text editor crash when selecting and deleting past end of file with virtual space enabled.

Fixed text editor scrolling to the far left column when text is selected and the mouse is moved.

The Code Outline window now uses the same parser as the Source Navigator this has improved C++

support but has removed conditional preprocessor directives.

The Code Outline window can now display doxygen style comments in the Preview pane.

Fixed crash showing symbols browser for IAR generated executables.

Opening studio from shortcut when Allow Multiple Studios is set to No and studio is already running

now unminimizes and raises main window to the top.

Can now close the solution whilst the Source Navigator or Find References windows are active.

Statistics in the Project Explorer displays the sum of the files sizes of the containing folder node.

Improved error message reporting when studio startup fails.

Version 4.0.1

Build

Added "Export Makefile" to project build context menu.

Reworked compiler driver command line options.

Debug

Fixed the 64-bit Windows J-Link DLL not being found after it moved location in the V6.16 J-Link software

release.

CrossWorks for ARM Reference Manual Introduction

76

Fixed crash when auto disconnecting simulator before simulator has stopped.

Holding the shift key while scrolling the memory window with the mouse scroll wheel now locks the start

address.

Added Debug > Memory Window > Scroll Wheel Modifies Start Address environment option.

IDE

Fixed text editor cursor color when using CrossWorks Dark color scheme.

Added Insert Cursor and Overwrite Cursor colors to editor color schemes.

Fixed text editor repaint when highlight cursor line mode is enabled.

Fixed display of large toolbar icons.

Fixed activation of popup toolbar icons.

Fixed path property editor when using scaling on Windows.

The text editor line number font size now scales with the main text editor font size.

Project properties dialog now remembers splitter placement.

Improved support for Windows scaling.

Fixed code completion suggestion popup appearing on the wrong display on multi-display systems.

Fixed Edit > Selection > Tabify.

Added text editor block selection and edit.

Fixed File > Recent Files and File > Recent Projects not selecting first element of menu when activated

by keyboard.

Fixed Command+W not closing current editor on macOS.

Improved macOS clipboard support.

Avoid auto loading externally modified project file during build.

Grey out goto definition (and others) when indexer is running.

Fixed window group Close All Windows option not recording in session file that windows have been

closed.

Fixed excessively fast vertical scroll wheel scrolling in text output windows.

Editor dock positions are now restored when solution is loaded.

Licensing

Fixed activated licenses not being remembered on Linux.

Version 4.0.0

What's New

IDE

Fast, new look user interface.

CrossWorks for ARM Reference Manual Introduction

77

Native 64-bit Windows, macOS and Linux versions.

macOS Retina displays now supported.

New WebKit based help viewer.

Build

GNU ARM Embedded Toolchain version 6.

LLVM/Clang version 4 compiler.

What's Changed

IDE

Brace matching now takes into account inactive code lines.

Inactive code highlighting now updates as you type.

Added Text Editor > Save > Default Line Endings environment option.

Added different bitmaps to the project window for executable, library and staging project types.

Build detects when files have been excluded/included and cut/pasted into projects.

Project explorer paste file onto file will add it to the containing folder.

The source browser window has renamed the Stack column to Frame Size.

Added Code, Data and Const size columns to the source browser window.

Build

Added Pre-Build Command and Post-Build Command project options.

Added Post-Archive Command project options.

Added environment option Enable All Warnings command line option.

Added environment option Enforce ANSI Checking command line option.

Changed default for Emit Relocations to Yes.

Removed STLPort from the distribution. This is available as a library package.

Changed Printf Floating Point Supported project option to select between Float and Double support.

Changed default for Omit Frame Pointer to Yes.

Debug

Added Access Variables Within Memory Map Only project property.

Added Copy To Clipboard to memory window.

Single stepping will step again if there is more then one instruction sequence associated with a source

line of code.

The Auto Update feature of the execution profile window uses the J-Trace PRO streaming feature.

Added locate next/prev source/instruction buttons to execution trace window.

Added function call and return entries to execution trace window.

CrossWorks for ARM Reference Manual Introduction

78

CrossWorks for ARM Reference Manual CrossStudio Tutorial

79

CrossStudio Tutorial
In this tutorial, we will take you through activating your copy of CrossWorks; installing support packages; and

creating, compiling, and debugging a simple application using the built-in simulator.

Note

If you're viewing this tutorial from within the CrossStudio help Browser window, you may find it more

convenient to view using an external web browser so you can still see the entire CrossStudio window. To do so,

simply right-click on the help content in the CrossStudio Browser and choose Open With External Browser.

In this section

Activating CrossWorks
Describes how to activate your copy of CrossWorks by obtaining and installing an activation key for

evaluation.

Managing support packages
Describes how to download, install, and view CPU-support and board-support packages.

Creating a project
Describes how to start a project, select your target processor, and other common options.

Managing files in a project
Describes how to add existing and new files to a project and how to remove items from a project.

Setting project options
Describes how to set options on project items and how inheritance works for project settings.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

80

Building projects
Describes how to build a project, correct compilation and linkage errors, and find out how big your

applications are.

Exploring projects
Describes how to use the Project Explorer and Symbol Browser to learn how much memory your project

takes and how to navigate among the files that make up the project.

Using the debugger
Describes the debugger and how to find and fix problems at a high level when executing your application.

Low-level debugging
Describes how to use debugger features to debug your program at the machine level by watching registers

and tracing instructions.

Debugging externally built applications
Describes how to use the debugger to debug externally built applications.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

81

Activating CrossWorks
Each copy of CrossWorks must be registered and activated before it will build projects or download and debug

applications. In this tutorial, we are going to use CrossWorks's License Manager dialog to request an evaluation

activation key and, after the key is received, to activate CrossWorks.

If you have already activated your copy of CrossWorks, you can skip this page.

Requesting an evaluation activation key (with a default e-mail client)

To receive an evaluation activation key that is valid for 30 days:

Choose Tools > License Manager.

Click the Evaluate CrossWorks option.

Choose whether to lock the license to your computer's MAC address or to your system's primary disk.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

82

Send the e-mail containing the registration key to license@rowley.co.uk. If your development system

does not have a default e-mail client, copy the activation request and paste it into an e-mail to this

address.

Choosing which hardware to lock to is a matter of personal choice. If you lock to your primary disk and then

replace that disk drive, reformat it, or upgrade the operating system, CrossWorks may need to be reactivated.

If you lock to a network adapter and the network adapter fails and is replaced, then CrossWorks will require

reactivation.

When we receive your registration key we will send an activation key back to your e-mail's reply address. You

then will use the activation key to unlock and activate CrossWorks.

Activating CrossWorks

When you receive your activation key from us, you can activate CrossWorks as follows:

Choose Tools > License Manager.

Click the Activate CrossWorks option.

Enter the activation key you have received from us.

Click Install License.

The new activation should now be visible in the list of Installed licenses. Click Close to close the License

Manager window.

Note

If you request an activation key outside office hours, there may be a delay processing the registration. If this is

the case, you can continue the tutorial until you reach the Building projects sectionyou will need to activate

CrossWorks before you can build.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

83

Managing support packages
Before a project can be created, a CPU-support or board-support package suitable for the device you are

targeting must be installed. A support package is a single, compressed file that can contain project templates,

system files, example projects, and documentation for a particular target.

In this tutorial, we are going to use the Generic ARM CPU Support Package to create our project. This will

allow us to create a project that will run on CrossWorks' ARM simulator. To create a project that would run on

hardware, you would need to install and use support packages suitable for that target hardware but, for the

purposes of this tutorial, we'll just target the simulator.

Note that the Generic ARM CPU Support Package project templates can be used to target real hardware for

devices that don't currently have a suitable support package; however, it is highly likely that you will need to

modify memory map files, startup code, reset scripts, and the loader program in order to support the target.

This is outside the scope of this tutorial but, should you wish to do this, see the documentation included in the

Generic ARM CPU Support Package for more information.

If you have already installed this support package, you can skip this page.

Downloading and installing a support package

To download and install a support package:

Choose Tools > Manage Packages.

Select the Generic ARM CPU Support Package entry.

(To select more packages to download and install at the same time, you can control-click the additional

packages.)

CrossWorks for ARM Reference Manual CrossStudio Tutorial

84

Right-click the selected package and choose to Install Selected Packages.

Click the Next button and you will be presented with a list of actions the package manager is going to

carry out.

Click Next again to download and install the support package.

Upon successful completion, you will see a list of the newly installed packages. Click Finish.

Viewing installed support packages

To view the installed support packages:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

85

Choose Tools > Show Installed Packages to list the support packages you have installed on your system.

You should see the name of the Generic ARM CPU Support Package you just installed.

Click Generic ARM CPU Support Package to view the support package page in the CrossWorks

Browser window. This page provides more information about the support package and links to any

documentation, example projects, and system files that may be included in the package.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

86

Creating a project
To start developing an application, first create a new project. To create a new project:

Choose File > New Project or press Ctrl+Shift+N

The New Project dialog appears. This dialog displays the set of project types (Categories) and project templates.

)

We'll create a project to develop our application in C:

1. In the Categories pane, select the Generic > ARM7 Board

2. From the list in the Project Templates pane, select the An executable for a generic ARM7 processor that

supports only running from RAM located at address 0x00000000

3. In the Name text field, type Tutorial to assign that as the new project's name.

4. You can use the Location text field or the Browse button to locate where you want to save the project in

your local file system.

5. Click Next.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

87

Here you can customize the project by altering a number of common project properties, such as an additional

file format to be output when the application is linked and what library support to include if you use printf and

scanf. After the project is created, you can change these settings in the Project Explorer as needed.

1. You can double-click a project property or its value to display either a drop-down menu of potential, valid

values or a text field in which you can type arbitrary values. For our tutorial, the default values are fine.

2. Click Next to display a list of the files CrossWorks will add to this project be default. You can uncheck any

file you plan to add manually or that you know will not be needed.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

88

The Links to system files group shows the links to CrossWorks system files that will be created in the project.

Because these files are links, the default behavior is that they will be shared with other projectsso modifying one

will affect all projects containing similar links. To prevent accidental modification, these files are created as read-

only. Should you wish to modify a shared file without affecting other projects, first import it into the project.

(Importing a shared file will be demonstrated later in this tutorial.) See Creating and managing projects for

more information on project links.

The Project files pane shows the files that will be copied into the project. Because these files are copied to the

project directory, they can be modified without affecting any other project.

If you uncheck an item, that file is not linked to, or created in, the project. We will leave all items checked for the

moment.

1. Click Next to view the default configurations that will be added to the project. Again, you can uncheck

any you know will not be needed but, for this tutorial, we will leave the defaults unchanged.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

89

Here you can specify the default configurations that will be added to the project. See Creating and managing

projects for more information on project configurations.

1. Click Finish to complete the new project's creation.

This will create a project for a generic ARM 7 device with RAM located at address 0x00000000. This is

fine, because we are going to run this example on the simulator. ARM hardware, however, is rarely so

accommodating because memory will be mapped at different addresses, target-specific startup code may be

required to initialize peripherals, different techniques need to be employed to reset the target, and target-

specific loader applications are required to program flash memory. To create a project to run on hardware, you

should instead select a template from the project type matching your targetthat will create a project with the

memory maps, startup code, reset script, and a flash loader for your target.

The Project Explorer shows the overall structure of your project. To invoke it, do one of the following:

Choose View > Project Explorer.

or

CrossWorks for ARM Reference Manual CrossStudio Tutorial

90

Type Ctrl+Alt+P.

This is what our project looks like in the Project Explorer:

The project name is shown in bold to indicate it is the active project (and, in our case, the only project). If you

have more than one project, you can set the active project by using the drop-down box on the Build tool bar or

by right-clicking the desired project's name in the Project Explorer to display the shortcut menu with the Set as

Active Project command.

The files are arranged into two groups; click the + symbol next to the project name to reveal them:

Source Files contains the main source files for your application, typically header files, C files, and

assembly code files. You may want to add files with other extensions or documentation files in HTML

format, for instance.

System Files contains links to source files that are not part of the project but are required when the

project is built and run. In this case, the system files are: crt0.s the C run-time startup, written in

assembly code

CrossWorks for ARM Reference Manual CrossStudio Tutorial

91

sram_placement.xml placement file describes how program sections should be placed in memory

segments

Standard_ARM_RAM_Only_MemoryMap.xml a memory map file that describes a target's memory

segments

Standard_ARM_Startup.s contains the target-specific start code and exception vectors

Standard_ARM_Target.js contains the target-specific target script that tells the debugger how to

reset the target and what to do when the processor stops or starts

Files stored outside the project's home directory (with a small purple shortcut indicator at the bottom left of the

icon, as above.

These folders have nothing to do with directories on disk, they are simply a means to group related files in the

Project Explorer. You can create new folders and specify filters for them based on the project files' extensions;

thereafter, when you add a new file to the project, it will be shown in the Project Explorer folder whose filter

matches the new file's extension.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

92

Managing files in a project
We'll now set up the example project with some files that demonstrate features of the CrossWorks IDE. For this,

we will add one pre-prepared file and one new file to the project.

Adding an existing file to a project

To add one of the existing tutorial files to the project:

Choose Project > Add Existing File or press Ctrl+P, A.

or

In the Project Explorer, right-click the Tutorial project node.

Choose Add Existing File from the shortcut menu.

In response, CrossWorks displays a standard file-locator dialog. Use it to navigate to the CrossWorks installation

directory, then to the tutorial folder, where you should select the fact.c file.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

93

Click Open to add the file to the project. The Project Explorer will list fact.c in the Project Items' Source Files

folder, with a shortcut arrow because the file is not in the project's home directory. Rather than edit the file in the

tutorial directory, we'll put a copy of it into the project's home directory:

In the Project Explorer, right-click the fact.c node.

From the pop-up menu, click Import.

The shortcut arrow disappears from the fact.c node, indicating that our working version of that file is now in

our Tutorial project's home directory.

We can open a file for editing by double-clicking the node in the Project Explorer. For example, double-clicking

fact.c opens it in the code editor:

Adding a new file to a project

Our project isn't complete, because fact.c is only part of an application. To our project we'll add a new C file

that will contain the main() function. To add a new file to the project, do the following:

Choose File > New to open the New File dialog.

or

On the Project Explorer tool bar, click the Add New File button.

or

In the Project Explorer, right-click the Tutorial node.

Choose Add New File from the shortcut menu.

or

CrossWorks for ARM Reference Manual CrossStudio Tutorial

94

Type Ctrl+N.

The New File dialog appears.

In the Categories pane, select C C++ to indicate the general type of file.

In the Templates pane, select the C File (.c) option to further specify the kind of file we will be adding.

In the Name edit box, type main.

The dialog box will now look like this:

Click OK to add the new file.

CrossWorks opens the new file in the code editor. Rather than type the program from scratch, we'll add it from a

file stored on disk. With the new, empty main.c in the foreground:

Choose Edit > Others > Insert File or press Ctrl+K, Ctrl+I.

Using the file-selection dialog, navigate to the tutorial directory.

Select the main.c file.

Click OK.

Your main.c file should now look like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

95

Next, we'll set up some project options.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

96

Setting project options
Up to this point, you have created a simple project. In this section, we will set some options for that project.

You can set project options on any node of a solution. That is, you can set options on a solution-wide basis, on

a project-wide basis, on a project-group basis, or on an individual-file basis. For instance, options you set on a

solution are inherited by all projects in that solution, by all groups in each of those projects, and by all files in

each of those groups. If you set an option further down in the hierarchy, that setting will be inherited by nodes

that are children of (or grandchildren of, etc.) that node. This provides a powerful way to customize and manage

your projects.

Adding a C preprocessor definition

In this instance, we will define a C preprocessor definition that will apply to the entire Tutorial project. This means

every file in the project will inherit our new definition. If, however, we were to later add other projects to the

solution, they would not inherit the definition; if we wanted that, we could set the property on the solution node

rather than the project node.

To set a C preprocessor definition on the project node:

Right-click the Tutorial project in the Project Explorer and select Properties from the menuthe Project

Manager dialog appears.

Click the Configuration drop-down and change to the Common configuration (it is one of the "Private

Configurations").

Scroll down the list as necessary to click the Preprocessor Options > Preprocessor Definitions property.

Double-click the property name or value field, or click the ... symbol to display the empty Preprocessor

Definitions window, and in that window type the definition DEFINE_ME.

The dialog box will now look like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

97

Notice that, when you change between Debug and Release configurations, the code generation options

change. This dialog shows the options used when building a project (or anything in a project) in a given

configuration. Because we put the above, new definition in the Common configuration, both Debug and

Release configurations will use this setting. We could, however, set the definition to be different in Debug and

Release configurations if we wanted to pass different definitions into debug and release builds.

Now click OK to accept the changes made to the project.

Using the Properties Window

If you click on the project node, the Properties Window will show the properties of the projectall were inherited

from the solution. If you modify a property when the project node is selected, you'll find that its value is

highlighted because you have overridden the property value inherited from the solution. To restore the

inherited value of a property that was changed, right-click the property and select Use Inherited Value.

Next, we'll build the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

98

Building projects
Now that the project is created and set up, it's time to build it. There are some deliberate errors in the program

that we need to correct; doing that is the next step in this tutorial.

Setting the build configuration

The first thing to do is set the active build configuration you want to use:

Select ARM RAM Debug from the Active Configuration .

This means we are going to use a build configuration that generates ARM code, will run from RAM, and

generates code with debug information and no optimization, so it can be debugged. If we wanted to produce

production code with no debug information and optimization enabled, we could use the ARM RAM Release

configuration. However, because we are going to use the debugger, we shall use the ARM RAM Debug

configuration.

Building the project

To build the project:

Choose Build > Build Tutorial.

or

On the Build tool bar, click the Build Active Project button.

or

Type F7.

Alternatively, to build the Tutorial project using a shortcut menu:

In the Project Explorer, right-click the Tutorial project node.

Select Build from the shortcut menu.

CrossWorks starts compiling the project files, but stops after detecting an error. The Output window shows the

Transcript, which contains the errors found in the project:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

99

Correcting compilation and linkage errors

The file main.c contains two errors. After compilation, CrossWorks moves the cursor to the line containing

the first reported error and displays an error message in the Output window. (You can change this behavior by

modifying the Text Editor > Editing Options > Enable Popup Diagnostics environment option using the Tools

> Options dialog.)

To correct the error, change the return type of factorial from void to int in its prototype.

To move the cursor to the line containing the next error, type F4 or choose Search > Next Location. The cursor is

now positioned at the debug_printf statement, which is missing a terminating semicolonadd the semicolon to

the end of the line. Using F4 again reveals that we have corrected all errors.

Pressing F4 again wraps around and moves the cursor to the first error, and you can use Shift+F4 or Search >

Previous Location to move back through errors. Now that the errors are corrected, build the project again by

pressing F7. The Transcript shows there still is a problem.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

100

The remaining error is a linkage error. Double-click fact.c in the Project Explorer to open it for editing

and change the two occurrences of fact to factorial. Rebuild the projectthis time, the project compiles

correctly:

A summary of the memory used by the project is displayed at the end of the build log. The results for your

application may be different, so don't worry if they don't match.

In the next sections, we'll explore the characteristics of the newly built project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

101

Exploring projects
Now that the project has no errors and builds correctly, we can turn our attention to uncovering exactly how our

application fits in memory and how to navigate around it.

Using Project Explorer features

The Project Explorer is the central focus for arranging your source code into projects, and it's a good place to

show ancillary information gathered when CrossWorks builds your applications. This section will cover features

the Project Explorer offers to give you an overview of your project.

Project code and data sizes

Developers are always interested in how much memory their applications use, especially when they are working

with small, embedded microcontrollers. The Project Explorer can display the code and data sizes for each

project and individual source file that successfully compiled. To view this information, use the Options pop-up

menu on the Project Explorer tool bar to ensure that Statistics Column is checked.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

102

When the Statistics Column option is checked, the Project Explorer displays two additional columns, Code and

Data.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

103

The Code column displays the total code space required for the project. The Data column displays the total

data space required. The code and data sizes shown for each C and assembly source file are estimates, but good

ones. Because the linker removes any unreferenced code and data, and performs a number of optimizations, the

sizes for the linked project may not be the sum of the sizes of each individual file. The code and data sizes for the

project, however, are accurate. As already mentioned, your numbers may not match these exactly.

Dependencies

The Project Explorer is very versatile: not only can you display the code and data sizes for each element of a

project and for the project as a whole, you can also configure it to show the dependencies for a file. As part of

the compilation process, CrossWorks finds and records the relationships between filesthat is, it finds which

files depend upon other files. CrossWorks uses these known relationships when it builds the project again, to

minimize the amount of work required to bring the project up to date.

To show the dependencies for a project, use the Options button on the Project Explorer tool bar to ensure that

either Dependencies Under Node or Dependencies In Folder is checked. Once checked, dependent files are

shown as sub-nodes of the file that depends on them.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

104

In this case, main.c is dependent upon cross_studio_io.h because it includes it with an #include

directive. It is also dependent on __crossworks.h because that is included by cross_studio_io.h. You

can open the files in an editor by double-clicking them, so having dependencies turned on is an effective way of

navigating to and summarizing the files a source file includes.

Output files

It is useful to know the output files when compiling and linking the application, and CrossWorks can display this

information, too. To turn on output-file display, click the Project Explorer tool bar's Options button and verify

that Output Files Folder option is checked in the menu. Once checked, output files are shown in an Output Files

folder under the node that generates them. Click that folder's + symbol to expand the view of the output files.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

105

In the above figure, we can see that the files fact.o and main.o are object files, produced by compiling

their corresponding source files. The linker script Tutorial.ld, the map file Tutorial.map, and the linked

executable Tutorial.elf are produced by the linker. As a convenience, double-clicking an object file or a

linked executable file in the Project Explorer will open an editor showing the disassembled contents of the file.

Disassembling a project or file

You can disassemble a project either by double-clicking the corresponding file in the Project Explorer, as

described above, or by using the Disassemble tool.

To disassemble a project or file:

Right-click the appropriate project or file in the Project Explorer.

From the shortcut menu, choose Disassemble.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

106

CrossWorks then opens a new read-only editor showing the disassembled listing. If you change your project

and rebuild it, thereby causing a change in the object or executable file, the disassembly updates to keep the

display's contents synchronized with the file on disk.

Using Memory Usage Window features

The Memory Usage window can be used to view a graphical summary of how memory was used in each

memory segment of a linked application.

To display the memory usage:

Choose View > Memory Usage or press Ctrl+Alt+Z.

For the Tutorial project, the Memory Usage window shows this:

From this, you can see:

The SRAM segment is located at 0x00000000.

The SRAM segment is 64KB in length.

There is 59.3KB of unused memory in the SRAM segment.

If you expand the SRAM segment by clicking it, CrossWorks will display all the program sections contained

within the segment:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

107

CrossWorks for ARM Reference Manual CrossStudio Tutorial

108

Using Symbol Browser features

For a more-detailed view of how your application is laid out in memory than the Memory Usage window

provides, you can use the Symbol Browser. It allows you to navigate your application, see which data objects

and functions have been linked into your application, what their sizes are, which section they are in, and where

they are placed in memory.

To activate the Symbol Browser:

Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

Drilling down into the application

The Tutorial project shows this in the Symbol Browser:

From this, you can see sections and their sizes. For example, the .vectors section containing the ARM exception

vectors is placed in memory between address 0x00000000 and 0x0000003B.

The .init section containing the system startup code is placed in memory

The .text section containing the program code is placed in memory

The .rodata section containing read-only data is placed in memory

The .heap section is 1024 bytes in length and is located at 0x00000880. Linker > Heap Size project

property.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

109

The .stack section which contains the User/System mode stack is 1024 Linker > Stack Size properties.

The .stack_irq section which contains the IRQ mode stack is 256 bytes in

The .stack_fiq section which contains the FIQ mode stack is 256 bytes in

To drill down, open the CODE node by double-clicking it: CrossWorks displays the individual functions that have

been placed in memory and their sizes:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

110

CrossWorks for ARM Reference Manual CrossStudio Tutorial

111

Here, we can see that main is 100 bytes in size and is placed in memory between addresses 0000029C and

000002FF, inclusive, and that factorial is 80 bytes and occupies addresses 0000024C through 0000029B. Just as

in the Project Explorer, if you double-click a function, CrossWorks moves the cursor to the line containing the

definition of that function, so you can easily use the Symbol Browser to navigate around your application.

Printing Symbol Browser contents

You can print the contents of the Symbol Browser by selecting its window and choosing Print from the File

menu, or Print Preview if you want to see what it will look like before printing. CrossWorks prints only the

columns you have selected for display, and prints items in the order displayed in the Symbol Browser, so you

can choose which columns to print and how to print symbols by configuring the Symbol Browser display.

We have touched on only some of the features the Symbol Browser offers; to learn more, refer to Symbol

Browser, where it is described in detail.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

112

Using the debugger
Our sample application, which we have just compiled and linked, is now built and ready to run. In this section,

we'll concentrate on downloading and debugging this application, and on using the features of CrossWorks to

see how it performs.

Getting set up

Before running your application, you need to select the target to run it on. Choose Target > Targets to list in the

Targets window each target interface that is defined. You will use these to connect CrossWorks to a target. For

this tutorial, you'll be debugging on the simulator, not hardware, to simplify matters.

To connect to the simulator:

Choose Target > Connect > ARM Simulator.

or

Choose View > Targets to activate the Targets window.

In the Targets window, double-click ARM Simulator.

After connecting, the ARM Simulator target is shown in the status bar:

The color of the target-status LED in the status bar changes according to what CrossWorks and the target are

doing:

White No target is connected.

Yellow Target is connected.

Solid green Target is free running, not under control of CrossWorks or the debugger.

Flashing green Target is running under control of the debugger.

Solid red Target is stopped at a breakpoint or because execution is paused.

Flashing red CrossWorks is programming the application into the target.

Double-clicking the Target Status will show the Targets window, if it is not already visible.

The core simulator target can accurately count the cycles spent executing your application, so the status bar

shows a cycle counter. If you connect a target that cannot provide performance information, the cycle counter

panel is hidden. Double-clicking the Cycle Counter panel will reset the cycle counter to zero.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

113

Setting a breakpoint

CrossWorks will run a program until it hits a breakpoint. We'll place a breakpoint on the call to debug_printf

in main.c. To set the breakpoint, move the cursor to the line containing debug_printf and choose Debug >

Toggle Breakpoint or press F9.

Alternately, you can set a breakpoint without changing the cursor's position by clicking in the gutter of the line

to set the breakpoint on.

The gutter displays an icon on lines where breakpoints are set. The Breakpoints window updates to show where

each breakpoint is set and whether it's set, disabled, or invalidyou can find more detailed information in the

Breakpoints window section. The breakpoints you set are stored in a session file associated with the project, so

your breakpoints are remembered if you exit and re-run CrossWorks.

Starting the application

To start the application, choose Debug > Start or press F5.

The workspace will change from the standard Editing workspace to the Debugging workspace. You can choose

which windows to display in each of these workspaces and manage them independently. CrossWorks loads the

active project into the target and places the breakpoints you have set. During loading, the Target Log in the

Output Window shows its progress and any problems:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

114

The program stops at our breakpoint and a yellow arrow in the gutter indicates where the program is paused.

Step into the factorial function by selecting Debug > Step Into, by typing F11, or by clicking the Step Into

button on the Debug tool bar.

Now step to the first statement in the function by selecting Debug > Step Over, by typing F10, or by clicking the

Step Over button on the Debug tool bar.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

115

You can step out of a function by choosing Debug > Step Out, by typing Shift+F11, or by clicking the Step Out

button on the Debug tool bar. You can also step to a specific statement by choosing Debug > Run To Cursor. To

allow your application to run to the next breakpoint, choose Debug > Go.

Note that, when single-stepping, you may step into a function whose source code the debugger cannot locate.

In such cases, the debugger will display the instructions of the application; you can step out to get back to

source code or continue to debug at the instruction-code level. There may be cases in which the debugger

cannot display the instructions; in such cases, you will be informed of this with a dialog and you should step out.

Inspecting data

Being able to control execution isn't very helpful if you can't look at the values of variables, registers, and

peripherals. Hovering the mouse cursor over a variable will show its value as a data tip:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

116

You can configure CrossWorks to display data tips in a variety of formats at the same time using the

Environment Options dialog. You can also use the Autos, Locals, Globals, Watch, and Memory windows to view

variables and memory. These windows are described in CrossStudio User Guide.

The Call Stack window shows the function calls that have been made but have not yet finished executing, that is

the list of active functions.

To display the call stack:

Choose Debug > Call Stack or press Ctrl+Alt+S.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

117

You can learn more about this in the Call Stack window section.

Program output

The Tutorial application uses the function debug_printf to output a string to the Debug Terminal in the

Output window. The Debug Terminal appears automatically whenever something is written to itpress F5 to

continue program execution and you will notice that the Debug Terminal appears. In fact, the program runs

forever, writing the same messages over and over again. To pause the program, select Debug > Break or type

Ctrl+. (control-period).

In the next section, we'll cover low-level debugging at the machine level.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

118

Low-level debugging
This section describes how to debug your application at the register and instruction level. Debugging at a high

level is fine, but sometimes you need to look more closely into the way your program executes to track down the

causes of difficult-to-find bugs. CrossWorks provides the tools you need to do so.

Setting up again

Next, we'll run the sample application again and look at how it executes at the machine level. If you haven't done

so already, stop the program executing by typing Shift+F5, by selecting Debug > Stop, or by clicking the Stop

Debugging button on the Debug tool bar. Now, run the program until it stops at the first breakpoint again.

You can see the current processor state in the Register windows. To show the first Registers window:

Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

The Registers window can be used to view CPU and peripheral registers. To display the state of the registers for

the active processor mode, use the Registers 1 window's Register Groups menu to select CPU - Current Mode.

This view is displaying the registers for the active processor mode. You can also display the entire set of ARM

registers: to do this, select CPU - All from the Register Groups menu. Your registers window will look something

like this:

CrossWorks for ARM Reference Manual CrossStudio Tutorial

119

There are four register windows, so you can open and display four sets of CPU and peripheral registers at the

same time. You can configure which registers and peripherals to display in the Registers windows individually.

As you single-step the program, the contents of the Registers window updates and any change in a register

value is highlighted in red.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

120

Disassembly

The Disassembly window can be used to debug your program at the instruction level. It displays a disassembly

of the instructions around the currently located instruction, interleaved with the source code of the program, if

the source is available. When the Disassembly window has focus, all single-stepping is done one instruction at a

time. This window also allows you to set breakpoints by clicking in the gutter of lines containing instructions on

which you want to set a breakpoint.

Stopping and starting debugging

You can stop debugging using Debug > Stop or Shift+F5.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

121

To restart debugging without reloading the program, you can use Debug > Debug From Reset. Note

that, when you debug from reset, no loading takes place; it is expected that your program resets any data

values as necessary as part of its startup.

You can attach the debugger to a running target, other than a simulator, using Target > Attach

Debugger.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

122

Debugging externally built applications
This section describes how to debug applications that were not built by CrossWorks. To keep things simple, we

shall use the application we just built as our externally built application.

Start by creating a new, externally built executable project:

Choose File > New Project or press Ctrl+Shift+N.

The New Project dialog appears. It displays the set of project types and project templates.

We'll create an externally built executable project:

In the Categories pane, select the Generic > ARM7 Board project type.

In the Project Templates pane, select the An externally built executable for a generic ARM7 processor

icon, which selects the type of project to add.

Type Externally_Built_Tutorial in the Name field, which names the project.

You can use the Location field or the Browse button to locate where you want the project to be created.

Click OK.

Once created, the project-setup wizard prompts you for the executable file you want to use.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

123

In the Executable File field, type the path to the Tutorial.elf executable file we generated earlier. For

example, if the project was created in the C:/CrossWorks Projects/Tutorial directory and was

built using the ARM RAM Debug configuration, the path to the executable file will be C:/CrossWorks

Projects/Tutorial/ARM RAM Debug/Tutorial.elf.

Clicking Next displays the files that will be added to the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

124

The Project files group shows the files that will be copied into the project. The only files used are the memory

map file, which describes the memory layout used by the application, and the script used to reset and control

the target. For the debugging session to work correctly, each of these files must match and be appropriate for

the application you are debugging.

Clicking Next displays the configurations that will be added to the project.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

125

Complete the project creation by clicking Finish.

You will be prompted as to whether you want to overwrite the existing memory map and target script. Click No

to keep the existing files.

Now you have created the externally built executable project. You should be able to use the debugger just as we

did earlier in the tutorial.

CrossWorks for ARM Reference Manual CrossStudio Tutorial

126

CrossWorks for ARM Reference Manual CrossStudio User Guide

127

CrossStudio User Guide
This is the user guide for the CrossStudio integrated development environment (IDE). The CrossStudio IDE

consists of:

a project system to organize your source files

a build system to build your applications

programmer aids to navigate and work effectively

a target programmer to download applications into RAM or flash

a debugger to pinpoint bugs

CrossWorks for ARM Reference Manual CrossStudio User Guide

128

CrossStudio standard layout
CrossStudio's main window is divided into the following areas:

Title bar:Displays the name of the current solution.

Menu bar:Menus for editing, building, and debugging your program.

Toolbars:Frequently used actions are quickly accessible on toolbars below the menu bar.

Editing area:A tabbed view of any open editor windows and the HTML viewer.

Docked windows:CrossStudio has many windows that dock to the left, right, or below the editing area.

You can configure which windows will be visible, and their placement, when editing and debugging.

Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

129

Menu bar
The menu bar contains menus for editing, building, and debugging your program. You can navigate menus

using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.

or

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.

2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

2. Tap Return to display the menu.

3. Use the Left and Right keys to select the required menu.

4. Use the Up or Down key to select the required command or submenu.

5. Press Enter to execute the selected command.

6. Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlinedits shortcut key. So, to

activate a menu using the keyboard:

While holding down the Alt key, type the desired menu's shortcut key.

After the menu appears, you can navigate it using the cursor keys:

Use Up and Down to move up and down the list of menu items.

Use Esc to cancel a menu.

Use Right or Enter to open a submenu.

Use Left or Esc to close a submenu and return to the parent menu.

Type the underlined letter in a command's name to execute that command.

CrossWorks for ARM Reference Manual CrossStudio User Guide

130

Title bar
The first item shown in the title bar is CrossStudio's name. Because CrossStudio can be used to target different

processors, the name of the target processor family is also shown, to help you distinguish between instances of

CrossStudio when debugging multi-processor or multi-core systems.

The filename of the active editor follows CrossStudio's name; you can configure the presentation of this filename

as described below.

After the filename, the title bar displays status information on CrossStudio's state:

[building] CrossStudio is building a solution, building a project, or compiling a file.

[run] An application is running under control of CrossStudio's debugger.

[break] The debugger is stopped at a breakpoint.

[autostep] The debugger is single stepping the application without user interaction (autostepping).

CrossWorks for ARM Reference Manual CrossStudio User Guide

131

Status bar
At the bottom of the window, the status bar contains useful information about the current editor, build status,

and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Target device status

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

CrossWorks for ARM Reference Manual CrossStudio User Guide

132

Caret position Indicates the insertion position position in the editor
window. For text files, the caret position pane displays
the line number and column number of the insertion
point in the active window; when editing binary files, it
displays the address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

Choose View > Status Bar.

From the status bar menu, select the panels to display and deselect the ones you want hidden.

or

Right-click the status bar.

From the status bar menu, select the panels to display and deselect the ones you want to hide.

To show or hide the status bar:

Choose View > Status Bar.

From the status bar menu, select or deselect the Status Bar item.

You can choose to hide or display the size grip when CrossStudio's main window is not maximized. (The size grip

is never shown in full-screen mode or when maximized.)

To show or hide the size grip

Choose View > Status Bar.

From the status bar menu, select or deselect the Size Grip item.

CrossWorks for ARM Reference Manual CrossStudio User Guide

133

Editing workspace
The main area of CrossStudio is the editing workspace. It contains any files being edited, the on-line help

system's HTML browser, and the Dashboard.

CrossWorks for ARM Reference Manual CrossStudio User Guide

134

Docking windows
CrossStudio has a flexible docking system you can use to position windows as you like them. You can dock

windows in the CrossStudio window or in the four head-up display windows. CrossStudio will remember the

position of the windows when you leave the IDE and will restore them when you return.

Window groups

You can organize CrossStudio windows into window groups. A window group has multiple windows docked

in it, only one of which is active at a time. The window group displays the active window's title for each of the

windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

Press and hold the left mouse button over the title of the window you wish to move.

As you start dragging, all window groups, including hidden window groups, become visible.

Drag the window over the window group to dock in.

Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

CrossStudio remembers the dock position and visibility of each window in each perspective. The most common

use for this is to lay your windows out in the Standard perspective, which is the perspective used when you are

editing and not debugging. When CrossStudio starts to debug a program, it switches to the Debug perspective.

You can now lay out your windows in this perspective and CrossStudio will remember how you laid them them

out. When you stop debugging, CrossStudio will revert to the Standard perspective and that window layout for

editing; when you return to Debug perspective on the next debug session, the windows will be restored to how

you laid them out in that for debugging.

CrossStudio remembers the layout of windows, in all perspectives, such that they can be restored when you run

CrossStudio again. However, you may wish to revert back to the standard docking positions; to do this:

Choose Window > Reset Window Layout.

Some customers are accustomed to having the Project Explorer on the left or the right, depending upon which

version of Microsoft Visual Studio they commonly use. To quickly switch the CrossStudio layout to match your

preferred Visual Studio setup:

Choose Window > Reverse Workspace Layout.

CrossWorks for ARM Reference Manual CrossStudio User Guide

135

Dashboard
When CrossStudio starts, it presents the Dashboard, a collection of panels that provide useful information, one-

click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before CrossWorks is fully functionalfor instance, whether

you need to activate CrossWorks, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer

version is available. You can install each new package individually by clicking the Install button under each

notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the

appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds you have subscribed to. Clicking a link will

display the published article in an external web browser. You can manage your feed subscriptions to by clicking

the Manage Feeds link at the end of the News panel and pinning the feeds in the Favorites windowyou are only

subscribed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

CrossWorks for ARM Reference Manual CrossStudio User Guide

136

CrossStudio help and assistance
CrossStudio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, CrossStudio provides a longer description in the status bar when you hover over a

button or menu item.

Online manual
CrossStudio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using CrossStudio

CrossStudio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

Click to select the item with which you want assistance.

Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the insertion point within a word and

press F1, the help-system page most likely to be useful is displayed in the HTML browser. This a great way to

quickly find the help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the CrossWorks documentation and gives a way to search through

them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

137

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

Choose Help > Contents or press Ctrl+Alt+F1.

Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

CrossWorks for ARM Reference Manual CrossStudio User Guide

138

Creating and managing projects
A CrossStudio project is a container for everything required to build your applications. It contains all the assorted

resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to

organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-

management tasks.

CrossWorks for ARM Reference Manual CrossStudio User Guide

139

Solutions and projects
To develop a product using CrossStudio, you must understand the concepts of projects and solutions.

A project contains and organizes everything you need to create a single application or a library.

A solution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.

In your CrossWorks project, you

organize build-system inputs for building a product.

add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension

hzp, that contain an XML description of your project. See Project file format for a description of the project-file

format.

Projects

The projects you create within a solution have a project type CrossStudio uses to determine how to build the

project. The project type is selected when you use the New Project dialog. The available project types depend

on the CrossWorks variant you are using, but the following are present in most CrossWorks variants:

Executable: a program that can be loaded and executed.

Externally Built Executable: an executable that is not built by the CrossWorks internal build process.

Library: a group of object files collected into a single file (sometimes called an archive).

Externally Built Library: a library that is not built by the CrossWorks internal build process.

Object File: the result of a single compilation.

Staging: a project that will apply a user-defined command to each file in a project.

Combining: a project that can be used to apply a user-defined command when any files in a project have

changed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

140

Project properties and configurations

Project properties are attached to project nodes. They are usually used in the build process, for example, to

define C preprocessor symbols. You can assign different values to the same property, based on a configuration:

for example, you can assign one value to a C preprocessor symbol for release build and a different value for a

debug build.

Folders and Dynamic Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions

to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a

file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Projects can also contain dynamic folders which will can show the directories and files contained in the file

system in the project explorer. You can specify if the dynamic folder is recursive and use wildcards to include and

exclude files.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement

files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of

related products, are managed in a CrossStudio project. A project can also contain files that are not directly used

by CrossStudio to build a product but contain information you use during development, such as documentation.

You edit source files during development using CrossStudio's built-in text editor, and you organize files into a

target (described next) to define the build-system inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files

placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project

directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to

the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.

The project system will allow (with a warning) duplicate files to be put into a project.

The project system uses a file's extension to determine the appropriate build action to perform on the file:

A file with the extension .c will be compiled by a C compiler.

CrossWorks for ARM Reference Manual CrossStudio User Guide

141

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the object-file extension .o will be linked.

A file with the library-file extension .a will be linked.

A file with the extension .xml will be opened and its file type determined by the XML document type.

Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type property with the Common configuration selected in

the Properties window, which enables files with non-standard extensions to be compiled by the project system.

Externally Built Executables

You can use an external build process for Externally Built Executable project types by setting the Build

Command project property, for example to make target. Alternatively you can set command lines for specific

build steps to compile/assemble and link. When you create an Externally Built Executable project type

configurations will be created that create command lines for a variety of external tool chains.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For

example, you could have a solution that builds a library together with a stub test driver executable. You can

link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit CrossWorks, details of your current session are stored in a session file. Session files are text files,

with the file extension hzs, that contain details such as which files you have opened in the editor and what

breakpoints you have set in the Breakpoint window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

142

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. In the New Project wizard, select the type of project you wish to create and specify where it will be

placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the

solution directory. The project system will use the project directory as the current directory when it builds your

project. Once complete, the Project Explorer displays the new solution, project, and files contained in the

project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.

3. Click OK.

CrossWorks for ARM Reference Manual CrossStudio User Guide

143

Adding existing files to a project
You can add existing files to a project in a number of ways.

To add existing files to the active project:

Choose Project > Add Existing File or press Ctrl+P, A.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.

Click OK.

The selected files are added to the folders whose filter matches the extension of each of the files. If no filter

matches a file's extension, the file is placed underneath the project node.

To add existing files to a specific project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add Existing File.

To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

To create a dynamic folder:

1. In the Project Explore, right click on the project to which you wish to add a new folder.

2. Choose New Folder....

3. Using the New Folder dialog name the folder and then show the dynamic folder options.

4. Specify the required Source Folder and the Filter Specification.

The files that match the filter specification in the source folder will appear in the newly created folder.

CrossWorks for ARM Reference Manual CrossStudio User Guide

144

Adding new files to a project
You can add new files to a project in a number of ways.

To add new files to the active project:

Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.

2. Choose Add New File.

When adding a new file, CrossStudio displays the New File dialog, from which you can choose the type of file

to add, its filename, and where it will be stored. Once created, the new file is added to the folder whose filter

matches the extension of the newly added file. If no filter matches the newly added file extension, the new file is

placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.

2. Choose Add New File.

The new file is added to the folder without using filter matching.

CrossWorks for ARM Reference Manual CrossStudio User Guide

145

Removing a file, folder, project, or project link
You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,

using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does

not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.

2. Choose Edit > Delete or press Del.

or

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

CrossWorks for ARM Reference Manual CrossStudio User Guide

146

Building your application
CrossStudio builds your application using the resources and build rules it finds in your solution.

When CrossStudio builds your application, it tries to avoid building files that have not changed since they were

last built. It does this by comparing the modification dates of the generated files with the modification dates of

the dependent files together with the modification dates of the properties that pertain to the build. But if you

are copying files, sometimes the modification dates may not be updated when the file is copiedin this instance,

it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale CrossStudio currently is using by setting the Environment Options > Building

> Show Build Information property. To see the build commands themselves, set the Environment Options >

Building > Echo Build Command property.

You may have a solution that contains several interdependent projects. Typically, you might have several

executable projects and some library projects. The Project Dependencies dialog specifies the dependencies

between projects and to see the effect of those dependencies on the solution build order. Note that

dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the

Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder

contains the list of newly generated files and the files from which they were generated. To see if one of files

can be decoded and displayed in the editor, right-click the file to see if the View command is available on the

shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all

executable files built in the solution.

When CrossStudio builds projects, it uses the values set in the Properties window. To generalize your builds, you

can define macro values that are substituted when the project properties are used. These macro values can be

defined globally at the solution and project level, and can be defined on a per-configuration basis.

The combination of configurations, properties with inheritance, dependencies, and macros provides a very

powerful build-management system. However, such systems can become complicated. To understand the

implications of changing build settings, right-click a node in the Project Explorer and select Properties to view a

dialog that shows which macros and build steps apply to that project node.

To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

or

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

147

To build a single project:

1. Select the required project in the Project Explorer.

2. Choose Build > Build or press F7.

or

1. Right-click the project in the Project Explorer.

2. Choose Build.

To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.

or

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted

in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.

You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

CrossWorks for ARM Reference Manual CrossStudio User Guide

148

Creating variants using configurations
CrossStudio provides a facility to build projects in various configurations. Project configurations are used to

create different software builds for your projects.

A configuration defines a set of project property values. For example, the output of a compilation can be put

into different directories, dependent upon the configuration. When you create a solution, some default project

configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler

options for debug builds will differ from those of a release build: a debug build will set options so the project can

be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its

speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit properties from other configurations. This provides a single point of change for definitions

common to several configurations. A particular property can be overridden in a particular configuration to

provide configuration-specific settings.

When a solution is created, two configurations are generated Debug and Release and you can create additional

configurations by choosing Build > Build Configurations. Before you build, ensure that the appropriate

configuration is set using Build > Set Active Build Configuration or, alternatively, the Active Configuration

combo box in the Project Explorer. You should also ensure that the appropriate build properties are set in the

Properties window.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The

New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

CrossWorks for ARM Reference Manual CrossStudio User Guide

149

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

CrossWorks for ARM Reference Manual CrossStudio User Guide

150

Project properties
For solutions, projects, folders, and files, properties can be defined that are used by the project system in

the build process. These property values can be viewed and modified by using the Properties window in

conjunction with the Project Explorer. As you select items in the Project Explorer, the Properties window will

list the set of relevant properties.

Some properties are only applicable to a given item type. For example, linker properties are only applicable to

a project that builds an executable file. However, other properties can be applied either at the file, project, or

solution project node. For example, a compiler property can be applied to a solution, project, or individual file.

By setting a property at the solution level, you enable all files of the solution to use that property's value.

Unique properties

A unique property has one value. When a build is done, the value of a unique property is the first one defined

in the project hierarchy. For example, the Treat Warnings As Errors property could be set to Yes at the solution

level, which would then be applicable to every file in the solution that is compiled, assembled, and linked. You

can then selectively define property values for other project items. For example, a particular source file may have

warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that particular file.

Note that, when the Properties window displays a project property, it will be shown in bold if it has been

defined for unique properties. The inherited or default value will be shown if it hasn't been defined.

solution Treat Warnings As Errors = Yes
 project1 Treat Warnings As Errors = Yes
 file1 Treat Warnings As Errors = Yes
 file2 Treat Warnings As Errors = No
 project2 Treat Warnings As Errors = No
 file1 Treat Warnings As Errors = No
 file2 Treat Warnings As Errors = Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/file1 Yes

project1/file2 No

project2/file1 No

project2/file2 Yes

Aggregate properties

An aggregating property collects all the values defined for it in the project hierarchy. For example, when a C

file is compiled, the Preprocessor Definitions property will take all the values defined at the file, project, and

solution levels. Note that the Properties window will not show the inherited values of an aggregating property.

CrossWorks for ARM Reference Manual CrossStudio User Guide

151

solution Preprocessor Definitions = SolutionDef
 project1 Preprocessor Definitions =
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File1Def
 project2 Preprocessor Definitions = ProjectDef
 file1 Preprocessor Definitions =
 file2 Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/file1 SolutionDef

project1/file2 SolutionDef, File1Def

project2/file1 SolutionDef, ProjectDef

project2/file2 SolutionDef, ProjectDef, File2Def

CrossWorks for ARM Reference Manual CrossStudio User Guide

152

Configurations and property values
Property values are defined for a configuration so you can have different values for a property for different

builds. A given configuration can inherit the property values of other configurations. When the project system

requires a property value, it checks for the existence of the property value in current configuration and then in

the set of inherited configurations. You can specify the set of inherited configurations using the Configurations

dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration

allows you to set property values that will apply to all configurations you create. You can select the Common

configuration using the Configurations combo box of the properties window. If you are modifying a property

value of your project, you almost certainly want each configuration to inherit it, so ensure that the Common

configuration is selected.

If the property is unique, the build system will use the one defined for the particular configuration. If the

property isn't defined for this configuration, the build system uses an arbitrary one from the set of inherited

configurations.

If the property is still undefined, the build system uses the value for the Common configuration. If it is still

undefined, the build system tries to find the value in the next higher level of the project hierarchy.

solution [Common] Preprocessor Definitions = CommonSolutionDef

solution [Debug] Preprocessor Definitions = DebugSolutionDef

solution [Release] Preprocessor Definitions = ReleaseSolutionDef

 project1 - Preprocessor Definitions =

 file1 - Preprocessor Definitions =

 file2 [Common] Preprocessor Definitions = CommonFile1Def

 file2 [Debug] Preprocessor Definitions = DebugFile1Def

 project2 [Common] Preprocessor Definitions = ProjectDef

 file1 Preprocessor Definitions =

 file2 [Common] - Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration

File Setting

project1/file1 CommonSolutionDef, DebugSolutionDef

project1/file2 CommonSolutionDef,
DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/file1 CommonSolutionDef, DebugSolutionDef, ProjectDef

CrossWorks for ARM Reference Manual CrossStudio User Guide

153

project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

and the files will be compiled with these Preprocessor Definitions when in Release configuration:

File Setting

project1/file1 CommonSolutionDef, ReleaseSolutionDef

project1/file2 CommonSolutionDef, ReleaseSolutionDef,
CommonFile1Def

project2/file1 CommonSolutionDef, ReleaseSolutionDef, ProjectDef

project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

CrossWorks for ARM Reference Manual CrossStudio User Guide

154

Project macros
You can use macros to modify the way the project system refers to files.

Macros are divided into four classes:

System macros defined by CrossStudio relay information about the environment, such as paths to

common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,

you would set up paths to libraries and any external items here.

Project macros are saved as project properties in the project file and can define values specific to the

solution or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by CrossStudio itself and as such are read-only. System macros can be used in project

properties, environment settings and to refer to files. See System macros list for the list of System macros.

Global macros

Global macros are store in the environment option Global Macros.

To define a global macro:

1. Use Tools > Options to show the environment options dialog.

2. In the Environment Options dialog's Building group, select the Global Macros property.

3. Click the ellipsis button on the right.

4. Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:

You can set the project macros from the Properties window:

1. Select the appropriate solution/project in the Project Explorer.

2. In the Properties window's General Options group, select the Macros property.

3. Click the ellipsis button on the right.

4. Set the macro using the syntax name = replacement text.

CrossWorks for ARM Reference Manual CrossStudio User Guide

155

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the

list of build macros.

Using macros

You can use a macro for a project property or environment setting by using the $(macro) syntax. For example,

the Object File Name property has a default value of $(IntDir)/$(InputName)$(OBJ).

You can also specify a default value for a macro if it is undefined using the $(macro:default) syntax. For example,

$(MyMacro:0) would expand to 0 if the macro MyMacro has not been defined.

CrossWorks for ARM Reference Manual CrossStudio User Guide

156

Dependencies and build order
You can set up dependency relationships between projects using the Project Dependencies dialog. Project

dependencies make it possible to build solutions in the correct order and, where the target permits, to load

and delete applications and libraries in the correct order. A typical usage of project dependencies is to make

an executable project dependent upon a library executable. When you elect to build the executable, the build

system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project properties and, as such, can be defined differently based upon the

selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the

projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would

result if any of those projects were selected. In this way, CrossStudio prevents you from constructing circular

dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are

loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded

before the applications that use them, and you can ensure this happens by making the application dependent

upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed

before the libraries on which they depend.

CrossWorks for ARM Reference Manual CrossStudio User Guide

157

Precompile Header File support
You can specify a single file in your project to be a precompiled header by setting the project property

Precompiled Header File on the file node of the project. The file should be project local i.e. in the same directory

as the project file and should include the header files that you wish to be compiled.

You must set the project level property Enable Precompiled Header File which supplies the output file

generated by the precompiled header file to the compilation of each file in the project.

CrossWorks for ARM Reference Manual CrossStudio User Guide

158

Linking and section placement
Executable programs consist of a number of sections. Typically, there are program sections for code, initialized

data, and zeroed data. There is often more than one code section and they must be placed at specific addresses

in memory.

To describe how the program sections of your program are positioned in memory, the CrossWorks project

system uses memory-map files and section-placement files. These XML-formatted files are described in Memory

Map file format and Section Placement file format. They can be edited with the CrossWorks text editor. The

memory-map file specifies the start address and size of target memory segments. The section-placement file

specifies where to place program sections in the target's memory segments. Separating the memory map from

the section-placement scheme enables a single hardware description to be shared across projects and also

enables a project to be built for a variety of hardware descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

<Root name="Device1">
 <MemorySegment name="FLASH" start="0x10000000" size="0x10000" />
 <MemorySegment name="SRAM" start="0x20000000" size="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will

list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

Note that the order of section placement within a segment is top down; in this example .vectors is placed at

lower addresses than .text. The order memory segments are processed is bottom up; so in this example the

sections in the SRAM segment will be placed prior to the sections in the FLASH segment.

Multiple memory segments can be specified by separating them with a semicolon. In the following example, the

.stack section will be placed in the SRAM2 memory segment if it exists in the memory map, otherwise it will be

placed in the SRAM memory segment. Sections can only be placed in one segment, they will not be placed in a

second segment when the first is full.

<Root name="Flash Section Placement">

CrossWorks for ARM Reference Manual CrossStudio User Guide

159

 <MemorySegment name="FLASH" >
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM2;SRAM" >
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,

alternatively, they can be specified in the project's linker properties.

You can create a new program section using either the assembler or the compiler. For the C/C++ compiler, this

can be achieved using __attribute__ on declarations. For example:

void foobar(void) __attribute__ ((section(".foo")));

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options properties.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".foo" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

If you are modifying a section-placement file that is supplied in the CrossWorks distribution, you will need to

import it into your project using the Project Explorer.

Sections containing code and constant data should have their load property set to Yes. Some sections don't

require any loading, such as stack sections and zeroed-data sections; such sections should have their load

property set to No.

Some sections that are loaded then need to be copied to sections that aren't yet loaded. This is required for

initialized data sections and to copy code from slow memory regions to faster ones. To do this, the runin

attribute should contain the name of a section in the section-placement file to which the section will be copied.

For example, initialized data is loaded into the .data section and then is copied into the .data_run section using:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data" load="Yes" runin=".data_run" />
 </MemorySegment>

CrossWorks for ARM Reference Manual CrossStudio User Guide

160

 <MemorySegment name="SRAM">
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

The startup code will copy the contents of the .data section to the .data_run section. To enable this, symbols

named __section-name_start__, __section-name_end__, __section-name_load_start__ and __section-

name_load_end__ are generated marking the section start, end, load start and load end addresses of each

section. The startup code uses these symbols to copy the sections from their load positions to their run

positions.

You can also create your own load and run section, for example the following placement file adds a .mydata

section:

<Root name="Flash Section Placement">
 <MemorySegment name="FLASH">
 <ProgramSection name=".vectors" load="Yes" />
 <ProgramSection name=".text" load="Yes" />
 <ProgramSection name=".data" load="Yes" runin=".data_run" />
 <ProgramSection name=".mydata" load="Yes" runin=".mydata_run" />
 </MemorySegment>
 <MemorySegment name="SRAM">
 <ProgramSection name=".data_run" load="No" />
 <ProgramSection name=".mydata_run" load="No" />
 <ProgramSection name=".stack" load="No" />
 </MemorySegment>
</Root>

As the startup code doesn't know about this section, the following code will need to be added to the program to

initialise the section:

/* Section image located in flash */
extern const unsigned char __mydata_load_start__[];
extern const unsigned char __mydata_load_end__[];

/* Where to locate the section image in RAM. */
extern unsigned char __mydata_start__[];
extern unsigned char __mydata_end__[];

...

/* Copy image from flash to RAM. */
memcpy(__mydata_start__,
 __mydata_load_start__,
 __mydata_end__ - __mydata_start__);

CrossWorks for ARM Reference Manual CrossStudio User Guide

161

Using source control
Source control is an essential tool for individuals or development teams. CrossStudio integrates with several

popular source-control systems to provide this feature for files in your CrossWorks projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided

by CrossWorks aims to be provider independent.

CrossWorks for ARM Reference Manual CrossStudio User Guide

162

Source control capabilities
The source-control integration capability provides:

Connecting to the source-control repository and mapping files in the CrossWorks project to those in

source control.

Showing the source-control status of files in the project.

Adding files in the project to source control.

Fetching files in the project from source control.

Optionally locking and unlocking files in the project for editing.

Comparing a file in the project with the latest version in source control.

Updating a file in the project by merging changes from the latest version in source control.

Committing changes made to project files into source control.

CrossWorks for ARM Reference Manual CrossStudio User Guide

163

Configuring source-control providers
CrossStudio supports Subversion, Git, and Mercurial as source-control systems. To enable CrossStudio to utilize

source-control features, you need to install, on your operating system, the appropriate command line client for

the source-control systems that you will use.

Once you have installed the command line client, you must configure CrossStudio to use it.

To configure Subversion:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Subversion Options group to point to Subversion svn command. On

Windows operating systems, the Subversion command is svn.exe.

To configure Git:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Git Options group to point to Git git command. On Windows

operating systems, the Git command is git.exe.

To configure Mercurial:

1. Choose Tools > Options or press Alt+,.

2. Select the Source Control category in the options dialog.

3. Set the Executable property of the Mercurial Options group to point to Git hg command. On Windows

operating systems, the Git command is hg.exe.

CrossWorks for ARM Reference Manual CrossStudio User Guide

164

Connecting to the source-control system
When CrossStudio loads a project, it examines the file system folder that contains the project to determine the

source-control system the project uses. If CrossStudio cannot determine, from the file system, the source-control

system in use, it disables source-control integration.

That is, if you have not set up the paths to the source-control command line clients, even if a working copy exists

and the appropriate command line client is installed, CrossStudio cannot establish source-control integration for

the project.

User credentials

You can set the credentials that the source-control system uses, for commands that require credentials, using

VCS > Options > Configure. From here you can set the user name and password. These details are saved to the

session file (the password is encrypted) so you won't need to specify this information each time the project is

loaded.

Note

CrossStudio has no facility to create repositories from scratch, nor to clone, pull, or checkout repositories to

a working copy: it is your responsibility to create a working copy outside of CrossStudio using your selected

command-line client or Windows Explorer extension.

The "Tortoise" products are a popular set of tools to provide source-control facilities in the Windows shell. Use

Google to find TortoiseSVN, TortoiseGit, and TortoiseHG and see if you like them.

CrossWorks for ARM Reference Manual CrossStudio User Guide

165

File source-control status
Determining the source-control status of a file can be expensive for large repositories, so CrossWorks updates

the source-control status in the background. Priority is given to items that are displayed.

A file will be in one of the following states:

Clean:The file is in source control and matches the tip revision.

Not Controlled:The file is not in source control.

Conflicted:The file is in conflict with changes made to the repository.

Locked:The file is locked.

Update Available:The file is older than the most-recent version in source control.

Added:The file is scheduled to be added to the repository.

Removed:The file is scheduled to be removed from the repository.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing VCS > Refresh.

CrossWorks for ARM Reference Manual CrossStudio User Guide

166

Source-control operations
Source-control operations can be performed on single files or recursively on multiple files in the Project

Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's

shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the

Project Explorer shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

167

Adding files to source control

To add files to the source-control system:

1. In the Project Explorer, select the file to add. If you select a folder, project, or solution, any eligible child

items will also be added to source control.

2. choose Source Control > Add or press Ctrl+R, A.

3. The dialog will list the files that can be added.

4. In that dialog, you can deselect any files you don't want to add to source control.

5. Click Add.

Note

Files are scheduled to be added to source control and will only be committed to source control (and seen by

others) when you commit the file.

Enabling the VCS > Options > Add Immediately option will bypass the dialog and immediately add (but not

commit) the files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

168

Updating files

To update files from source control:

1. In the Project Explorer, select the file to update. If you select a folder, project, or solution, any eligible

child items will also be updated from source control.

2. choose Source Control > Update or press Ctrl+R, U.

3. The dialog will list the files that can be updated.

4. In that dialog, you can deselect any files you don't want to update from source control.

5. Click Update.

Note

Enabling the VCS > Options > Update Immediately option will bypass the dialog and immediately update the

files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

169

Committing files

To commit files:

1. In the Project Explorer, select the file to commit. If you select a folder, project, or solution, any eligible

child items will also be committed.

2. Choose Source Control > Commit or press Ctrl+R, C.

3. The dialog will list the files that can be committed.

4. In that dialog, you can deselect any files you don't want to commit and enter an optional comment.

5. Click Commit.

Note

Enabling the VCS > Options > Commit Immediately option will bypass the dialog and immediately commit the

files without a comment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

170

Reverting files

To revert files:

1. In the Project Explorer, select the file to revert. If you select a folder, project, or solution, any eligible child

items will also be reverted.

2. Choose Source Control > Revert or press Ctrl+R, V.

3. The dialog will list the files that can be reverted.

4. In that dialog, you can deselect any files you don't want to revert.

5. Click Revert.

Note

Enabling the VCS > Options > Revert Immediately option will bypass the dialog and immediately revert files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

171

Locking files

To lock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be locked.

2. Choose Source Control > Lock or press Ctrl+R, L.

3. The dialog will list the files that can be locked.

4. In that dialog, you can deselect any files you don't want to lock and enter an optional comment.

5. Click Lock.

Note

Enabling the VCS > Options > Lock Immediately option will bypass the dialog and immediately lock files

without a comment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

172

Unlocking files

To unlock files:

1. In the Project Explorer, select the file to lock. If you select a folder, project, or solution, any eligible child

items will also be unlocked.

2. Choose Source Control > Unlock or press Ctrl+R, N.

3. The dialog will list the files that can be unlocked.

4. In that dialog, you can deselect any files you don't want to unlock.

5. Click Unlock.

Note

Enabling the VCS > Options > Unlock Immediately option will bypass the dialog and immediately unlock files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

173

Removing files from source control

To remove files from source control:

1. In the Project Explorer, select the file to remove. If you select a folder, project, or solution, any eligible

child items will also be removed.

2. choose Source Control > Remove or press Ctrl+R, R.

3. The dialog will list the files that can be removed.

4. In that dialog, you can deselect any files you don't want to remove.

5. Click Remove.

Note

Files are scheduled to be removed from source control and will still be and seen by others, giving you the

opportunity to revert the removal. When you commit the file, the file is removed from source control.

Enabling the VCS > Options > Remove Immediately option will bypass the dialog and immediately remove (but

not commit) files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

174

Showing differences between files
To show the differences between the file in the project and the version checked into source control, do the

following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Compare.

You can use an external diff tool in preference to the built-in CrossWorks diff tool. To define the diff command

line CrossWorks generates, choose Tools > Options > Source Control > Diff Command Line. The command line

is defined as a list of strings to avoid problems with spaces in arguments. The diff command line can contain the

following macros:

$(localfile):The filename of the file in the project.

$(remotefile):The filename of the latest version of the file in source control.

$(localname):A display name for $(localfile).

$(remotename):A display name for $(remotefile).

CrossWorks for ARM Reference Manual CrossStudio User Guide

175

Source-control properties
When a file in the project is in source control, the Properties window shows the following properties in the

Source Control Options group:

Property Description

CrossStudio Status
The source-control status of working copy as viewed
by CrossStudio.

last Author The author of the file's head revision.

Path: Relative The item's path relative to the repository root.

Path: Repository The pathname of the file in the source-control system,
typically a URL.

Path: Working Copy The pathname of the file in the working copy.

Provider The name of the source-control system managing this
file.

Provider Status The status of the file as reported by the source-control
provider.

Revision: Local The revision number/name of the local file.

Revision: Remote The revision number/name of the most-recent version
in source control.

Status: In Conflict? If Yes, updates merged into the file using Update
conflict with the changes you made locally; if No,
the file is not locked. When conflicted, must resolve
the conflicts and mark them Resolved before
committing the file.

Status: Locked? If Yes, the file is lock by you; if No, the file is not locked.

Status: Modified? If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

Status: Update Available? If Yes, the file in the project location is an old version
compared to the latest version in the source-control
systemuse Update to merge in the latest changes.

CrossWorks for ARM Reference Manual CrossStudio User Guide

176

Subversion provider
The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description

Executable The path to the svn executable.

Lock Supported If Yes, check out and undo check out operations
are supported. Check out will issue the svn lock
command; check in and undo check out will issue the
svn unlock command.

Authentication Selects whether authentication (user name and
password) is sent with every command.

Show Updates Selects whether the update (-u flag) is sent with
status requests in order to show that new versions are
available in the repository. Note that this requires a
live connection to the repository: if you are working
without a network connection to your repository, you
can disable this switch and continue to enjoy source
control status information in the Project Explorer and
Pending Changes windows.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote

root, a svn checkout -N command will be issued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The CrossWorks source-control operations are implemented using Subversion commands. Mapping CrossWorks

source-control operations to Subversion source-control operations is straightforward:

Operation Command

Commit svn commit for the file, with optional comment.

Update svn update for each file.

Revert svn revert for each file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

177

Resolved svn resolved for each file.

Lock svn lock for each file, with optional comment.

Unlock svn unlock for each file.

Add svn add for each file.

Remove svn remove for each file.

Source Control Explorer svn list with a remote root. svn mkdir to create
directories in the repository.

CrossWorks for ARM Reference Manual CrossStudio User Guide

178

CVS provider
The CVS source-control provider has been tested with CVSNT 2.5.03. The CVS source-control provider uses the

CVS rls command to browse the repositorythis command is implemented in CVS 1.12 but usage of . as the root

of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description

CVSROOT The CVSROOT value to access the repository.

Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands
are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-
out operation will issue the cvs unedit command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs login command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the

local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote

root, a cvs checkout -l -d command will be issued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The CrossWorks source-control operations have been implemented using CVS commands. There are no

multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

Get Status
cvs status and optional cvs editors for local
directories in CVS control. cvs rls -e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file. cvs commit for the file and
directories.

Get Latest cvs update -l -d for each directory not in CVS
control. cvs update to merge the local file. cvs
update -C to overwrite the local file.

CrossWorks for ARM Reference Manual CrossStudio User Guide

179

Check Out Optional cvs update -C to get the latest version.
cvs edit to lock the file.

Undo Check Out cvs unedit to unlock the file. Optional cvs
update to get the latest version.

Check In cvs commit for the file.

Source Control Explorer cvs rls -e with a remote root starting with .. cvs
import to create directories in the repository.

CrossWorks for ARM Reference Manual CrossStudio User Guide

180

Package management
Additional target-support functions can be added to, and removed from, CrossWorks with packages.

A CrossWorks package is an archive file containing a collection of target-support files. Installing a package

involves copying the files it contains to an appropriate destination directory and registering the package with

CrossWorks's package system. Keeping target-support files separate from the main CrossWorks installation

allows us to support new hardware and issue bug fixes for existing hardware-support files between CrossWorks

releases, and it allows third parties to develop their own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:

Choose Tools > Manage Packages.

In some situations, such as using CrossWorks on a computer without Internet access or when you want to install

packages that are not on the website, you cannot use the Package Manager to install packages and it will be

necessary to manually install them.

To manually install a package:

1. Choose Tools > Packages > Manually Install Packages.

2. Select one or more package files you want to install.

3. Click Open to install the packages.

Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

CrossWorks for ARM Reference Manual CrossStudio User Guide

181

To activate the Package Manager:

Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

Click on the disclosure icon near the top-right corner of the dialog.

Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

Display All Show all packages irrespective of their status.

Display Not Installed Show packages that are available but are not currently installed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

182

Display Installed Only show packages that are installed.

Display Updates Only show packages that are installed but are not up-to-date because a newer version is

available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been

downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

1. Choose Tools > Package Manager and set the status filter to Display Not Installed.

2. Select the package or packages you wish to install.

3. Right-click the selected packages and choose Install Selected Packages from the shortcut menu.

4. Click Next; you will be see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will install the selected packages.

6. When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

1. Choose Tools > Package Manager and set the status filter to Display Updates.

2. Select the package or packages you wish to update.

3. Right-click the selected packages and choose Update Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will update the package(s).

6. When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

183

To remove a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to remove.

3. Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will remove the package(s).

6. When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1. Choose Tools > Package Manager and set the status filter to Display Installed.

2. Select the package or packages you wish to reinstall.

3. Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.

4. Click Next; you will see the actions the Package Manager is about to carry out.

5. Click Next and the Package Manager will reinstall the packages.

6. When the operation is complete, click Finish to close the Package Manager.

CrossWorks for ARM Reference Manual CrossStudio User Guide

184

Exploring your application
In this section, we discuss the CrossStudio tools that help you examine how your application is built.

CrossWorks for ARM Reference Manual CrossStudio User Guide

185

Project explorer
The Project Explorer is the user interface of the CrossWorks project system. It organizes your projects and files

and provides access to the commands that operate on them. A toolbar at the top of the window offers quick

access to commonly used commands for the selected project node or the active project. Right-click to reveal a

shortcut menu with a larger set of commands that will work on the selected project node, ignoring the active

project.

The selected project node determines what operations you can perform. For example, the Compile operation

will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files

in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations

The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Single click
Select the node. If the node is already selected and
is a solution, project, or folder node, a rename editor
appears.

Double click Double-clicking a solution node or folder node will
reveal or hide the node's children. Double-clicking a
project node selects it as the active project. Double-
clicking a file opens the file with the default editor for
that file's type.

Toolbar commands

The following buttons are on the toolbar:

Button Description

Add a new file to the active project using the New File
dialog.

Add existing files to the active project.

CrossWorks for ARM Reference Manual CrossStudio User Guide

186

Remove files, folders, projects, and links from the
project.

Create a new folder in the active project.

Menu of build operations.

Disassemble the active project.

Menu of Project Explorer options.

Display the properties dialog for the selected item.

Shortcut menu commands

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item Description

Build and Batch Build
Build all projects under the solution in the current or
batch build configuration.

Rebuild and Batch Rebuild Rebuild all projects under the solution in the current or
batch build configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add New Project Add a new project to the solution.

Add Existing Project Create a link from an existing solution to this solution.

Paste Paste a copied project into the solution.

Remove Remove the link to another solution from the solution.

Rename Rename the solution node.

Source Control Operations Source-control operations on the project file and
recursive operations on all files in the solution.

Edit Solution As Text Create an editor containing the project file.

Save Solution As Change the filename of the project filenote that the
saved project file is not reloaded.

Properties Show the Properties dialog with the solution node
selected.

CrossWorks for ARM Reference Manual CrossStudio User Guide

187

For projects:

Item Description

Build and Batch Build
Build the project in the current or batch build
configuration.

Rebuild and Batch Rebuild Reuild the project in the current or batch build
configuration.

Clean and Batch Clean Remove all output and intermediate build files for the
project in the current or batch build configuration.

Export Build and Batch Export Build Create an editor with the build commands for the
project in the current or batch build configuration.

Link Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set As Active Project Set the project to be the active project.

Debugging Commands For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

Memory-Map Commands For Executable project types that don't have memory-
map files in the project and have the memory-map file
project property set, there are commands to view the
memory-map file and to import it into the project.

Section-Placement Commands For Executable project types that don't have section-
placement files in the project but have the section-
placement file project property set, there are
commands to view the section-placement file and to
import it into the project.

Target Processor For Executable and Externally Built Executable project
types that have a Target Processor property group, the
selected target can be changed.

Add New File Add a new file to the project.

Add Existing File Add an existing file to the project.

New Folder Create a new folder in the project.

Cut Cut the project from the solution.

Copy Copy the project from the solution.

Paste Paste a copied folder or file into the project.

Remove Remove the project from the solution.

Rename Rename the project.

CrossWorks for ARM Reference Manual CrossStudio User Guide

188

Source Control Operations Source-control, recursive operations on all files in the
project.

Find in Project Files Run Find in Files in the project directory.

Properties Show the Project Manager dialog and select the
project node.

For folders:

Item Description

Add New File Add a new file to the folder.

Add Existing File Add an existing file to the folder.

New Folder Create a new folder in the folder.

Cut Cut the folder from the project or folder.

Copy Copy the folder from the project or folder.

Paste Paste a copied folder or file into the folder.

Remove Remove the folder from the project or folder.

Rename Rename the folder.

Source Control Operations Source-control recursive operations on all files in the
folder.

Compile Compile each file in the folder.

Properties Show the properties dialog with the folder node
selected.

For files:

Item Description

Open Edit the file with the default editor for the file's type.

Open With Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Select in File Explorer Create a operating system file system window with the
file selected.

Compile Compile the file.

Export Build Create an editor window containing the commands to
compile the file in the active build configuration.

Exclude From Build Set the Exclude From Build property to Yes for this
project node in the active build configuration.

Disassemble Disassemble the output file of the compile into an
editor window.

Preprocess Run the C preprocessor on the file and show the
output in an editor window.

Cut Cut the file from the project or folder.

CrossWorks for ARM Reference Manual CrossStudio User Guide

189

Copy Copy the file from the project or folder.

Remove Remove the file from the project or folder.

Import Import the file into the project.

Source Control Operations Source-control operations on the file.

Properties Show the properties dialog with the file node selected.

CrossWorks for ARM Reference Manual CrossStudio User Guide

190

Source navigator window
One of the best ways to find your way around your source code is using the Source Navigator. It parses the

active project's source code and organizes classes, functions, and variables in various ways.

To activate the Source Navigator:

Choose Navigate > Source Navigator or press Ctrl+Alt+N.

The main part of the Source Navigator window provides an overview of your application's functions, classes,

and variables.

CrossStudio displays these icons to the left of each object:

Icon Description

A C or C++ structure or a C++ namespace.

A C++ class.

A C++ member function declared private or a
function declared with static linkage.

A C++ member function declared protected.

A C++ member function declared public or a
function declared with extern linkage.

A C++ member variable declared private or a
variable declared with static linkage.

A C++ member variable declared protected.

A C++ member variable declared public or a variable
declared with extern linkage.

Re-parsing after editing

The Source Navigator does not update automatically, only when you ask it to. To parse source files manually,

click the Refresh button on the Source Navigator toolbar.

CrossStudio re-parses all files in the active project, and any dependent project, and updates the Source

Navigator with the changes. Parsing progress is shown as a progress bar in the in the Source Navigator window.

Errors and warnings detected during parsing are sent to the Source Navigator Log in the Output windowyou can

show the log quickly by clicking the Show Source Navigator Log tool button on the Source Navigator toolbar.

CrossWorks for ARM Reference Manual CrossStudio User Guide

191

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or

variables. Each object is placed into a folder according to its type.

To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.

2. Choose Group By Type

CrossWorks for ARM Reference Manual CrossStudio User Guide

192

References window
The References window shows the results of the last Find References operation. The Find References facility

is closely related to the Source Navigator in that it indexes your project and searches for references within the

active source code regions.

To activate the References window:

If you have hidden the References window and want to see it again:

Choose Navigate > References or press Ctrl+Alt+R.

To find all references in a project:

1. Open a source file that is part of the active project, or one of its dependent projects.

2. In the editor, move the insertion point within the name of the function, variable, method, or macro to

find.

3. Choose Search > Find References or press Alt+R.

4. CrossStudio shows the References window, without moving focus, and searches your project in the

background.

You can also find references directly from the text editor's context menu: right-click the item to find and choose

Find References. As a convenience, CrossStudio is configured to also run Find References when you Alt+Right-

click in the text editorsee Mouse-click accelerators.

To search within the results:

Type the text to search for in the Reference window's search box. As you type, the search results are

narrowed.

Click the close button to clear the search text and show all references.

To replace within the results:

Type the replacement text in the Reference window's replace box.

Use the buttons to navigate and replace the text.

The documents that have had replaced text will appear unsaved in the text editor.

CrossWorks for ARM Reference Manual CrossStudio User Guide

193

Symbol browser window
The Symbol Browser shows useful information about your linked application and complements the information

displayed in the Project Explorer window. You can select different ways to filter and group the information in

the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser

to drill down to see the size and location of each part of your program. The way symbols are sorted and grouped

is saved between runs; so, when you rebuild an application, CrossStudio automatically updates the Symbol

Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

Group symbols by source filename.

Group symbols by symbol type (equates, functions,
labels, sections, and variables).

Group symbols by the section where they are defined.

Move the insertion point to the statement that defined
the symbol.

Select columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an

application. CrossStudio displays the following icons to the left of each symbol:

Icon Description

Private Equate A private symbol not defined relative to
a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.

Public Function A public function symbol.

Private Label A private data symbol, defined relative to
a section.

Public Label A public data symbol, defined relative to a
section.

Section A program section.

CrossWorks for ARM Reference Manual CrossStudio User Guide

194

Choosing what to show

To activate the Symbol Browser window:

Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

You can choose to display the following fields for each symbol:

Value:The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.

For absolute or symbolic equates, this will be the value of the symbol.

Range:The range of addresses the code or data item covers. For code symbols that correspond to high-

level functions, the range is the range of addresses used for that function's code. For data addresses that

correspond to high-level static or extern variables, the range is the range of addresses used to store that

data item. These ranges are only available if the corresponding source file was compiled with debugging

information turned on: if no debugging information is available, the range will simply be the first address

of the function or data item.

Size:The size, in bytes, of the code or data item. The Size column is derived from the Range of the symbol:

if the symbol corresponds to a high-level code or data item and has a range, Size is calculated as the

difference between the start and end addresses of the range. If a symbol has no range, the size column is

blank.

Section:The section in which the symbol is defined. If the symbol is not defined within a section, the

Section column is blank.

Type:The high-level type for the data or code item. If the source file that defines the symbol is compiled

with debugging information turned off, type information is not available and the Type column is blank.

Frame Size:The amount of stack space used by a call to the function symbol. If the source file that defines

the symbol is compiled with debugging information turned off, frame size information is not available

and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use

the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.

2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath (No Section).

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

CrossWorks for ARM Reference Manual CrossStudio User Guide

195

2. From the pop-up menu, choose Group By Section.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.

When you group symbols by type, each symbol is classified as one of the following:

An Equate has an absolute value and is not defined as relative to, or inside, a section.

A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is

defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging

information, are grouped beneath (Unknown).

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those

symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides an

editable combobox} you can use to specify the symbols you'd like displayed. You can type * to match a sequence

of zero or more characters and ? to match exactly one character.

CrossWorks for ARM Reference Manual CrossStudio User Guide

196

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

high-level language symbols with an underscore character, so the variable extern int u or the function

void fn(void) have low-level symbol names _u and _fn. The Symbol Browser uses the low-level symbol

name when displaying and filtering, so you must type the leading underscore to match high-level symbols.

To display symbols that start with a common prefix:

Type the desired prefix text into the combo box, optionally followed by a "*".

For instance, to display all symbols that start with "i2c_", type "i2c_" and all matching symbols are displayedyou

don't need to add a trailing "*" in this case, because it is implied.

To display symbols that end with a common suffix:

Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in _data, type *_data and all matching symbols are displayedin this

case, the leading * is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging

information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.

or

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.

2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

197

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

1. Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.

3. Ensure the Size field is checked in the Field Chooser button's menu.

4. Ensure that the filter on the Symbol Browser toolbar is empty.

5. Click on the Size field in the header to sort by data size.

6. The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

1. Choose Navigate > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.

3. Ensure the Range and Size fields are checked in the Field Chooser button's menu.

4. Read the section sizes and ranges of each section in the application.

CrossWorks for ARM Reference Manual CrossStudio User Guide

198

Stack usage window
The Stack Usage Window finds the call paths of your linked application and displays them as a call tree

together with their minimal stack requirements. A call path of your application is any function that has been

linked in but has no direct call made to it but will make calls to other functions. The main function is the most

obvious example of a call path, an interrupt handler or a function that is called only as a function pointer are

other examples. To use the stack usage window your linked application must be compiled with debugging

information enabled.

User interface

Button Description

Move the insertion point to the statement that defined
the symbol.

Collapse the selected open call tree.

Open the selected open call tree.

Show only the deepest call path through the selected
call tree.

CrossWorks for ARM Reference Manual CrossStudio User Guide

199

Memory usage window
The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or

data.

To activate the Memory Usage window:

Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by CrossStudio, memory-usage information may not be available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.

To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and

choose Show Memory Sections from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

200

Each bar represents an entire memory segment. Green represents the area of the segment that contains the

program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed

in a segment is larger than the segment size. When this happens, the segment and section bars represents the

total memory used, green areas represent the code or data within the segment, and red areas represent code or

data placed outside the segment.

CrossWorks for ARM Reference Manual CrossStudio User Guide

201

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location

of specific objects within memory, use the Symbol browser window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

202

Bookmarks window
The Bookmarks window contains a list of bookmarks that are set in the project. The bookmarks are stored in the

session file associated with the project and persist across runs of CrossStudioif you remove the session file, the

bookmarks associated with the project are lost.

User interface

Button Description

Toggle a bookmark at the insertion point in the active
editor. Equivalent to choosing Edit > Bookmarks >
Toggle Bookmark or pressing Ctrl+F2.

Go to the previous bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Previous
Bookmark or pressing Alt+Shift+F2.

Go to the next next bookmark in the bookmark list.
Equivalent to choosing Edit > Bookmarks > Next
Bookmark or pressing Alt+F2.

Clear all bookmarksyou confirm the action using a
dialog. Equivalent to choosing Edit > Bookmarks >
Clear All Bookmarks or pressing Ctrl+K, Alt+F2.

Selects the fill color for newly created bookmarks.

Double-clicking a bookmark in the bookmark list moves focus to the the bookmark.

You can set bookmarks with the mouse or using keystrokessee Using bookmarks.

CrossWorks for ARM Reference Manual CrossStudio User Guide

203

Code Outline Window
The Code Outline window shows the structure of the text of the focused code editor. For C and C++ documents

the top level symbols and types are displayed, for XML documents the nodes are displayed. For C and C+

+ documents the Preview tab can display documentation on the top level symbols and types. The defacto

standard doxygen commands are supported for example:

/**
 * \brief Convert a given full parsed comment to an XML document.
 *
 * A Relax NG schema for the XML can be found in comment-xml-schema.rng file
 * inside clang source tree.
 *
 * \param Comment a \c CXComment_FullComment AST node.
 *
 * \returns string containing an XML document.
 */
CINDEX_LINKAGE CXString clang_FullComment_getAsXML(CXComment Comment);

CrossWorks for ARM Reference Manual CrossStudio User Guide

204

Analyzing Source Code
The Analyze action is available on the context menu of the project explorer at project, folder and file level. The

analyze action will run the https://clang.llvm.org/extra/clang-tidy linter tool on the C/C++ files selected by

the project explorer node and display warnings in the output window. The default checks will be the same as

the clang analyzer. You can enable additional checks by setting the Clang Tidy Checks project property. For

example you can enable the bugprone code constructs check and disable a specific clang analyzer diagnostic

check as follows

bugprone-*
-clang-diagnostic-parentheses-equality

You can also set the project property Analyze After Compile which will run the analyzer each time the compiler

is run.

https://clang.llvm.org/extra/clang-tidy

CrossWorks for ARM Reference Manual CrossStudio User Guide

205

Editing your code
CrossStudio has a built-in editor that allows you to edit text, but some features make it particularly well suited to

editing code.

You can open multiple code editors to browse or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.

You can open a code editor in several ways, some of which are:

By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the

shortcut menu.

Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

Code pane:The area where you edit code. You can set options that affect the code pane's text indents,

tabs, drag-and-drop behavior, and so forth.

Margin gutter:A gray area on the left side of the code editor where margin indicators such as breakpoints,

bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of

code.

Horizontal and vertical scroll bars:You can scroll the code pane horizontally and vertically to view code that

extends beyond the edges of the pane.

CrossWorks for ARM Reference Manual CrossStudio User Guide

206

Basic editing
This section is a whirlwind tour of the basic editing features CrossStudio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word

processors. For code that is part of a project, the project's programming language support provides syntax

highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

CrossWorks for ARM Reference Manual CrossStudio User Guide

207

Moving the insertion point
The most common way to navigate through text is to use use the mouse or the keyboard's cursor keys.

Using the mouse

You can move the insertion point within a document by clicking the mouse inside the editor window.

Using the keyboard

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Move the insertion point up one line

Down Move the insertion point down one line

Left Move the insertion point left one character

Right Move the insertion point right one character

Home Move the insertion point to the first non-whitespace
character on the line pressing Home a second time
moves the insertion point to the leftmost column

End Move the insertion point to the end of the line

PageUp Move the insertion point up one page

PageDown Move the insertion point down one page

Ctrl+Home Move the insertion point to the start of the document

Ctrl+End Move the insertion point to the end of the document

Ctrl+Left Move the insertion point left one word

Ctrl+Right Move the insertion point right one word

CrossStudio offers additional movement keystrokes, though most users are more comfortable using repeated

simple keystrokes to accomplish the same thing:

Keystroke Description

Alt+Up Move the insertion point up five lines

Alt+Down Move the insertion point down five lines

Alt+Home Move the insertion point to the top of the window

Alt+End Move the insertion point to the bottom of the window

Ctrl+Up Scroll the document up one line in the window
without moving the insertion point

CrossWorks for ARM Reference Manual CrossStudio User Guide

208

Ctrl+Down Scroll the document down one line in the window
without moving the insertion point

If you are editing source code, the are source-related keystrokes too:

Keystroke Description

Ctrl+PgUp
Move the insertion point backwards to the previous
function or method.

Ctrl+PgDn Move the insertion point forwards to the next function
or method.

CrossWorks for ARM Reference Manual CrossStudio User Guide

209

Adding text
The editor has two text-input modes:

Insertion mode:As you type on the keyboard, text is entered at the insertion point and any text to the right

of the insertion point is shifted along. A visual indication of insertion mode is that the cursor is a flashing

line.

Overstrike mode:As you type on the keyboard, text at the insertion point is replaced with your typing. A

visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert

mode. To configure the cursor appearance, choose Tools > Options.

To toggle between insertion and overstrike mode:

Click Insert.

When overstrike mode is enabled, the mode indicator changes from INS to OVR and the cursor will change to

the overstrike cursor.

To add or insert text:

1. Move the insertion point to the place text is to be inserted.

2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to place the editor into overstrike mode.

To add or insert text on multiple lines:

1. Hold down the Alt key and use block selection to mark the place text is to be inserted.

2. Enter the text using the keyboard.

CrossWorks for ARM Reference Manual CrossStudio User Guide

210

Deleting text
The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Delete the character before the insertion point

Delete Delete the character after the insertion point

Ctrl+Backspace Delete one word before the insertion point

Ctrl+Delete Delete one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.

2. Press Delete as many times as needed.

or

1. Place the insertion point after the letter or word you want to delete.

2. Press Backspace as many times as needed.

To delete text that spans more than a few characters:

1. Select the text you want to delete.

2. Press Delete or Backspace to delete it.

To delete a text block:

1. Hold down the Alt key and use block selection to mark the text you want to delete.

2. Press Delete or Backspace to delete it.

To delete characters on multiple lines:

1. Hold down the Alt key and use block selection to mark the lines.

2. Press Delete or Backspace as many times as needed to delete the characters.

CrossWorks for ARM Reference Manual CrossStudio User Guide

211

Using the clipboard
You can select text by using the keyboard or the mouse.

To select text with the keyboard:

Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.

2. Drag the mouse to mark the selection.

3. Release the mouse to end selecting.

To select a block of text with the keyboard:

Hold down the Shift+Alt keys while using the cursor keys.

To select a block of text with the mouse:

1. Hold down the Alt key.

2. Click the start of the selection.

3. Drag the mouse to mark the selection.

4. Release the mouse to end selecting.

To copy selected text to the clipboard:

Choose Edit > Copy or press Ctrl+C.

The standard Windows key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:

Choose Edit > Cut or press Ctrl+X.

The standard Windows key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:

Choose Edit > Paste or press Ctrl+V.

The standard Windows key sequence Shift+Ins also inserts the clipboard content at the insertion point.

CrossWorks for ARM Reference Manual CrossStudio User Guide

212

Undo and redo
The editor has an undo facility to undo previous editing actions. The redo feature can be used to re-apply

previously undone actions.

To undo one editing action:

Choose Edit > Undo or press Ctrl+Z.

The standard Windows key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Undo button.

2. Select the editing operations to undo.

To undo all edits:

Choose Edit > Others > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:

Choose Edit > Redo or press Ctrl+Y.

The standard Windows key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

Choose Edit > Others > Redo All or press Ctrl+K, Ctrl+Y.

CrossWorks for ARM Reference Manual CrossStudio User Guide

213

Drag and drop
You can select text, then drag it to another location. You can drop the text at a different location in the same

window or in another one.

To drag and drop text:

1. Select the text you want to move.

2. Press and hold the mouse button to drag the selected text to where you want to place it.

3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging

the text: the mouse pointer changes to indicate a copy operation. Press the Esc key while dragging text to cancel

the drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.

2. Click Text Editor.

3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

CrossWorks for ARM Reference Manual CrossStudio User Guide

214

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.

To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and

Shift+Tab or Shift+F3 to move to the previous match.

If you press Ctrl+F a second time, CrossStudio pops up the standard Find dialog to search the file. If you wish to

bring up the Find dialog without pressing Ctrl+F twice, choose Search > Find.

CrossWorks for ARM Reference Manual CrossStudio User Guide

215

Advanced editing
You can do anything using its basic code-editing features, but the CrossStudio text editor has a host of labor-

saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

CrossWorks for ARM Reference Manual CrossStudio User Guide

216

Indenting source code
The editor uses the Tab key to increase or decrease the indentation level of the selected text.

To increase indentation:

Select the text to indent.

Choose Selection > Increase Line Indent or press Tab.

To decrease indentation:

Select the text to indent.

Choose Selection > Decrease Line Indent or press Shift+Tab.

The indentation size can be changed in the Language Properties pane of the editor's Properties window, as can

all the indent-related features listed below.

To change indentation size:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Indent Size property for the required language.

You can choose to use spaces or tab tab characters to fill whitespace when indenting.

To set tab or space fill when indenting:

Choose Tools > Options or press Alt+,.

Select the Languages page.

Set the Use Tabs property for the required language. Note: changing this setting does not add or remove

existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation

assistance:

None:The indentation of the source code is left to the user.

Indent:This is the default. The editor maintains the current indentation level. When you press Return or

Enter, the editor moves the insertion point down one line and indented to the same level as the now-

previous line.

Smart:The editor analyzes the source code to compute the appropriate indentation level for each line.

You can change how many lines before the insertion point will be analyzed for context. The smart-indent

mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:

To change the indentation mode:

CrossWorks for ARM Reference Manual CrossStudio User Guide

217

Set the Indent Mode property for the required language.

To change whether opening braces are indented in smart-indent mode:

Set the Indent Opening Brace property for the required language.

To change whether closing braces are indented in smart-indent mode:

Set the Indent Closing Brace property for the required language.

To change the number of previous lines used for context in smart-indent mode:

Set the Indent Context Lines property for the required language.

CrossWorks for ARM Reference Manual CrossStudio User Guide

218

Commenting out sections of code

To comment selected text:

Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:

Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

CrossWorks for ARM Reference Manual CrossStudio User Guide

219

Adjusting letter case
The editor can change the case of the current word or the selection. The editor will change the case of the

selection, if there is a selection, otherwise it will change the case of word at the insertion point.

To change text to uppercase:

Choose Selection > Make Uppercase or press Ctrl+K, U.

This changes, for instance, Hello to HELLO.

To change text to lowercase:

Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, Hello to hello.

To switch between uppercase and lowercase:

Choose Selection > Switch Case.

This changes, for instance, Hello to hELLO.

With large software teams or imported source code, sometimes identifiers don't conform to your local coding

style. To assist in conversion between two common coding styles for identifiers, CrossStudio's editor offers the

following two shortcuts:

To change from split case to camel case:

Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance, this_is_wrong to thisIsWrong.

To change from camel case to split case:

Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance, thisIsWrong to this_is_wrong.

CrossWorks for ARM Reference Manual CrossStudio User Guide

220

Using bookmarks
To edit a document elsewhere and then return to your current location, add a bookmark. The Bookmarks

window maintains a list of the bookmarks set in source files see Bookmarks window.

To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

To place a bookmark using the mouse:

1. Right-click the margin gutter where the bookmark should be set.

2. Choose Toggle Bookmark.

The default color to use for new bookmarks is configured in the Bookmarks window. You can choose a specific

color for the bookmark as follows:

1. Press and hold the Alt key.

2. Click the margin gutter where the bookmark should be set.

3. From the palette, click the bookmark color to use for the bookmark.

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.

2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point moves to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point moves to the last bookmark in the document.

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark is no longer set.

To remove all bookmarks in a document:

Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

CrossWorks for ARM Reference Manual CrossStudio User Guide

221

Quick reference for bookmark operations

Keystroke Menu Description

Ctrl+F2
Edit > Bookmarks > Toggle
Bookmark

Toggle a bookmark at the insertion
point.

Ctrl+K, 0 Clear the bookmark at the insertion
point.

F2 Edit > Bookmarks > Next
Bookmark In Document

Move the insertion point to next
bookmark in the document.

Shift+F2 Edit > Bookmarks > Previous
Bookmark In Document

Move the insertion point to
previous bookmark in the
document.

Ctrl+Q, F2 Edit > Bookmarks > First
Bookmark In Document

Move the insertion point to the first
bookmark in the document.

Ctrl+Q, Shift+F2 Edit > Bookmarks > Last Bookmark
In Document

Move the insertion point to the last
bookmark in the document.

Ctrl+K, F2 Edit > Bookmarks > Clear
Bookmarks In Document

Clear all bookmarks in the
document.

Alt+F2 Edit > Bookmarks > Next
Bookmark

Move the insertion point to the next
bookmark in the Bookmarks list.

Alt+Shift+F2 Edit > Bookmarks > Previous
Bookmark

Move the insertion point to
the previous bookmark in the
Bookmarks list.

Ctrl+Q, Alt+F2 Edit > Bookmarks > First
Bookmark

Move the insertion point to the first
bookmark in the Bookmarks list.

Ctrl+Q, Alt+Shift+F2 Edit > Bookmarks > Last Bookmark Move the insertion point to the last
bookmark in the Bookmarks list.

Ctrl+K, Alt+F2 Edit > Bookmarks > Clear All
Bookmarks

Clear all bookmarks in all
documents.

CrossWorks for ARM Reference Manual CrossStudio User Guide

222

Find and Replace window
The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the Find and Replace window:

Choose Search > Find And Replace or press Ctrl+Alt+F.

To find text in a single file:

Select Current Document in the context combo box.

Enter the string to be found in the text edit input.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Whole word option.

If the search string is a regular expression, set the Use regexp option.

Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

Click the Replace button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find Next button to find next occurrence of the string, then click the Replace button to replace

the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

Click the Find In Files button on the toolbar.

Enter the string to search for into the Find what input.

Select the appropriate option in the Look in input to select whether to carry out the search in all open

documents, all documents in the current project, all documents in the current solution, or all files in a

specified folder.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

CrossWorks for ARM Reference Manual CrossStudio User Guide

223

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

Click the Replace In Files button on the toolbar.

Enter the string to search for into the Find what input.

Enter the replacement string into the Replace with input. If the search string is a regular expression, the n

back-reference can be used in the replacement string to reference captured text.

Select the appropriate option in the Look in input to select whether you want to carry out the search and

replace in the current or in all open documents.

If you have specified that you want to search in a folder, select the folder you want to search by entering

its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

If the search will be case sensitive, set the Match case option.

If the search will be for a whole wordi.e., there will be whitespace, such as spaces or the beginning or end

of the line, on both sides of the string being searched forset the Match whole word option.

If the search string is a regular expression, set the Use regular expression option.

Click the Replace All button to replace all occurrences of the string in the specified files.

CrossWorks for ARM Reference Manual CrossStudio User Guide

224

Clipboard Ring window
The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The

clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using

the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.

To activate the clipboard ring:

Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.

To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current

item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one

you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces

the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The

item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item

again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste a specific item from the clipboard ring:

1. Move the insertion point to the position to paste the item in the document.

2. Click the arrow at the right of the item to paste.

3. Choose Paste from the pop-up menu.

or

1. Click the item to paste to make it the current item.

2. Move the insertion point to the position to paste the item in the document.

3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the insertion point to where you want

to paste the items and do one of the following:

Choose Edit > Clipboard Ring > Paste All.

or

CrossWorks for ARM Reference Manual CrossStudio User Guide

225

On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:

1. Click the arrow at the right of the item to remove.

2. Choose Delete from the pop-up menu.

To remove all items from the clipboard ring:

Choose Edit > Clipboard Ring > Clear Clipboard Ring.

or

On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows category to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or

deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

CrossWorks for ARM Reference Manual CrossStudio User Guide

226

Mouse-click accelerators
CrossStudio provides a number of mouse-click accelerators in the editor that speed access to commonly used

functions. The mouse-click accelerators are user configurable using Tools > Options.

Default mouse-click assignments

Click Default

Left Not configurable start selection.

Shift+Left Not configurable extend selection.

Ctrl+Left Select word.

Alt+Left Execute Go To Definition.

Middle No action.

Shift+Middle Display Go To Include menu.

Ctrl+Middle No action.

Alt+Middle Display Go To Method menu.

Right Not configurable show context menu.

Shift+Right No action.

Ctrl+Right No action.

Alt+Right Execute Find References.

Each accelerator can be assigned one of the following actions:

Default:The system default for that click.

Go To Definition:Go to the definition of the item clicked, equivalent to choosing Navigate > Go To

Definition or pressing Alt+G.

Find References:Find references to the item clicked, equivalent to choosing Search > Find References or

pressing Alt+R.

Find in Solution:Textually find the item clicked in all the files in the solution, equivalent to choosing Search

> Find Extras > Find in Solution or pressing Alt+U.

Find Help:Use F1-help on the item clicked, equivalent to choosing Help > Help or pressing F1.

Go To Method:Display the Go To Method menu, equivalent to choosing Navigate > Find Method or

pressing Ctrl+M.

Go To Include:Display the Go To Include menu, equivalent to choosing Navigate > Find Include or

pressing Ctrl+Shift+M.

Paste:Paste the clipboard at the position clicked, equivalent to choosing Edit > Paste or pressing Ctrl+V.

Configuring Mac OS X

On Mac OS X you must configure the mouse to pass middle clicks and right clicks to the application if you wish

to use mouse-click accelerators in CrossStudio. Configure the mouse preferences in the Mouse control panel in

Mac OS X System Preferences to the following:

CrossWorks for ARM Reference Manual CrossStudio User Guide

227

Right mouse button set to Secondary Button.

Middle mouse button set to Button 3.

CrossWorks for ARM Reference Manual CrossStudio User Guide

228

Regular expressions
The editor can search and replace text using regular expressions. A regular expression is a string that uses

special characters to describe and reference patterns of text. The regular expression system used by the editor

is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular

Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the CrossStudio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters
c or h. A range can be specified using the - character;
e.g., [0-27-9] matches if the character is 0, 1, 2, 7 8, or
9. A range can be negated using the ^ character; e.g.,
[^a-z] matches if the character is anything other than a
lowercase alphabetic character.

\c Match the literal character c. For example, you would
use * to match the character *.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCII code 12).

\t Match ASCII horizontal tab character (ASCII code 9).

\v Match ASCII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

. Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

? Match zero or one occurrences of the preceding
expression.

CrossWorks for ARM Reference Manual CrossStudio User Guide

229

{n} Match n occurrences of the preceding expression.

{n,} Match at least n occurrences of the preceding
expression.

{,m} Match at most m occurrences of the preceding
expression.

{n,m} Match at least n and at most m occurrences of the
preceding expression.

^ Beginning of line.

$ End of line.

\b Word boundary.

\B Non-word boundary.

(e) Capture expression e.

\n Back-reference to nth captured text.

Examples

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what" "Replace With" Description

u\w.d

Search for any-length string
containing one or more word
characters beginning with the
character u and ending in the
character d.

^.*;$ Search for any lines ending in a
semicolon.

(typedef.+\s+)(\S+); \1TEST_\2; Find C type definition and insert the
string TEST onto the beginning of
the type name.

CrossWorks for ARM Reference Manual CrossStudio User Guide

230

Locals window
The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents

of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call

Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the

active stack frame. Items that have changed since they were previously displayed are highlighted in red.

To activate the Locals window:

Choose Debug > Locals or press Ctrl+Alt+L.

When you select a variable in the main part of the display, the display-format button highlighted on the Locals

window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

CrossWorks for ARM Reference Manual CrossStudio User Guide

231

or

Click the item to change.

On the Locals window toolbar, select the desired display format.

To modify the value of a local variable:

Click the value of the local variable to modify.

Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, select one of the commands to modify the local variable's value.

CrossWorks for ARM Reference Manual CrossStudio User Guide

232

Globals window
The Globals window displays a list of all variables that are global to the program. The operations available on the

entries in this window are the same as the Watch window, except you cannot add or delete variables from the

Globals window.

Globals window user interface

The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Sort variables alphabetically by name.

Sort variables numerically by address or register
number (default).

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the

program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and

new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

Choose Debug > Other Windows > Globals or press Ctrl+Alt+G.

CrossWorks for ARM Reference Manual CrossStudio User Guide

233

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals

window toolbar changes to show the item's display format.

To change the display format of a global variable:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Globals window toolbar, select the desired display format.

To modify the value of a global variable:

Click the value of the global variable to modify.

Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

CrossWorks for ARM Reference Manual CrossStudio User Guide

234

Watch window
The Watch window provides a means to evaluate expressions and to display the results of those expressions.

Typically, expressions are just the name of a variable to be displayed, but they can be considerably more

complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the

expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

Display the selected item in binary.

Display the selected item in octal.

Display the selected item in decimal.

Display the selected item in hexadecimal.

Display the selected item as a signed decimal.

Display the selected item as a character or Unicode
character.

Set the range displayed in the active Memory window
to span the memory allocated to the selected item.

Remove the selected watch item.

Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description

View pointer or array as a null-terminated string.

View pointer or array as an array.

View pointer value.

Set watch value to zero.

Set watch value to one.

Increment watched variable by one.

Decrement watched variable by one.

CrossWorks for ARM Reference Manual CrossStudio User Guide

235

Negated watched variable.

Invert watched variable.

View the properties of the watch value.

You can view details of the watched item using the Properties window.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address
The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program

stops on a breakpoint, or single steps, and whenever you traverse the call stack. Items that have changed since

they were previously displayed are highlighted in red.

To activate the Watch window:

Choose Debug > Other Windows > Watch > Watch 1 or press Ctrl+T, W, 1.

CrossWorks for ARM Reference Manual CrossStudio User Guide

236

You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch

window toolbar changes to show the item's display format.

To change the display format of an expression:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

a null-terminated ASCII string

an array

an integer

dereferenced

To modify the value of an expression:

Click the value of the local variable to modify.

Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with 0b,

and octal numbers with 0.

or

Right-click the value of the local variable to modify.

From the shortcut menu, choose one of the commands to modify the variable's value.

CrossWorks for ARM Reference Manual CrossStudio User Guide

237

Register window
The Register windows show the values of both CPU registers and the processor's special function or peripheral

registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have

hundreds of special function registers or peripheral registers, so CrossStudio provides four register windows. You

can configure each register window to display one or more register groups for the processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Display the CPU, special function register, and
peripheral register groups.

Display the CPU registers.

Hide the CPU registers.

Force-read a register, ignoring the access property of
the register.

Update the selected register group.

Set the active memory window to the address and size
of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the

program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:

Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The

selected context can be:

The register state the CPU stopped in.

The register state when a function call occurred using the Call Stack window.

The register state of the currently selected thread using the the Threads window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

238

The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

On the Registers window toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or

peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built

with. If there is no memory-map file associated with a project, the Registers window will show only the CPU

registers.

To display a special function or peripheral register:

On the Registers toolbar, click the Groups button.

From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the

Registers window toolbar changes to show the item's display format.

To change the display format of a register:

Right-click the item to change.

From the shortcut menu, choose the desired display format.

or

Click the item to change.

On the Registers window toolbar, select the desired display format.

Modifying register values

To modify the value of a register:

Click the value of the register to modify.

CrossWorks for ARM Reference Manual CrossStudio User Guide

239

Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0b, and

octal numbers with 0.

or

Right-click the value of the register to modify.

From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

240

Memory window
The Memory window shows the contents of the connected target's memory areas and allows the memory to

be edited. CrossStudio provides four memory windows, you can configure each memory window to display

different memory ranges.

The Memory window has a toolbar and a data display/edit area

Field/Button Description

Address
Address to display. This can be a numeric value or a
debug expression.

Size Number of bytes to display. This can be a number or
a debug expression. If unspecified, the number of
bytes required to fill the window will be automatically
calculated.

Columns Number of columns to display. If unspecified, the
number of columns required to fill the window will be
automatically calculated.

Select binary display.

Select octal display.

Select unsigned decimal display.

Select signed decimal display.

Select hexadecimal display (default).

Select byte display (default).

Select 2-byte display.

Select 4-byte display.

Display both data and text (default).

Display data only.

Display text only.

Display an incrementing address range that starts from
the selected address (default).

Display a decrementing address range that starts from
the selected address.

CrossWorks for ARM Reference Manual CrossStudio User Guide

241

Display an incrementing address range that ends at
the selected address.

Display a decrementing address range that ends at the
selected address.

Evaluate the address and size expressions, and update
the Memory window.

Using the memory window

The memory window does not show the complete address space of the target, instead you must enter both the

address and the number of bytes to display. You can specify the address and size using numeric values or debug

expressions which enable you to position the memory display at the address of a variable or at the value of a

register. You can also specify whether you want the expressions to be evaluated each time the memory window

is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update each time

your program stops on a breakpoint, after a single step and whenever you traverse the call stack. If any values

that were previously displayed have changed, they are highlighted in red.

To activate the first Memory window:

Choose Debug > Other Windows > Memory > Memory 1 or press Ctrl+T, M, 1.

Other register windows can be similarly activated.

Using the mouse

You can move the memory window's edit cursor by clicking on a data or text entry.

The vertical scroll bar can be used to modify the address being viewed by clicking the up and down buttons, the

page up and down areas or using the vertical scroll wheel when the scroll bar is at it's furthest extent. Holding

down the Shift key while scrolling will prevent the address being modified.

Using the keyboard

Keystroke Description

Up
Move the cursor up one line, or if the cursor is on the
first line, move the address up one line.

Down Move the cursor down one line, or if the cursor is on
the last line, move the address down line line.

Left Move the cursor left one character.

Right Move the cursor right one character.

Home Move the cursor to the first entry.

End Move the cursor to the last entry.

CrossWorks for ARM Reference Manual CrossStudio User Guide

242

PageUp Move the cursor up one page, or if the cursor is on first
page, move the address up one page.

PageDown Move the cursor down one page, or if the cursor is on
the last page, move the address down one page.

Ctrl+E Toggle the cursor between data and text editing.

Editing memory

To edit memory, simply move the cursor to the data or text entry you want to modify and start typing. The

memory entry will be written and read back as you type.

Shortcut menu commands

The shortcut menu contains the following commands:

Action Description

Access Memory By Display Width Access memory in terms of the display width.

Address Order Specify whether the address range shown uses
Address as the start or end address and whether
addresses should increment or decrement.

Auto Evaluate Re-evaluate Address and Size each time the Memory
window is updated.

Auto Refresh Specify how frequently the memory window should
automatically refresh.

Export To Binary Editor Create a binary editor with the current Memory
window contents.

Save As Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Load From Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, TI Hex File, and Hex File.

Display formats

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

Saving memory contents

You can save the displayed contents of the memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

CrossWorks for ARM Reference Manual CrossStudio User Guide

243

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas

Instruments TXT file.

To save the current state of memory to a file:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

Select the start address and number of bytes to save by editing the Start Address and Size fields in the

Memory window toolbar.

Right-click the main memory display.

Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

Copying to clipboard

You can copy the contents of the memory window to the clipboard as text. If an address range is selected, the

data or text of the selected range will be copied to the clipboard depending on whether the selection has been

made in the data or text view. If no address range is selected, the current memory window view will be copied to

the clipboard.

CrossWorks for ARM Reference Manual CrossStudio User Guide

244

Breakpoints window
The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

Enable, disable, and delete existing breakpoints.

Add new breakpoints.

Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular

project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level

breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout

The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Create a new breakpoint using the New Breakpoint
dialog.

Toggle the selected breakpoint between enabled and
disabled states.

Remove the selected breakpoint.

Move the insertion point to the statement where the
selected breakpoint is set.

Delete all breakpoints.

Disable all breakpoints.

Enable all breakpoints.

Create a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints are set and the state they are in. You can

organize breakpoints into folders, called breakpoint groups.

CrossStudio displays these icons to the left of each breakpoint:

Icon Description

CrossWorks for ARM Reference Manual CrossStudio User Guide

245

Enabled breakpoint An enabled breakpoint will stop
your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

In the Breakpoints window, click the breakpoint to delete.

From the Breakpoints window toolbar, click the Delete Breakpoint} button.

To edit the properties of a breakpoint:

In the Breakpoints window, right-click the breakpoint to edit.

Choose Edit Breakpoint from the shortcut menu.

Edit the breakpoint in the New Breakpoint dialog.

To toggle the enabled state of a breakpoint:

In the Breakpoints window, right-click the breakpoint to enable or disable.

Choose Enable/Disable Breakpoint from the shortcut menu.

or

In the Breakpoints window, click the breakpoint to enable or disable.

Press Ctrl+F9.

CrossWorks for ARM Reference Manual CrossStudio User Guide

246

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints

that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

From the Breakpoints window toolbar, click the New Breakpoint Group button.

or

From the Debug menu, choose Breakpoints then New Breakpoint Group.

or

Right-click anywhere in the Breakpoints window.

Choose New Breakpoint Group from the shortcut menu.

In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

In the Breakpoints window, right-click the breakpoint group to make active.

Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

In the Breakpoints window, right-click the breakpoint group to delete.

Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to enable.

Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

In the Breakpoints window, right-click the breakpoint group to disable.

Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

CrossWorks for ARM Reference Manual CrossStudio User Guide

247

To delete all breakpoints:

Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.

or

On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:

Choose Breakpoints > Enable All Breakpoints or press Ctrl+B, N.

or

On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:

Choose Breakpoints > Disable All Breakpoints or press Ctrl+B, X.

or

On the Breakpoints window toolbar, click the Disable All Breakpoints button.

CrossWorks for ARM Reference Manual CrossStudio User Guide

248

Call Stack window
The Call Stack window displays the list of function calls (stack frames) that were active when program execution

halted. When execution halts, CrossStudio populates the call-stack window from the active (currently executing)

task. For simple, single-threaded applications not using the CrossWorks tasking library, there is only a single

task; but for multi-tasking programs that use the CrossWorks Tasking Library, there may be any number of tasks.

CrossStudio updates the Call Stack window when you change the active task in the Threads window.

The Call Stack window has a toolbar and a main call-stack display.

Button Description

Move the insertion point to where the call was made
to the selected frame.

Set the debugger context to the selected stack frame.

Move the debugger context down one stack to the
called function.

Move the debugger context up one stack to the calling
function.

Select the fields to display for each entry in the call
stack.

Set the debugger context to the most recent stack
frame and move the insertion point to the currently
executing statement.

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point

when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

CrossStudio displays these icons to the left of each function name:

Icon Description

Indicates the stack frame of the current task.

Indicates the stack frame selected for the debugger
context.

Indicates that a breakpoint is active and when the
function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

CrossWorks for ARM Reference Manual CrossStudio User Guide

249

Showing the call-stack window

To activate the Call Stack window:

Choose Debug > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and

values. You can configure the Call Stack window to show varying amounts of information for each stack frame.

By default, CrossStudio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.

2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:

In the Call Stack window, double-click the stack frame to move to.

or

In the Call Stack window, select the stack frame to move to.

On the Call Stack window's toolbar, click the Switch To Frame button.

or

In the Call Stack window, right-click the stack frame to move to.

Choose Switch To Frame from the shortcut menu.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context up one stack frame:

On the Call Stack window's toolbar, click the Up One Stack Frame button.

or

CrossWorks for ARM Reference Manual CrossStudio User Guide

250

On the Debug Location toolbar, click the Up One Stack Frame button.

or

Press Alt+-.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context down one stack frame:

On the Call Stack window's toolbar, click the Down One Stack Frame button.

or

On the Debug Location toolbar, click the Down One Stack Frame button.

or

Press Alt++.

The debugger moves the insertion point to the statement where the call was made. If there is no debug

information for the statement at the call location, CrossStudio opens a disassembly window at the instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

In the Call Stack window, click the stack frame on the function to stop at on return.

On the Build toolbar, click the Toggle Breakpoint button.

or

In the Call Stack window, click the stack frame on the function to stop at on return.

Press F9.

or

In the Call Stack window, right-click the function to stop at on return.

Choose Toggle Breakpoint from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

251

Threads window
The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.

To activate the Threads window:

Choose Debug > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type

property is "Threads Script" (or is called threads.js) and is in the project that is being debugged.

When debugging starts the function init() is called to determine which columns are displayed in the Threads

window.

When the application stops on a breakpoint, the function update() is called to create entries in the Threads

window corresponding to the columns that have been created together with the saved execution context

(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

contextto put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script

The threads script controls the Threads window with the Threads object.

The methods Threads.setColumns, Threads.setSortByNumber and Threads.setColor can be called from the

function init().

function init()
{
 Threads.setColumns("Name", "Priority", "State", "Time");
 Threads.setSortByNumber("Time");
 Threads.setColor("State", "Ready", "Executing", "Waiting");
}

The above example creates the named columns Name, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically. The states Ready, Executing and Waiting will

have yellow, green and red colored pixmaps respectively.

If you don't supply the function init() in the threads script, the Threads window will create the default columns

Name, Priority, and State.

The methods Threads.clear(), Threads.newqueue(), and Threads.add() can be called from the function

update().

The Threads.clear() method clears the Threads window.

The Threads.newqueue() function takes a string argument and creates a new, top-level entry in the Threads

window. Subsequent entries added to this window will go under this entry. If you don't call this, new entries will

all be at the top level of the Threads window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

252

The Threads.add() function takes a variable number of string arguments, which should correspond to the

number of columns displayed by the Threads window. The last argument to the Threads.add() function

should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can

be supplied a call to the threads script function getregs(handle), which will return an array when the thread is

selected in the Threads window. The array containing the registers should have elements in the same order in

which they are displayed in the CPU Registers displaytypically this will be in register-number order, e.g., r0, r1,

and so on.

function update()
{
 Threads.clear();
 Threads.newqueue("My Tasks");
 Threads.add("Task1", "0", "Executing", "1000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
 Threads.add("Task2", "1", "Waiting", "2000", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]);
}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the

methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use

the JavaScript method Debug.evaluate("expression"), which will evaluate the string argument as a debug

expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.

So, if you have structs in the application as follows

struct task {
 char *name;
 unsigned char priority;
 char *state;
 unsigned time;
 struct task *next;
 unsigned registers[17];
 unsigned thread_local_storage[4];
};

struct task task2 =
{
 "Task2",
 1,
 "Waiting",
 2000,
 0,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },
 { 0,1,2,3 }
};

struct task task1 =
{
 "Task1",
 0,
 "Executing",
 1000,
 &task2,
 { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 },

CrossWorks for ARM Reference Manual CrossStudio User Guide

253

 { 0,1,2,3 }
};

you can update() the Threads window using the following:

task1 = Debug.evaluate("task1");
Threads.add(task1.name, task1.priority, task1.state, task1.time, task1.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug.evaluate("&task1");
while (next)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 }

Note that, if the threads script goes into an endless loop, the debuggerand consequently CrossStudiowill

become unresponsive and you will need to kill CrossStudio using a task manager. Therefore, the above loop is

better coded as follows:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, xt.registers);
 next = xt.next;
 count++;
 }

You can speed up the Threads window update by not supplying the registers of the thread to the Threads.add()

function. To do this, you should supply a handle/pointer to the thread as the last argument to the Threads.add()

function. For example:

var next = Debug.evaluate("&task1");
var count = 0;
while (next && count < 10)
 {
 var xt = Debug.evaluate("*(struct task*)"+next);
 Threads.add(xt.name, xt.priority, xt.state, xt.time, next);
 next=xt.next;
 count++;
 }

When the thread is selected, the Threads window will call getregs(x) in the threads script. That function should

return the array of registers, for example:

function getregs(x)
{
 return Debug.evaluate("((struct task*)"+x+")->registers");
}

CrossWorks for ARM Reference Manual CrossStudio User Guide

254

If you use thread local storage, implementing the gettls(x) function enables you to return the base address of

the thread local storage, for example:

function gettls(x)
{
 return Debug.evaluate("((struct task*)"+x+")->thread_local_storage");
}

The gettls(x) function can also be called with null as a parameter. In this case you will have to evaluate an

expression that returns the current thread local storage, for example:

function gettls(x)
{
 if (x==null)
 x = Debug.evaluate("¤tTask");
 return Debug.evaluate("((struct task*)"+x+")->thread_local_storage");
}

The debugger may require the name of a thread which you can provide by implementing the getname(x)

function, for example:

function getname(x)
{
 return Debug.evaluate("((struct task*)"+x+")->name");
}

Adding extra queues to the threads window

You can add extra information to the threads window to display other RTOS queues. In the function init() you

can use Threads.setColumns2 to create an additional display in the threads window, for example:

function init()
{
 ...
 Threads.setColumns2("Timers", "Id(Timers)", "Name", "Hook", "Timeout", "Period", "Active");

The first argument is identifier of the queue which is also supplied to Threads.add2 in the function update() as

follows

function update()
{
 ...
 Threads.add2("Timers", "0x1FF0A30", "MyTimer", "0x46C8 (Timer50)", "50(550)", "50", "1");

You can avoid updating queues that aren't displayed using the Threads.shown function as follows

function update()
{
 ...
 if (Threads.shown("Timers"))
 Threads.add2("Timers", "0x1FF0A30", "MyTimer", "0x46C8
 (Timer50)", "50(550)", "50", "1");

CrossWorks for ARM Reference Manual CrossStudio User Guide

255

Execution Profile window
The Execution Profile window shows a list of source locations and the number of times those source locations

have been executed. This window is only available for targets that support the collection of jump trace

information.

To activate the Execution Profile window:

Choose Debug > Other Windows > Execution Profile or press Ctrl+T, P.

The count value displayed is the number of times the first instruction of the source code location has been

executed. The source locations displayed are target dependent: they could represent each statement of the

program or each jump target of the program. If however the debugger is in intermixed or disassembly mode

then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have

this window displayed then single stepping may be slower than usual.

CrossWorks for ARM Reference Manual CrossStudio User Guide

256

Execution Trace window
The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:

Choose Debug > Other Windows > Execution Trace or press Ctrl+T, T.

The type and number of the trace entries depends upon the target that is connected when gathering trace

information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can

click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.

Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

257

Debug file search editor
When a program is built with debugging enabled, the debugging information contains the paths and filenames

of all the source files for the program in order to allow the debugger to find them. If a program or library linked

into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help CrossStudio find the source files is to add the directory containing

the source files to one of its source-file search paths. Alternatively, if CrossStudio cannot find a source file, it will

prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located

where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. CrossStudio maintains two debug source-file search paths:

Project-session search path:This path is for the current project session and does not apply to all projects.

The global search path:This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the

original pathnames to the new locations. When a file cannot be found at its original location or in the debug

search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the

user has specified that the file does not exist. Each project session maintains its own source file map, the map is

not shared by all projects.

To view the debug source file map:

Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

Choose Debug > Options > Search Paths.

CrossWorks for ARM Reference Manual CrossStudio User Guide

258

Right-click the mapping to delete.

Choose Delete Mapping from the shortcut menu.

To remove all entries from the debug source file map:

Choose Debug > Options > Search Paths.

Right-click any mapping.

Choose Delete All Mappings from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

259

Debug Terminal window
The Debug Terminal window displays debug output from the target application and can also be used to be

provide debug input to the target application.

To activate the Debug Terminal window:

Choose Debug > Debug Terminal or press Ctrl+Alt+D.

CrossWorks for ARM Reference Manual CrossStudio User Guide

260

Debug Immediate window
The Debug Immediate window allows you to type in debug expressions and display the results. All results are

displayed in the format specified by the Default Display Mode property found in the Debugging group in the

Environment Options dialog.

To activate the Envronment Options dialog:

Choose Tools > Options or press Alt+,.

To activate the Debug Immediate window:

Choose Debug > Other Windows > Debug Immediate.

CrossWorks for ARM Reference Manual CrossStudio User Guide

261

Breakpoint expressions
The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities

offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the

particular target interface you are using and the capabilities of your target silicon for exact details. The simplest

expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first

instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the

symbol has been accessed; this is termed a data breakpoint. For example, the expression x will breakpoint when

x is accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,

x[4] will breakpoint when element 4 of array x is accessed, and @sp will breakpoint when the sp register is

accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific

value. The expression x == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,

==, and != can be used similarly. For example, @sp <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator & to mask the value you wish to break on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator && to combine comparisons. For example

(x >= 2) && (x <= 14)

will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char[256])

(0x1000) will breakpoint when the memory region 0x10000x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example !(char[256])(0x1000) will

breakpoint when memory outside the range 0x10000x10FF is accessed.

CrossWorks for ARM Reference Manual CrossStudio User Guide

262

Debug expressions
The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.

The simplest expression is an identifier the debugger tries to interpret in the following order:

an identifier that exists in the scope of the current context.

the name of a global identifier in the program of the current context.

Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.

Registers can be referenced by prefixing the register name with @.

The standard C and C++ operators !, ~, *, /, %, +, -, >>, <<, <, <=, >, >=, ==, |, &, ^, &&, and || are supported

on numeric types.

The standard assignment operators =, +=, -=, *=, /=, %=, >>, >>=, <<=, &=, |=, ^= are supported on numeric

types.

The array subscript operator [] is supported on array and pointer types.

The structure access operator . is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix *) is supported on pointers, the address-of (prefix &) and sizeof operators are

supported.

The addressof(filename, linenumber) operator will return the address of the specified source code line

number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Arrays can be sliced using [a:b] where a is the first element and b is the last element to display.

Operators have the precedence and associativity one expects of a C-like programming language.

CrossWorks for ARM Reference Manual CrossStudio User Guide

263

Output window
The Output window contains logs and transcripts from various systems within CrossStudio. Most notably, it

contains the Transcript and Source Navigator Log.

Transcript
The Transcript contains the results of the last build or target operation. It is cleared on each build. Errors

detected by CrossStudio are shown in red and warnings are shown in yellow. Double-clicking an error

or warning in the build log will open the offending file at the error position. The commands used for the

build can be echoed to the build log by setting the Echo Build Command Lines environment option. The

transcript also shows a trace of the high-level loading and debug operations carried out on the target. For

downloading, uploading, and verification operations, it displays the time it took to carry out each operation.

The log is cleared for each new download or debug session.

Navigator Log
The Source Navigator Log displays a list of files the Source Navigator has parsed and the time it took to

parse each file.

To activate the Output window:

Choose View > Output or press Ctrl+Alt+O.

To show a specific log:

On the Output window toolbar, click the log combo box.

From the list, click the log to display.

or

Choose View > Logs and select the log to display.

CrossWorks for ARM Reference Manual CrossStudio User Guide

264

Properties window
The Properties window displays properties of the current CrossStudio object. Using the Properties window, you

can set the build properties of your project, modify the editor defaults, and change target settings.

To activate the Properties window:

Choose View > Properties Window or press Ctrl+Alt+Enter.

The Properties window is organized as a set of keyvalue pairs. As you select one of the keys, help text explains

the purpose of the property. Because properties are numerous and can be specific to a particular product build,

consider this help to be the definitive help on the property.

You can divide the properties display into categories or, alternatively, display it as a flat list that is sorted

alphabetically.

A combo-box enables you to change the properties and explains which properties you are looking at.

Some properties have actions associated with themyou can find these by right-clicking the property key. Most

properties that represent filenames can be opened this way.

When the Properties window is displaying project properties, you'll find some properties displayed in bold. This

means the property value hasn't been inherited. If you wish to inherit rather than define such a property, right-

click the property and select Inherit from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

265

Targets window
The Targets window (and its associated menu) displays the set of target interfaces you can connect to in order

to download and debug your programs. Using the Targets window in conjunction with the Properties window

enables you to define new targets based on the specific target types supported by the particular CrossStudio

release.

To activate the Targets window:

Choose View > Targets or press Ctrl+Alt+T.

You can connect, disconnect, and reconnect to a target system. You can also use the Targets window to reset

and load programs.

Targets window layout

Button Description

Connect the target interface selected in the Targets
window.

Disconnect the connected target interface.

Reconnect the connected target interface.

Reset the connected target interface.

Display the properties of the selected target interface.

Managing connections to target devices

To connect a target:

In the Targets window, double-click the target to connect.

or

Choose Target > Connect and click the target to connect.

or

1. In the Targets window, click the target to connect.

2. On the Targets window toolbar, click the Connect button

or

1. In the Targets window, right-click the target to connect.

2. Choose Connect.

CrossWorks for ARM Reference Manual CrossStudio User Guide

266

To disconnect a target:

Choose Target > Disconnect or press Ctrl+T, D.

or

On the Targets window toolbar, click the Disconnect button.

or

1. Right-click the connected target in the Targets window.

2. Choose Disconnect from the shortcut menu.

Alternatively, connecting a different target will disconnect the current target connection.

You can disconnect and reconnect a target in a single operation using the reconnect feature. This may be useful

if the target board has been power cycled, or reset manually, because it forces CrossStudio to resynchronize with

the target.

To reconnect a target:

Choose Target > Reconnect or press Ctrl+T, E.

or

On the Targets window toolbar, click the Reconnect button.

or

1. In the Targets window, right-click the target to reconnect.

2. Choose Reconnect from the shortcut menu.

Automatic target connection

You can configure CrossStudio to automatically connect to the last-used target interface when loading a

solution.

To enable or disable automatic target connection:

1. Choose View > Targets or press Ctrl+Alt+T.

2. Click the disclosure arrow on the Targets window toolbar.

3. Select or deselect Automatically Connect When Starting Debug.

Resetting the target

Reset of the target is typically handled by the system when you start debugging. However, you can manually

reset the target from the Targets window.

To reset the connected target:

Choose Project > Reset And Debug or press Ctrl+Alt+F5.

CrossWorks for ARM Reference Manual CrossStudio User Guide

267

or

On the Targets window toolbar, click the Reset button.

Creating a new target interface

To create a new target interface:

1. From the Targets window shortcut menu, click New Target Interface. A menu will display the types of

target interface that can be created.

2. Select the type of target interface to create.

Setting target interface properties

All target interfaces have a set of properties. Some properties are read-only and provide information about the

target, but others are modifiable and allow the target interface to be configured. Target interface properties can

be viewed and edited using CrossStudio's property system.

To view or edit target properties:

Select a target.

Select the Properties option from the target's shortcut menu.

The Targets window provides the facility to restore the target definitions to the default set. Restoring the default

target definitions will undo any of the changes you have made to the targets and their properties, therefore it

should be used with care.

To restore the default target definitions:

1. Select Restore Default Targets from the Targets window shortcut menu.

2. Click Yes when the systems asks whether you want to restore the default targets.

Importing and exporting target definitions

You can import and export your target-interface definitions. This may be useful if you make a change to the

default set of target definitions and want to share it with another user or use it on another machine.

To export the current set of target-interface definitions:

Choose Export Target Definitions To XML from the Targets window shortcut menu.

Specify the location and name of the file to which you want to save the target definitions and click Save.

To import an existing set of target-interface definitions:

Select Import Target Definitions From XML from the Targets window shortcut menu.

Select the file from which you want to load the target definitions and click Open.

CrossWorks for ARM Reference Manual CrossStudio User Guide

268

Downloading programs

Program download is handled automatically by CrossStudio when you start debugging. However, you can

download arbitrary programs to a target using the Targets window.

To download a program to the currently selected target:

In the Targets window, right-click the selected target.

Choose Download File.

From the Download File menu, select the type of file to download.

In the Open File dialog, select the executable file to download and click Open to download the file.

CrossStudio supports the following file formats when downloading a program:

Binary

Intel Hex

Motorola S-record

CrossWorks native object file

Texas Instruments text file

Verifying downloaded programs

You can verify a target's contents against arbitrary programs on disk using the Targets window.

To verify a target's contents against a program:

1. In the Targets window, right-click the selected target.

2. Choose Verify File.

3. From the Verify File menu, select the type of file to verify.

4. In the Open File dialog, select the executable file to verify and click Open to verify the file.

CrossStudio supports the same file types for verification as for downloading.

Erasing target memory

Usually, erasing target memory is done when CrossStudio downloads a program, but you can erase a target's

memory manually.

To erase all target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase All from the shortcut menu.

To erase part of target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase Range from the shortcut menu.

CrossWorks for ARM Reference Manual CrossStudio User Guide

269

Terminal emulator window
The Terminal Emulator window contains a basic serial-terminal emulator that allows you to receive and transmit

data over a serial interface.

To activate the Terminal Emulator window:

Choose Tools > Terminal Emulator > Terminal Emulator or press Ctrl+Alt+M.

To use the terminal emulator:

1. Set the required terminal emulator properties.

2. Connect the terminal emulator to the communications port by clicking the button on the toolbar or by

selecting Connect from the shortcut menu.

Once connected, any input in the Terminal Emulator window is sent to the communications port and any data

received from the communications port is displayed on the terminal.

Connection may be refused if the communication port is in use by another application or if the port doesn't

exist.

To disconnect the terminal emulator:

1. Disconnect the communications port by clicking the Disconnect icon on the toolbar or by right-clicking

to select Disconnect from the shortcut menu.

This will release the communications port for use in other applications.

Supported control codes

The terminal supports a limited set of control codes:

Control code Description

<BS> Backspace

<CR> Carriage return

<LF> Linefeed

<ESC>[{attr1};...;{attrn}m Set display attributes. The attributes 2-Dim, 5-Blink, 7-
Reverse, and 8-Hidden are not supported.

CrossWorks for ARM Reference Manual CrossStudio User Guide

270

Script Console window
The Script Console window provides interactive access to the JavaScript interpreter and JavaScript classes that

are built into CrossStudio. The interpreter is an implementation of the 3rd edition of the ECMAScript standard.

The interpreter has an additional function property of the global object that enable files to be loaded into the

interpreter.

The JavaScript method load(filepath) loads and executes the JavaScript contained in filepath returns a Boolean

indicating success.

To activate the Script Console window:

Choose View > Script Console or press Ctrl+Alt+J.

CrossWorks for ARM Reference Manual CrossStudio User Guide

271

Downloads window
The Downloads Window displays a historical list of files downloaded over the Internet by CrossStudio.

To activate the Downloads window:

Choose Tools > Downloads Window.

CrossWorks for ARM Reference Manual CrossStudio User Guide

272

Latest News window
The Latest News window displays a historical list of news articles from the Rowley Associates website.

To activate the Latest News window:

Choose Help > Latest News.

CrossWorks for ARM Reference Manual Command-line options

273

Command-line options
This section describes the command-line options accepted by CrossStudio.

Usage

crossstudio [options] [files]

CrossWorks for ARM Reference Manual Command-line options

274

-D (Define macro)

Syntax

-D macro=value

Description

Define a CrossWorks macro value.

CrossWorks for ARM Reference Manual Command-line options

275

-noclang (Disable Clang support)

Syntax

-noclang

Description

Disable Clang support.

CrossWorks for ARM Reference Manual Command-line options

276

-noload (Disable loading of last project)

Syntax

-noload

Description

Disable loading of last project on startup.

CrossWorks for ARM Reference Manual Command-line options

277

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

CrossWorks for ARM Reference Manual Command-line options

278

-permit-multiple-studio-instances (Permit multiple
studio instances)

Syntax

-permit-multiple-studio-instances

Description

Allow multiple instances of CrossStudio to run at the same time. This behaviour can also be enabled using the

Environment > Startup Options > Allow Multiple CrossStudios environment option.

CrossWorks for ARM Reference Manual Command-line options

279

-rootuserdir (Set the root user data directory)

Syntax

-rootuserdir dir

Description

Set the CrossWorks root user data directory.

CrossWorks for ARM Reference Manual Command-line options

280

-save-settings-off (Disable saving of environment
settings)

Syntax

-save-settings-off

Description

Disable the saving of modified environment settings.

CrossWorks for ARM Reference Manual Command-line options

281

-set-setting (Set environment setting)

Syntax

-set-setting environment_setting=value

Description

Sets an environment setting to a specified value. For example:

 -set-setting "Environment/Build/Show Command Lines=Yes"

CrossWorks for ARM Reference Manual Command-line options

282

-templatesfile (Set project templates path)

Syntax

-templatesfile path

Description

Sets the search path for finding project template files.

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

283

Uninstalling CrossWorks for ARM
This section describes how to completely uninstall CrossWorks for ARM for each supported operating system:

Uninstalling CrossWorks for ARM from Windows

Uninstalling CrossWorks for ARM from macOS

Uninstalling CrossWorks for ARM from Linux

Uninstalling CrossWorks for ARM from Windows

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.

To remove user data using CrossStudio:

1. Start CrossStudio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

1. Click the Windows Start button.

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

284

2. Type %LOCALAPPDATA% in the search field and press enter to open the local application data folder.

3. Open the Rowley Associates Limited folder.

4. Open the CrossWorks for ARM folder.

5. Delete the v4 folder.

6. If you want to delete user data for all versions of the software, delete the CrossWorks for ARM folder as

well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

1. If CrossStudio is running, click File > Exit to shut it down.

2. Click the Start Menu and select Control Panel. The Control Panel window will open.

3. In the Control Panel window, click the Uninstall a program link under the Programs section.

4. From the list of currently installed programs, select CrossWorks for ARM 4.10.

5. To begin the uninstall, click the Uninstall button at the top of the list.

Uninstalling CrossWorks for ARM from macOS

Removing user data and settings

Uninstalling does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.

To remove user data using CrossStudio:

1. Start CrossStudio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

1. Open Finder.

2. Go to the $HOME/Library/Rowley Associates Limited/CrossWorks for ARM directory.

3. Drag the v4 folder to the Trash.

4. If you want to delete user data for all versions of the software, drag the CrossWorks for ARM folder to the

Trash as well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

285

1. If CrossStudio is running, shut it down.

2. Open the Applications folder in Finder.

3. Drag the CrossWorks for ARM 4.10 folder to the Trash.

Uninstalling CrossWorks for ARM from Linux

Removing user data and settings

The uninstaller does not remove any user data such as settings or installed packages. To completely remove the

user data you will need to carry out the following operations for each user that has used CrossWorks for ARM on

your system.

To remove user data using CrossStudio:

1. Start CrossStudio.

2. Click Tools > Admin > Remove All User Data...

Alternatively, if CrossWorks for ARM has already been uninstalled you can manually remove the user data as

follows:

1. Open a terminal window or file browser.

2. Go to the $HOME/.rowley_associates_limited/CrossWorks for ARM directory.

3. Delete the v4 directory.

4. If you want to delete user data for all versions of the software, delete the CrossWorks for ARM directory as

well.

Uninstalling CrossWorks for ARM

To uninstall CrossWorks for ARM:

1. If CrossStudio is running, click File > Exit to shut it down.

2. Open a terminal window.

3. Go to the CrossWorks for ARM bin directory (this is /usr/share/crossworks_for_arm_4.10/bin by default).

4. Run sudo ./uninstall to start the uninstaller.

CrossWorks for ARM Reference Manual Uninstalling CrossWorks for ARM

286

CrossWorks for ARM Reference Manual ARM target support

287

ARM target support
When a target-specific executable project is created using the New Project Wizard, the following default files are

added to the project:

Target_Startup.s The target-specific startup code. See Target startup code.

crt0.s/thumb_crt0.s The CrossWorks standard C runtime. See Startup code.

Target_MemoryMap.xml The target-specific memory map file for the board. See Section Placement. Note

that, for some targets, a general linker placement file may not be suitable. In these cases, there will be two

memory-map files: one for a flash build and one for a RAM build.

flash_placement.xml The linker placement file for a flash build.

sram_placement.xml The linker placement file for a RAM build.

Target_Target.js The target script file. See Target script file.

Initially, shared versions of these files are added to the project. If you want to modify any these shared files,

select the file in the Project Explorer and then click the Import option from the shortcut menu. This will copy a

writable version of the file into your project directory and change the path in the Project Explorer to that of the

local version. You can then make changes to the local file without affecting the shared copy of it.

The following list describes the typical flow of a C program created with CrossStudio's project templates:

The processor jumps to the reset_handler label in the target-specific startup code, which configures the

target (see Target startup code).

When the target is configured, the target-specific startup code jumps to the _start entry point in the C

runtime code, which sets up the C runtime environment (see Startup code).

When the C runtime environment has been set up, the C runtime code jumps to the C entry-point

function, main.

CrossWorks for ARM Reference Manual ARM target support

288

When the program returns from main, it re-enters the C runtime code, executes the destructors and

enters an endless loop.

CrossWorks for ARM Reference Manual ARM target support

289

Target startup code
The following section describes the role of the target-specific startup code.

When you create a new project to produce an executable file using a target-specific project template, a file

containing the default startup code for the target will be added to the project. Initially, a shared version of this

file will be added to the project; if you want to modify this file, select the file in the Project Explorer and select

Import to copy the file to your project directory.

ARM and Cortex-A/Cortex-R startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it

is can be placed at a specific address which is usually 0x00000000 or the start of Flash memory. The vector

table contains jump instructions to the particular exception handlers. It is recommended that absolute

jump instructions are used ldr pc, =handler_address rather than relative branch instructions b

handler_address since many devices shadow the memory at address zero to start execution but the

program will be linked to run at a different address.

reset_handler The reset handler will usually carry out any target-specific initialization and then will jump

to the _start entry point. In a C system, the _start entry point is in the crt0.s file. During development it

is usual to replace the reset handler with an endless loop which will stop the device running potentially

dangerous in-development code directly out of reset. In development the debugger will start the device

from the specified debug entry point.

undef_handler This is the default, undefined-instruction exception handler.*

swi_handler This is the default, software-interrupt exception handler.*

pabort_handler This is the default, prefetch-abort exception handler.*

dabort_handler This is the default, data-abort exception handler.*

irq_handler This is the default, IRQ-exception handler.*

fiq_handler This is the default, FIQ-exception handler.*

* Declared as a weak symbol to allow the user to override the implementation.

Note that ARM and Cortex-A/Cortex-R exception handlers must be written in ARM assembly code. The CPU

or board support package of the project you have created will typically supply an ARM assembly-coded

irq_handler implementation that will enable you to write interrupt service routines as C functions.

Cortex-M startup code

The target startup file typically consists of the exception vector table and the default set of exception handlers.

CrossWorks for ARM Reference Manual ARM target support

290

_vectors This is the exception vector table. It is put into its own .vectors section in order to ensure that it

can be placed at a specific address which is usually 0x00000000 or the start of Flash memory.

The vector table is structured as follows:

The first entry is the initial value of the stack pointer.

The second entry is the address of the reset handler function. The reset handler will usually carry out any

target-specific initialization and then jump to the _start entry point. In a C system, the _start entry point

is in the thumb_crt0.s file. During development it is usual to replace this jump with an endless loop

which will stop the device running potentially dangerous in-development code directly out of reset. In

development the debugger will start the device from the specified debug entry point.

The following 15 entries are the addresses of the standard Cortex-M exception handlers ending with the

SysTick_ISR entry.

Subsequent entries are addresses of device-specific interrupt sources and their associated handlers.

For each exception handler, a weak symbol is declared that will implement an endless loop. You can

implement your own exception handler as a regular C function. Note that the name of the C function

must match the name in the startup code e.g. void SysTick_ISR(void). You can use the C preprocessor to

rename the symbol in the startup code if you have existing code with different exception handler names e.g.

SysTick_ISR=SysTick_Handler.

CrossWorks for ARM Reference Manual ARM target support

291

Startup code
The following section describes the role of the C runtime-startup code, crt0.s (and the Cortex-M/Thumb

equivalent thumb_crt0.s).

When you create a new project to produce an executable file using a target-specific project template, the crt0.s/

thumb_crt0.s file is added to the project. Initially, a shared version of this file is added to the project. If you want

to modify this file, right-click it in the Project Explorer and then select Import from the shortcut menu to copy

the file to your project directory.

The entry point of the C runtime-startup code is _start. In a typical system, this will be called by the target-

specific startup code after it has initialized the target.

The C runtime carries out the following actions:

Initialize the stacks.

If required, copy the contents of the .data (initialized data) section from non-volatile memory.

If required, copy the contents of the .fast section from non-volatile memory to SRAM.

Initialize the .bss section to zero.

Initialize the heap.

Call constructors.

If compiled with FULL_LIBRARY, get the command line from the host using debug_getargs and set

registers to supply argc and argv to main.

Call the main entry point.

On return from main or when exit is called

If compiled with FULL_LIBRARY, call destructors.

If compiled with FULL_LIBRARY, call atexit functions.

If compiled with FULL_LIBRARY, call debug_exit while supplying the return result from main.

Wait in exit loop.

Program sections

The following program sections are used for the C runtime in section-placement files:

Section name Description

.vectors The exception vector table.

.init Startup code that runs before the call to the
application's main function.

.ctors Static constructor function table.

.dtors Static destructor function table.

.text The program code.

CrossWorks for ARM Reference Manual ARM target support

292

.fast Code to copy from flash to RAM for fast execution.

.data The initialized static data.

.bss The zeroed static data.

.rodata The read-only constants and literals of the program.

.ARM.exidx The C++ exception table.

.tbss Thread local storage zero'd data followed by

.tdata Thread local storage initialised data.

Stacks

ARM and Cortex-A/Cortex-R devices have six separate stacks. The position and size of these stacks are specified

in the project's section-placement or memory-map file by the following program sections:

Section name Linker size symbol Description

.stack __STACKSIZE__ System and User mode stack.

.stack_svc __STACKSIZE_SVC__ Supervisor mode stack

.stack_irq __STACKSIZE_IRQ__ IRQ mode stack

.stack_fiq __STACKSIZE_FIQ__ FIQ mode stack

.stack_abt __STACKSIZE_ABT__ Abort mode stack

.stack_und __STACKSIZE_UND__ Undefined mode stack

Cortex-M devices have the following stacks and linker symbol stack sizes are defined:

Section name Linker size symbol Description

.stack __STACKSIZE__ Main stack.

.stack_process __STACKSIZE_PROCESS__ Process stack.

The crt0.s/thumb_crt0.s startup code references these sections and initializes each of the stack-pointer registers

to point to the appropriate location. To change the location in memory of a particular stack, the section should

be moved to the required position in the section-placement or memory-map file.

Should your application not require one or more of these stacks, you can remove those sections from the

memory-map file or set the size to 0 and remove the initialization code from the crt0.s/thumb_crt0.s file.

The .data section

The .data section contains the initialized data. If the run address is different from the load address, as it would

be in a flash-based application in order to allow the program to run from reset, the crt0.s/thumb_crt0.s

startup code will copy the .data section from the load address to the run address before calling the main entry

point.

CrossWorks for ARM Reference Manual ARM target support

293

The .fast section

For performance reasons, it is a common requirement for embedded systems to run critical code from fast

memory; the .fast section can be used to simplify this. If the .fast section's run address is different from the load

address, the crt0.s/thumb_crt0.s startup code will copy the .fast section from the load address to the run

address before calling the main entry point.

The .bss Section

The .bss section contains the zero-initialized data. The startup code in crt0.s/thumb_crt0.s references the

.bss section and sets its contents to zero.

The heap

The position and size of the heap is specified in the project's section-placement or memory-map file by the

.heap program section.

The startup code in crt0.s/thumb_crt0.s references this section and initializes the heap. To change the

position of the heap, the section should be moved to the required position in the section-placement or memory-

map file.

There is a Heap Size linker project property you can modify in order to alter the heap size. For compatibility with

earlier versions of CrossStudio, you can also specify the heap size using the heap section's Size property in the

section-placement or memory-map file.

Should your application not require the heap functions, you can remove the heap section from the memory-

map file or set the size to zero and remove the heap-initialization code from the crt0.s/thumb_crt0.s file.

CrossWorks for ARM Reference Manual ARM target support

294

Section Placement
Section placement files map program sections used in your program into the memory spaces defined in the

memory map or in the Memory Segments project property. For instance, it's common for code and read-only

data to be programmed into non-volatile flash memory, whereas read-write data needs to be mapped onto

either internal or external RAM.

Memory map files are provided in the CPU support package you are using and are referenced in executable

projects by the Memory Map File project property. Section-placement files are provided in the base CrossWorks

distribution.

The memory segments defined in the section placement files have macro-expandable names which can be

defined using the Section Placement Macros project property.

Some of the section placement files have a macro-expandable start attribute in the first program section. You

can use this to reserve space at the beginning of the memory segment.

ARM section placement

The following placement files are supplied for ARM targets:

File Description

flash_placement.xml
Single FLASH segment with internal RAM segment and
optional external RAM segment.

flash_run_text_from_ram_placement.xml Single FLASH segment with internal RAM segment
and optional external RAM segments. Text section is
copied from FLASH to RAM.

internal_sram_placement.xml Single internal RAM segment.

multi_flash_placement.xml Two FLASH segments with internal RAM segment and
optional external RAM segment.

sram_placement.xml Internal RAM segment and optional external RAM
segment.

tcm_placement.xml Data and Instruction tightly coupled memory
segments.

Cortex-M section placement

The following placement files are supplied for Cortex-M targets:

File Description

flash_placement.xml Two FLASH segments and two RAM segments.

flash_placement_tcm.xml One FLASH segments, two RAM segments, Data and
Instruction tightly coupled memory segments.

CrossWorks for ARM Reference Manual ARM target support

295

flash_placement2.xml One FLASH segment and two RAM segments.

flash_to_ram_placement.xml One FLASH segment and one RAM segment. Text
section is copied from FLASH to RAM.

flash_to_ram_placement_tcm.xml One FLASH segment, two RAM segments, Data and
Instruction tightly coupled memory segments. Text
section is copied from FLASH to RAM.

flash_to_ram_placement2.xml One FLASH segment and two RAM segments. Text
section is copied from FLASH to RAM.

flash_to_tcm_placement.xml Two FLASH segments, two RAM segments, Data and
Instruction tightly coupled memory segments.

ram_placement.xml Two RAM segments.

tcm_placement.xml Data and Instruction tightly coupled memory
segments.

CrossWorks for ARM Reference Manual ARM target support

296

Project configurations
When you create a new project a default set of build configurations are created. These configurations vary

depending on the CPU support package you are using and the type of project you create.

Executable project types

For Executable projects, some CPU support packages include the memory configuration in the build

configuration. The following describes the default set of project configurations for this type of project:

Private configurations

Configuration name Description

ARM
Compile and assemble for ARM
instruction set. Link ARM version of
libraries.

THUMB Compile and assemble for Thumb
instruction set. Link Thumb version
of libraries.

Flash Load into, and run from, flash
memory.

RAM Load into, and run from, RAM.

Debug Compile and assemble with debug
information and with optimization
disabled.

Release Compile and assemble without
debug information and with
optimization enabled at level 1.

Public configurations

Configuration Name Inherited configurations

ARM Flash Debug ARM, Flash, Debug

ARM Flash Release ARM, Flash, Release

ARM RAM Debug ARM, RAM, Debug

ARM RAM Release ARM, RAM, Release

THUMB Flash Debug THUMB, Flash, Debug

THUMB Flash Release THUMB, Flash, Release

THUMB RAM Debug THUMB, RAM, Debug

THUMB RAM Release THUMB, RAM, Release

CrossWorks for ARM Reference Manual ARM target support

297

For Executable project types with CPU support packages that do not specify the memory configuration in the

build configuration, you will project will have the following configurations:

Configuration Name Description

ARM Debug
Compile/assemble for ARM instruction set. Link ARM
version of libraries. Compile/assemble with debug
information and with optimization disabled.

ARM Release Compile/assemble for ARM instruction set. Link ARM
version of libraries. Compile/assemble without debug
information and with optimization enabled.

Thumb Debug Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble with
debug information and with optimization disabled.

Thumb Release Compile/assemble for Thumb instruction set. Link
Thumb version of libraries. Compile/assemble without
debug information and with optimization enabled.

The CPU support packages that create configurations which have no memory configuration will provide a

project Placement property that enables the memory configuration to be selected.

Note: Cortex-M CPU support packages will not create any ARM configurations.

Library project types

CrossWorks for ARM provides two library project types with associated build configurations. The Static Library

project will create configurations based on combinations of ARM/THUMB and Debug/Release. When you have

created a library project of this form, you will need to set the required ARM architecture, byte order (endian) and

floating-point ABI project properties. The Static Library with Configurations project will create configurations

based on combinations of:

ARM architecture.

ARM vs THUMB.

Byte order (endianness).

Floating-point ABI.

ABI type.

Double as float.

Optimization for speed vs size. Debug vs Release.

For example, V5TE VFP ARM LE SoftFP EABI Fast Debug is a configuration for a V5TE architecture device

with a VFP, ARM instruction set, little-endian byte order, soft floating point, EABI procedure calling, double is

supported, do speed optimization rather than size optimization, and include debug information.

The CPU support package you are using may support a library project typein this case the project configurations

created will be based on combinations of ARM/THUMB and Debug/Release.

CrossWorks for ARM Reference Manual ARM target support

298

Externally Built Executable project types

The set of build configurations created with Externally Built Executable project types will either match those

created for an Executable project types, or will have no build configurations created. The memory configuration

selected for debug will be specified by the build configuration, or if no build configurations are available, by the

value of the Placement project property.

CrossWorks for ARM Reference Manual ARM target support

299

Target script file
The target-interface system uses CrossStudio's JavaScript (ECMAScript) interpreter to support board-specific and

target-specific behavior.

The main use for this is to support non-standard target and board reset schemes and to configure the target

after reset using the Reset Script and Loader Reset Script facilities, described later.

The target script system can also be used to carry out target-specific operations when the target interface

connects or disconnects, or when the debugger uses the Connect, Disconnect, Stop, and Run scripts, described

later.

In order to reduce script duplication, when the target interface runs a reset, attach, run, or stop script, it first

looks in the current active project for a file whose project property File Type is set to Reset Script. If a file of this

type is found, it will be loaded prior to executing the scripts; each of the scripts can then call functions defined in

this script file.

Attach script

The Attach Script property in the Target project-property group specifies the script to be executed when

the debugger first attaches to an application. This can be after a download or reset before the program is

run, or after an attach to a running application. The aim of the attach script is to carry out any target-specific

configuration before the debugger first attaches to the application being debugged.

See arm_target_script_TargetInterface for a description of the TargetInterface object the attach script uses to

access the target hardware.

Connect script

The Connect Script property in the Target project-property group specifies the script to be executed when the

user connects to the target interface.

See arm_target_script_TargetInterface for a description of the TargetInterface object the connect script uses

to access the target hardware.

Disconnect script

The Disconnect Script property of the Target project-property group specifies the script to be executed when

the user disconnects from the target interface.

See arm_target_script_TargetInterface for a description of the TargetInterface object the disconnect script

uses to access the target hardware.

CrossWorks for ARM Reference Manual ARM target support

300

Loader reset script

The Loader Reset Script property in the Target project-property group specifies the script to be executed in

order to reset and configure the target prior to downloading a loader application. It does essentially the same

job as the Reset Script property, but it will be used only prior to downloading a loader application, thereby

allowing a loader to have a different reset script than the application. If this property is not defined, the script

defined by the Reset Script property will be used.

See arm_target_script_TargetInterface for a description of the TargetInterface object the loader reset script

uses to access the target hardware.

Reset script

The Reset Script property in the Target project-property group defines a script to execute in order to reset and

configure the target.

The aim of the reset script is to get the processor into a known state. When the script has executed, the

processor should be reset, stopped on the first instruction and configured appropriately.

As an example, the following script demonstrates the reset script for an Evaluator 7T target board with

a memory configuration that re-maps SRAM to start from 0x00000000. The Evaluator7T_Reset function

carries out the standard ARM reset and stops the processor prior to executing the first instruction. The

Evaluator7T_ResetWithRamAtZero function calls this reset function and then configures target memory by

accessing the configuration registers directly. See arm_target_script_TargetInterface for a description of the

TargetInterface object the reset script uses to access the target hardware.

function Evaluator7T_Reset()
{
 TargetInterface.setNSRST(0);
 TargetInterface.setICEBreakerBreakpoint(0, 0x00000000, 0xFFFFFFFF,
 0x00000000, 0xFFFFFFFF, 0x100, 0xF7);
 TargetInterface.setNSRST(1);
 TargetInterface.waitForDebugState(1000);
 TargetInterface.trst();
}

function Evaluator7T_ResetWithRamAtZero()
{
 Evaluator7T_Reset();

 /***
 * Register settings for the following memory configuration:
 *
 * +----------------------+
 * | ROMCON0 - 512K FLASH | 0x01800000 - 0x0187FFFF
 * +----------------------+
 * | ROMCON2 - 256K SRAM | 0x00040000 - 0x0007FFFF
 * +----------------------+
 * | ROMCON1 - 256K SRAM | 0x00000000 - 0x0003FFFF
 * +----------------------+
 *

CrossWorks for ARM Reference Manual ARM target support

301

 ***/

 TargetInterface.pokeWord(0x03FF0000, 0x07FFFFA0); // SYSCFG
 TargetInterface.pokeWord(0x03FF3000, 0x00000000); // CLKCON
 TargetInterface.pokeWord(0x03FF3008, 0x00000000); // EXTACON0
 TargetInterface.pokeWord(0x03FF300C, 0x00000000); // EXTACON1
 TargetInterface.pokeWord(0x03FF3010, 0x0000003E); // EXTDBWIDTH
 TargetInterface.pokeWord(0x03FF3014, 0x18860030); // ROMCON0
 TargetInterface.pokeWord(0x03FF3018, 0x00400010); // ROMCON1
 TargetInterface.pokeWord(0x03FF301C, 0x00801010); // ROMCON2
 TargetInterface.pokeWord(0x03FF3020, 0x08018020); // ROMCON3
 TargetInterface.pokeWord(0x03FF3024, 0x0A020040); // ROMCON4
 TargetInterface.pokeWord(0x03FF3028, 0x0C028040); // ROMCON5
 TargetInterface.pokeWord(0x03FF302C, 0x00000000); // DRAMCON0
 TargetInterface.pokeWord(0x03FF3030, 0x00000000); // DRAMCON1
 TargetInterface.pokeWord(0x03FF3034, 0x00000000); // DRAMCON2
 TargetInterface.pokeWord(0x03FF3038, 0x00000000); // DRAMCON3
 TargetInterface.pokeWord(0x03FF303C, 0x9C218360); // REFEXTCON

Run script

The Run Script property in the Target Script Options project-property group is used to define a script to be

executed when the target enters run state. This can be when the application is run for the first time or when the

Debug > Go operation is carried out after the application has hit a breakpoint or was stopped using the Debug

> Break operation. The aim of the run script is to carry out any target-specific operations after the debugger has

finished accessing target memory. This can be useful, for example, to re-enable caches previously disabled by

the stop script.

See arm_target_script_TargetInterface for a description of the TargetInterface object the run script uses to

access the target hardware.

Stop script

The Stop Script property in the Target Script Options project-property groups is used to define a script that

is executed when the target enters debug/stopped state. This can be after the application hits a breakpoint or

when the Debug > Break operation is carried out. The aim of the stop script is to carry out any target-specific

operations before the debugger starts accessing target memory. This is particularly useful when debugging

applications that have caches enabled, because the script can disable and flush the caches, giving the debugger

access to the current memory state.

See arm_target_script_TargetInterface for a description of the TargetInterface object the stop script uses to

access the target hardware.

Debug Interface Reset Script

The Debug Interface Reset Script property held in the Target Script Options project property groups is used

to define a script that is executed when CrossWorks resets the debug interface. This should not affect the target

CrossWorks for ARM Reference Manual ARM target support

302

processor and will be executed for example when the debugger attaches to a running target. Use this script if

you don't want CrossWorks to execute a TRST to reset the JTAG TAP, for example if the device has a JTAG router.

See arm_target_script_TargetInterface for a description of the TargetInterface object which is used by the

debug interface reset script to access the target hardware.

TAP Reset Script

The TAP Reset Script property held in the Target Script Options project-property groups is used to define a

script that is executed when CrossWorks resets the JTAG connection when exploring the JTAG chain. This script

can be used to configure a JTAG router that would be reset when the standard TRST sequence is applied.

See arm_target_script_TargetInterface for a description of the TargetInterface object the TAP Reset Script uses

to access the target hardware.

CrossWorks for ARM Reference Manual ARM target support

303

Program loading
CrossStudio for ARM supports flash programming (and subsequent debugging) by loading a programthe loader

executable, or loaderinto the target's RAM and transmitting to it the data to be programmed.

The Loader File Path project property is part of a project's configuration. It specifies the location of the loader

executable to be used; if this property is defined, the loader executable will be downloaded and run on the

target prior to downloading the main application.

To write your own loader programs, see LIBMEM loader library.

CrossWorks for ARM Reference Manual ARM target support

304

Debug Capabilities
The particular debugging capabilities provided in CrossWorks for ARM depends upon the particular ARM device

being used. The following table summarizes the CrossStudio debug facilities available for each ARM device type:

ARM Debug
Architecture

Software
Breakpoints

Hardware
Breakpoints

Break on
Exception

Monitor Mode
Memory
Access

Debug I/O

ARM7

Unlimited
(1 hardware
breakpoint
used)

2 No Yes Stop CPU or
Monitor Mode

Stop CPU or
DCC

ARM9 Unlimited
(1 hardware
breakpoint
used on
ARM920T/
ARM922T)

2 Yes Yes Stop CPU or
Monitor Mode

Stop CPU or
DCC

ARM11 Unlimited 8 (6
instruction
and 2 data)

Yes No Stop CPU Stop CPU or
DCC

Cortex-M3 Unlimited Max. 12 (8
instruction, 4
data)

Yes No Real Time Stop CPU or
Real Time

Cortex-M1/M0 Unlimited Max. 6 (4
instruction, 2
data)

Yes No Real Time Stop CPU or
Real Time

Cortex-A/R Unlimited 8 (6
instruction
and 2 data)

Yes No Stop CPU Stop CPU or
DCC

XScale Unlimited 4 (2
instruction, 2
data)

Yes No Stop CPU Stop CPU

Common debug features

Single stepping is implemented by setting a hardware breakpoint on the next instruction that will execute in the

current execution thread. Therefore, you will not single step into a different thread of execution, unless code is

shared; and, if you have used all the hardware breakpoints, you won't be able to single step.

Software breakpoints are implemented by overwriting the instruction at the desired breakpoint address with

a breakpoint instruction. Restarting from a software breakpoint uses the built-in ARM simulator, unless the

instruction cannot be simulated, in which case the instruction is written back to memory and single stepped.

The project properties Read-only Software Breakpoints and Read-write Software Breakpoints control how

CrossWorks for ARM Reference Manual ARM target support

305

software breakpoints are used in memory areas marked ReadOnly and ReadWrite in the current project's

memory-map file.

The project property Startup Completion Point is used to specify the address of a symbol that has a breakpoint

on it. When the startup completion point is hit, software breakpoints will be used and debug input/output will

be enabled. This enables you to debug an application that copies code into RAM on startup.

ARM7 and ARM9

These ARM devices provide two hardware-breakpoint units that can be configured as program or data

breakpoints.

There is no software-breakpoint instruction on ARM7TDMI, ARM720T, and ARM920T devices. To implement

software breakpoints, one of the hardware-breakpoint units is programmed to break on the execution of the

ARM opcode 0xdfffdfff or 0xdffedffe and, consequently, the Thumb opcode 0xdfff and 0xdffe.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have

breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. Data-

valued breakpoints such as count==3 are supported, as are masked data-valued breakpoints such as (x & 1)==1.

The hardware breakpoints can be chained together to allow breakpoint sequencing. When you are connected to

the target, use the breakpoint-edit dialog or the breakpoint properties to change the Action to Set Chain on the

first breakpoint, and change the Action of the second breakpoint to Stop (When Chain Set).

ARM9 devices have a vector-catch capability that can be set in the exceptions group of the Breakpoints window

to enable a breakpoint when an exception occurs.

The debug communication channel (DCC) can be used to implement debug I/O, which depends on the setting

of the DebugIO Implementation project property. Using the DCC to implement debug I/O enables interrupts to

be serviced during debug I/O.

The DCC is also used to implement communications with the debug handler, if the project property Use Debug

Handler is set. You can build the debug handler into your application by adding the file $(StudioDir)/

source/ARMDIDebugHandler.s to your project. When you have the debug handler in your project,

you can enable the project property Monitor Mode Debug to allow interrupts to be serviced when a

breakpoint is hit. To do this, you must set the prefetch and data-abort exception vectors to jump to the symbols

dbg_pabort_handler and dbg_dabort_handler, respectively. You can also enable the project property Monitor

Mode Memory, in which case CrossWorks will access memory using the debug handler when the application

is running. You must arrange for your application to call the function dbg_poll at regular intervals, which will

enable interrupts to be serviced while the debugger is accessing memory.

ARM11

These devices provide 6 hardware instruction breakpoints and 2 hardware data breakpoints. Data-valued

breakpoints are not supported.

Vector catching is supported

CrossWorks for ARM Reference Manual ARM target support

306

Debug I/O is supported by stopping the CPU or the DCC.

Memory access is supported by stopping the CPU.

Monitor mode is not supported.

Cortex-M

Cortex-M devices have a variable number of instruction breakpoints and data breakpoints. Typically, Cortex-

M3 parts have six instruction breakpoints and four data breakpoints, Cortex-M1/M0 parts have four instruction

and two data breakpoints. Note that the instruction breakpoints work only on the internal code memory of the

Cortex-M devices. If you have external flash on your Cortex-M device and software breakpoints in flash aren't

supported, a data breakpoint is used, which will stop the processor after the instruction has executed.

Data breakpoints can only be set on ranges of aligned powers of 2. So char, short, and int/long variables can have

breakpoints set on them, but larger variables are unlikely to meet the requirement for aligned powers of 2. One

data-valued breakpoint, such as count==3, is optionally supported on some Cortex-M3 devices.

Vector catching is supported.

Debug I/O is supported by stopping the CPU or polling memory.

The internal data and system memories and the external memories of Cortex-M devices can be accessed

without stopping the CPU. When accessing the internal code memory of Cortex-M devices, the CPU is

stopped.

Monitor mode is not supported.

Cortex-A and Cortex-R

Cortex-A and Cortex-R devices provide six hardware instruction breakpoints and two hardware data breakpoints.

Data-valued breakpoints are not supported.

Vector catching is supported.

Debug I/O is supported by stopping the CPU or the DCC.

Memory access is supported by stopping the CPU.

Monitor mode is not supported.

XScale

XScale devices have two instruction breakpoints and two data breakpoints. The data breakpoints are supported

on int and long variables only.

Vector catching is supported.

Debug I/O is supported by stopping the CPU.

Memory access is supported by stopping the CPU.

Monitor mode is not supported.

Semihosting

The debugger supports the ARM semihosting interface. The operations SYS_READC and SYS_READ from

standard input will return immediately i.e. they do not block.

CrossWorks for ARM Reference Manual ARM target support

307

Trace Capabilities
The following tracing capabilities are supported in CrossStudio

Instruction tracing using the simulator target interface.

Instruction and data tracing using ETMv1 on ARM7/ARM9 to ETB or external trace port.

Instruction tracing using ETMv3 on Cortex-M to ETB or external trace port.

Instruction tracing using MTB on Cortex-M0.

Instruction and data tracing using ETMv3 on Cortex-A to ETB.

Instrumentation, data tracing, exception tracing and program counter sampling using ITM/DWT on

Cortex-M to ETB, external trace port or single wire output.

Program counter sampling using the debug port on Cortex-M.

Tracing is controlled by the CrossStudio debugger i.e. tracing starts when a programs runs or restarts from a

breakpoint and stops when the program stops on a breakpoint. With ETM tracing it is also possible to start/stop

tracing and to include/exclude functions using trace breakpoints.

Trace output from the last run is displayed in the Execution Trace window and instruction counts are

accumulated in the Execution Profile window for each each run of a debug session.

Simulator Tracing

The simulator maintains a list of the last N instructions that were executed or not executed if the condition failed.

The size of the list is specified using the simulator project property Num Trace Entries.

ETM Tracing

The target trace project property ETM TraceID should be non-zero to enable the ETM when the target interface

is connected.

For ARM7/ARM9 the ETB is assumed to follow the debug TAP on the JTAG scan chain. For Cortex-M/Cortex-A

the ETB will be identified by the CoreSight ROM table. ETB tracing is selected by setting the target trace project

property Trace Interface Type to be ETB when the target interface is connected.

The external trace port is assumed to be a four-bit half-rate clocked port and is selected by setting the target

trace project property Trace Interface Type to be TracePort when the target interface is connected.

You can start and stop tracing with breakpoints by setting hardware breakpoints and specifying the breakpoint

action to be Trace Start and Trace Stop.

You can choose to include/exclude functions by setting hardware breakpoints on the functions and specifying

the breakpoint action to be Trace Include or Trace Exclude. Note that you cannot mix include and exclude

ranges.

CrossWorks for ARM Reference Manual ARM target support

308

ITM/DWT Tracing

The target trace project property ITM TraceID should be non-zero to enable the ITM when the target interface is

connected.

The target trace project properties ITM Stimulus Ports Enable and ITM Stimulus Ports Privilege are used to

specify which ITM channels can be accessed. The library <itm.h> can be used to write to the ITM channels. The

following ITM channels are treated specially by CrossStudio:

Channel 0:printable characters written to this channel will be buffered to implement printf-style output.

Channel 28:words written to this channel will be considered to be program counter values.

Channel 29 and 30:words written to these channels will be considered to be the start addresses of a

function. Channel 30 indicates function entry and 29 indicates function exit. This functionality is used to

implement the Instrument Functions compilation project property.

Channel 31:words written to this channel are considered to be thread scheduling information and as such

are interpreted by the threads script.

You can enable local and/or global timestamping on the ITM packets using the ITM Timestamping and ITM

Global Timestamping Frequency target trace project properties.

You can specify DWT program counter sampling and exception tracing using the DWT PC Sampling and DWT

Trace Exceptions target trace project properties.

Like ETM tracing the ITM/DWT tracing can be directed to an ETB or a TracePort but it can also be directed to a

single wire output (SWO) pin using the Trace Interface Type target trace project property. When the SWO pin is

used the Trace Clock Speed target trace project property should be set to speed of the TRACECLKIN signal which

is typically the processor clock speed.

Data Tracing

You can trace specific data items by setting a data breakpoint and specifying the action to be Trace Data.

Configuring Hardware for Tracing

The script contained in the target trace project property Trace Initialize Script will be executed when debug

start or debug attach are selected. This script has the macro $(TraceInterfaceType) expanded with the value of

the Trace Interface Type target trace project property. This script, for example, can be used to set up the pins for

the external trace port. The Board/CPU support package should provide an implementation of this in the target

script.

Supported Trace Capture Devices

The Segger J-Trace ARM and J-Trace Cortex-M supports trace capture from 4-bit half-rate clocked external Trace

Ports.

The Segger J-Link - JTAG/SWD supports SWO trace capture.

CrossWorks for ARM Reference Manual ARM target support

309

The STLink/V2 supports SWO trace capture.

Some FTDI-2232 based devices have the second UART channel connected to the SWO. Since this is a target

interface independent capability CrossStudio supports this for all target interfaces.

CrossWorks for ARM Reference Manual ARM target support

310

CrossWorks for ARM Reference Manual Target interfaces

311

Target interfaces
A target interface is a mechanism for communicating with, and controlling, a target. A target can be either a

physical hardware device or a software simulation of a device. CrossStudio has a Targets window for viewing

and manipulating target interfaces. For more information, see Targets window.

Before you can use a target interface, you must connect to it. You can only connect to one target interface at a

time. For more information, see Connecting to a target.

All target interfaces have a set of properties. The properties provide information on the connected target and

allow the target interface to be configured. For more information, see Viewing and editing target properties.

Target
Interface

ARM7 ARM9 ARM11 XScale
Cortex-M
(JTAG)

Cortex-M
(SWD)

Cortex-A/R

CrossConnect
for ARM

Yes Yes Yes Yes Yes Yes Yes

Generic
ARM Debug
Interface

Yes Yes Yes No Yes Yes Yes

Generic
FT2232
Device

Yes Yes Yes Yes Yes Yes Yes

Macraigor
Systems's
Wiggler for
ARM

Yes Yes Yes Yes Yes Yes Yes

Segger J-
Link

Yes Yes No No Yes Yes Yes

CrossWorks for ARM Reference Manual Target interfaces

312

CrossStudio
ARM
Simulator

Yes Yes Yes Yes Yes Yes Yes

ST-Link No No No No Yes Yes No

ST-Link/V2 No No No No Yes Yes No

PandE UNIT
Interface
DLL

No No No No Yes No No

Kinetis
OSJTAG

No No No No Yes No No

Stellaris
ICDI

No No No No Yes No No

CMSIS-DAP Yes Yes Yes Yes Yes Yes Yes

Note that the Amontec JTAGkey and Olimex ARM-USB-OCD are FT2232-based devices.

See Debug Capabilities for details about the debug support CrossWorks provides for the various devices.

Note that the Segger J-Link, ST-Link, and PandE UNIT Interface DLL target interfaces require other files that are

supplied by the vendor of the target interface.

The Segger J-Link target interface's J-Link DLL File property should point at the file JLinkARM.dll on

Windows and to JLinkARM.so on Linux. Go to http://www.segger.com/cms/jlink-software.html for the latest

downloads.

The ST-Link's ST-LINK DLL File property should point at the file STLinkUSBDriver.dll that is supplied in

the ST-Link Utility, found here:

http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_PROGRAMMER/um0892.zip

The PandE UNIT Interface DLL's File Path property should point to the file unit_ngs_arm.dll. Contact

Rowley Associates for the latest information on where to find this.

Do not copy the above files into the CrossWorks distributionjust reference the files where they have been

installed.

http://www.segger.com/cms/jlink-software.html
http://www.st.com/internet/com/SOFTWARE_RESOURCES/TOOL/DEVICE_PROGRAMMER/um0892.zip

CrossWorks for ARM Reference Manual Target interfaces

313

ARM Simulator target interface
The ARM Simulator target interface provides access to CrossStudio's ARM instruction set simulator (ISS). The ISS

simulates the ARM V4T, ARM V5TE, ARM V6-M, ARM V7-M, ARM V7-EM, ARM V7A and ARMV7R instruction sets, as

defined in the appropriate ARM Architecture Reference Manuals. The ARM architecture, core type and memory

byte order to be simulated are specified by the project's code-generation properties.

The ISS supports a limited subset of VFP instructions (CP10 and CP11) that enables C programs that use the VFP

to execute. NEON instructions are not simulated.

The instruction set simulator (ISS) supports MCR and MRC access to the 16 primary registers of the System

Control coprocessor (CP15), as defined in the ARM Architecture Reference Manual. The ISS supports MCR and

MRC access to the Debug Communication Channel (CP14), as defined in the ARM7TDMI Technical Reference

Manual.

The instruction set simulator (ISS) simulates the PPB, bit banding and systick capabilities of the ARM V6-M, ARM

V7-M and ARM V7-EM architectures.

The memory system simulated by the ISS is implemented by the dynamic link library specified by the Memory

Simulation Filename and Memory Simulation Parameter defined in the project's simulator properties. Any access

to memory not defined by the memory system is reported as an error.

The ISS supports program loading and debugging with an unlimited number of breakpoints. The ISS supports

instruction tracing, execution counts, exception-vector trapping, and exception-vector triggering.

CrossWorks for ARM Reference Manual Target interfaces

314

Amontec JTAGkey Target Interface

Interface

Property Description

Serial Number
connectedSerialNumberString

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumberString

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersionString

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClockingEnumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDividerIntegerRange

The amount to divide the JTAG clock frequency.

nSRST Open Drain
srstOpenDrainBoolean

Specifies whether the nSRST signal is open-drain or
push-pull.

nTRST Open Drain
trstOpenDrainBoolean

Specifies whether the nTRST signal is open-drain or
push-pull.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

315

Fast Memory Accesses
fastMemoryAccessesEnabledBoolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeoutIntegerRange

The timeout period for memory accesses in
milliseconds.

Trace

Property Description

UART-SWO COM Port
UARTSWOPortCOMPort

Name of COM port that SWO is connected to.

CrossWorks for ARM Reference Manual Target interfaces

316

CMSIS-DAP Target Interface

Interface
Property Description

CMSIS-DAP Capabilities
cmsisDapCapabilitiesString

The capabilities of the currently connected CMSIS-DAP
interface.

CMSIS-DAP Protocol Version
cmsisDapProtocolVersionString

The CMSIS-DAP Protocol version of the currently
connected CMSIS-DAP interface.

Serial Number
connectedSerialNumberString

The serial number of the currently connected CMSIS-
DAP.

Use Serial Number
connectToSerialNumberString

The serial number of the CMSIS-DAP device you
want to connect to. If multiple CMSIS-DAP devices
are connected to your system, this property allows
you to specify which one to use. If no serial number
is specified, the first matching available CMSIS-DAP
device will be used.

JTAG/SWD
Property Description

Speed
speedIntegerRange

The maximum JTAG/SWD clock frequency in Hz (0 for
best possible).

Target
Property Description

Device Type
String

The detected type of the currently connected target
device.

USB
Property Description

Connected Interface Mode
connectedUsbInterfaceModeString

The CMSIS-DAP USB interface mode currently being
used.

HID Report Length
hidReportLengthIntegerRange

Specifies the HID report length in bytes (0 for the
interface's default value).

Interface Mode
usbInterfaceModeEnumeration

The CMSIS-DAP USB interface mode to use.

CrossWorks for ARM Reference Manual Target interfaces

317

Maximum Packet Count
usbPacketCountIntegerRange

The maximum number of USB packets that can be
buffered for a single operation (0 for the interface's
default value).

PID
usbPidString

Specifies the USB product ID of the CMSIS-DAP device.
If USB vendor and product IDs are both unspecified,
the first matching available CMSIS-DAP device will be
used.

VID
usbVidString

Specifies the USB vendor ID of the CMSIS-DAP device.
If USB vendor and product IDs are both unspecified,
the first matching available CMSIS-DAP device will be
used.

CrossWorks for ARM Reference Manual Target interfaces

318

CrossConnect Target Interface

Interface

Property Description

Information
interfaceInformationString

Interface connection information.

Model
modelInformationString

CrossConnect Model.

Serial Number
connectedSerialNumberString

The serial number of the currently connected
CrossConnect.

Target Voltage
target_voltageString

The target's JTAG reference voltage.

Version
interfaceVersionString

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClockingEnumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDividerIntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

319

Fast Memory Accesses
fastMemoryAccessesEnabledBoolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Host Connection
ConnectionEnumeration

The USB serial number of the CrossConnect to use.

Memory Access Timeout
memoryAccessTimeoutIntegerRange

The timeout period for memory accesses in
milliseconds.

Trace

Property Description

Current SWO Speed
currentSwoSpeedIntegerRange

The current SWO speed.

Current Trace Buffer Size
currentTraceBufferSizeIntegerRange

The current size of the trace buffer.

SWO Speed
swoSpeedIntegerRange

The required SWO speed (0 for maximum supported).

Trace Buffer Size
traceBufferSizeIntegerRange

The size of the trace buffer.

CrossWorks for ARM Reference Manual Target interfaces

320

Generic FT2232 Target Interface

FT2232 Pin Configuration

Property Description

Connected LED Inversion Mask
connectedLedXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert when
setting 'connected' LED.

Connected LED Mask
connectedLedMaskIntegerHex

Specifies the FT2232 output pin(s) to use for the
'connected' LED.

Disconnected Output Pins
disconnectedOutputDirectionIntegerHex

Specifies the FT2232 pins that are to be configured for
output when disconnected.

Disconnected Output Value
disconnectedOutputValueIntegerHex

Specifies the value of the FT2232 output pins when
disconnected.

Output Pins
outputDirectionIntegerHex

Specifies the FT2232 pins that are to be configured for
output.

Output Value
outputValueIntegerHex

Specifies the initial value of the FT2232 output pins on
connection.

Output Value 2
outputValue2IntegerHex

If non-zero the 2nd initial value of the FT2232 output
pins on connection.

Running LED Inversion Mask
runningLedXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the 'running' LED.

Running LED Mask
runningLedMaskIntegerHex

Specifies the FT2232 output pin(s) to use for the
'running' LED

SWD Direction Inversion Mask
swdDirectionXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert to set serial
wire debug to output.

SWD Direction Mask
swdDirectionMaskIntegerHex

Specifies the FT2232 output pin(s) to use to set serial
wire debug to output.

SWD Enable Inversion Mask
swdEnableXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert when
enabling serial wire .

SWD Enable Mask
swdEnableMaskIntegerHex

Specifies the FT2232 output pin(s) to use when
enabling serial wire debug.

nSRST Inversion Mask
srstXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the nSRST signal.

nSRST Mask
srstMaskIntegerHex

Specifies the FT2232 output pin(s) to use for the nSRST
signal.

nTRST Inversion Mask
trstXORMaskIntegerHex

Specifies the FT2232 output pin(s) to invert when
setting the nTRST signal.

nTRST Mask
trstMaskIntegerHex

Specifies the FT2232 output pin(s) to use for the nTRST
signal.

CrossWorks for ARM Reference Manual Target interfaces

321

FT2232 USB

Property Description

Channel
channelEnumeration

Specifies the FT2232 channel to use

PID
usbPidStringList

Specifies the USB product ID of the FT2232 device.

VID
usbVidString

Specifies the USB vendor ID of the FT2232 device.

Interface

Property Description

Serial Number
connectedSerialNumberString

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumberString

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersionString

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClockingEnumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDividerIntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

322

Fast Memory Accesses
fastMemoryAccessesEnabledBoolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeoutIntegerRange

The timeout period for memory accesses in
milliseconds.

Trace

Property Description

UART-SWO COM Port
UARTSWOPortCOMPort

Name of COM port that SWO is connected to.

CrossWorks for ARM Reference Manual Target interfaces

323

Generic Target Interface

Generic

Property Description

Applicable Host OS
hostStringList

The names of host OS that are supported.

Generic DLL File
DLLFileNameFileName

The file path of the .dll to use.

CrossWorks for ARM Reference Manual Target interfaces

324

Olimex ARM-USB-OCD Target Interface

Interface

Property Description

Serial Number
connectedSerialNumberString

The serial number of the currently connected FT2232.

Use Serial Number
connectToSerialNumberString

The serial number of the FT2232 device you want to
connect to. If multiple FT2232 devices are connected
to your system, this property allows you to specify
which one to use. If no serial number is specified, the
first available FT2232 device will be used.

Version
interfaceVersionString

The target interface version number.

JTAG

Property Description

Adaptive Clocking
adaptiveClockingEnumeration

Specifies whether JTAG adaptive clocking should be
used.

JTAG Clock Divider
jtagDividerIntegerRange

The amount to divide the JTAG clock frequency.

nTRST Open Drain
trstOpenDrainBoolean

Specifies whether the nTRST signal is open-drain or
push-pull.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

325

Fast Memory Accesses
fastMemoryAccessesEnabledBoolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeoutIntegerRange

The timeout period for memory accesses in
milliseconds.

Trace

Property Description

UART-SWO COM Port
UARTSWOPortCOMPort

Name of COM port that SWO is connected to.

CrossWorks for ARM Reference Manual Target interfaces

326

Kinetis OSJTAG Target Interface

Kinetis OSJTAG

Property Description

Firmware Version
String

The Firmware version of the Kinetis OSJTAG.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

327

P&E UNIT Interface DLL Target Interface

Generic

Property Description

Applicable Host OS
hostStringList

The names of host OS that are supported.

Generic DLL File
DLLFileNameFileName

The file path of the .dll to use.

CrossWorks for ARM Reference Manual Target interfaces

328

Segger J-Link Target Interface

J-Link

Property Description

Additional J-Link Options
JLinkExecuteCommandStringList

Specify additional J-Link options to allow enabling or
disabling advanced features and fine tuning.
For more information see J-Link Command Strings

Current Speed
IntegerRange

The JTAG/SWD clock frequency the J-Link is currently
using.

DLL Version
String

The J-Link DLL version.

Enable Adaptive Clocking
adaptiveEnumeration

Adaptive clocking is enabled.

Exclude Flash Cache Range
JLinkExcludeFlashCacheRangeString

Define a memory range that should not be cached by
J-Link.
Per default, all areas that J-Link knows to be Flash
memory, are cached. This means that it is assumed
that the contents of this areas do not change during
program execution.
If this assumption does not hold true, typically because
the target program modifies the flash content for data
storage, then the affected area should be excluded
from the cache.
This may slightly reduce the debugging speed.
Syntax: either 'start_address-end_address' or
'address,size'. For example: 0x08000000,0x1000.

Firmware Version
String

The J-Link firmware version.

Hardware Version
String

The J-Link hardware version.

J-Link DLL File
JLinkARMDLLFileNameFileName

The file path of the libjlinkarm.so to use.

Log File
JLinkLogFileNameFileName

The file to output the J-Link log to.

Max SWO Speed
IntegerRange

The maximum supported SWO speed.

Reset Type
resetTypeIntegerRange

The reset strategy to use.

Script File
JLinkScriptFileNameFileName

The file path of the optional J-Link script file to use.

https://wiki.segger.com/J-Link_Command_Strings

CrossWorks for ARM Reference Manual Target interfaces

329

Serial Number
String

The serial number of the connected J-Link

Settings File
JLinkProjectFileNameFileName

The file path of the automatically generated J-Link
settings file to use.

Show Log Messages In Output Window
showLogEnumeration

Display the J-Link log messages to the output window.

Speed
speedIntegerRange

The required JTAG/SWD clock frequency in kHz (0 to
auto-detect best possible).

Supply Power
supplyPowerEnumeration

The J-Link supplies power to the target.

Target Voltage
String

The target reference voltage.

Trace Buffer Size
traceBufferSizeIntegerRange

The size of the trace buffer

Use Built-in Flash Loader
JLinkUseFlashLoaderEnumeration

The built-in debug component identify, flash loader
and breakpoint support is used.

Use Built-in RTT support
JLinkUseRTTEnumeration

The built-in RTT handling is used

Use Built-in TRACE support
JLinkUseSTRACEEnumeration

The built-in trace handling is used

Verify Read Operations
checkModeAfterReadEnumeration

The CPU mode is checked after each read operation.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

330

Stellaris ICDI Target Interface

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

331

ST-LINK Target Interface

Generic

Property Description

Applicable Host OS
hostStringList

The names of host OS that are supported.

Generic DLL File
DLLFileNameFileName

The file path of the .dll to use.

CrossWorks for ARM Reference Manual Target interfaces

332

ST-LINK/V2 Target Interface

ST-LINK

Property Description

Firmware Version
String

The Main, JTAG and SWIM firmware versions.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

Host Connection
ConnectionEnumeration

A number specifying the device to connect to.

Speed
String

The target JTAG/SWD clock frequency in kHz.

Voltage
String

The target reference voltage.

CrossWorks for ARM Reference Manual Target interfaces

333

Macraigor Wiggler (20 and 14 pin) Target Interface

Connection

Property Description

Parallel Port
portNameString

The parallel port connection to use to connect to
target.

Parallel Port Address
portAddressString

The base address of the currently connected parallel
port.

Parallel Port Sharing
portSharingBoolean

Specifies whether sharing of the parallel port with
other device drivers or programs is permitted.

Interface

Property Description

Version
interfaceVersionString

The target interface version number.

JTAG

Property Description

Invert nSRST
invertNSRSTBoolean

Specify whether the nSRST signal should be inverted.

JTAG Clock Divider
jtagDividerIntegerRange

The amount to divide the JTAG clock frequency.

Target

Property Description

Device Type
String

The detected type of the currently connected target
device.

CrossWorks for ARM Reference Manual Target interfaces

334

Fast Memory Accesses
fastMemoryAccessesEnabledBoolean

Specifies whether fast memory accesses should be
used for ARM7, ARM9 and Cortex-M3 targets. With this
option set to Yes the target interface will not wait for
a memory access to complete before moving onto
the next - this means it relies on the JTAG interface
being slower than the memory interface. If your
target is running slowly, or has slow memory you
may experience problems reading from or writing
to memory with this option enabled in which case
you should set this option to No. The default setting
of this property on this target interface is Yes, this is
because the implementation of slow memory accesses
is considerably slower than fast accesses on this target
interface - if you experience problems reading from or
writing to memory you may find you achieve better
performance by reducing the JTAG clock frequency
using the JTAG Clock Divider property rather than
disabling this option.

Memory Access Timeout
memoryAccessTimeoutIntegerRange

The timeout period for memory accesses in
milliseconds.

CrossWorks for ARM Reference Manual Using an external ARM GCC toolchain

335

Using an external ARM GCC toolchain
You can use CrossStudio for ARM with a third party supplied ARM GCC toolchain. To do this you must set the

project properties Build > Use External GCC to Yes, the Build > GCC Prefix to arm-none-eabi- and Build > Tool

Chain Directory to the directory containing the gcc executable for example C:/Program Files (x86)/GNU Tools

ARM Embedded/4.7 2012q4/bin.

To be able to use the code completion and source navigation features you can set the project property Source

Code > Additional Code Completion Compiler Options to specify the directories that the ARM GCC toolchain

will access for example -isystemC:/Program Files (x86)/GNU Tools ARM Embedded/4.7 2012q4/arm-none-

eabi/include.

CrossWorks for ARM Reference Manual Using an external ARM GCC toolchain

336

CrossWorks for ARM Reference Manual C Library User Guide

337

C Library User Guide
This section describes the library and how to use and customize it.

The libraries supplied with CrossWorks have all the support necessary for input and output using the standard C

functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point, and are capable

of being used in a multi-threaded environment. However, to use these facilities effectively you will need to

customize the low-level details of how to input and output characters, what to do when an assertion fails, how

to provide protection in a multithreaded environment, and how to use the available hardware to the best of its

ability.

CrossWorks for ARM Reference Manual C Library User Guide

338

Floating point
The CrossWorks C library uses IEEE floating point format as specified by the ISO 60559 standard with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications

that need to run quickly and not consume precious resources in limited environments. The library does not

implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-

nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable

approximations and do their best to cater ill-conditioned inputs.

CrossWorks for ARM Reference Manual Multithreading

339

Multithreading
The CrossWorks libraries support multithreading, for example, where you are using CTL or a third-party real-time

operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded

applications there may be several flows of control which access the same functions, or the same resources,

concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be

reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.

For this type of function, the caller provides all the data that the function requires, such as pointers to any

workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are

held in processor registers or are on the stack. Any function that does not use static data, or other shared

resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

CrossWorks for ARM Reference Manual Multithreading

340

Thread safety in the CrossWorks library
In the CrossWorks C library:

some functions are inherently thread-safe, for example strcmp.

some functions, such as malloc, are not thread-safe by default but can be made thread-safe by

implementing appropriate lock functions.

other functions are only thread-safe if passed appropriate arguments, for example tmpnam.

some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library

in a multi-threaded system and combine it with the CrossWorks C library, you will need to ensure that the third-

party library can be made thread-safe in just the same way that the CrossWorks C library can be made thread-

safe.

CrossWorks for ARM Reference Manual Multithreading

341

Implementing mutual exclusion in the C library
The CrossWorks C library ships as standard with callouts to functions that provide thread-safety in a

multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the CrossWorks C library,

you must implement the following locking functions:

__heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,

and realloc.

__printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

__scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

__debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the

CrossStudio I/O function.

If you create a CTL project using the New Project wizard, CrossWorks provides implementations of these using

CTL event sets. You're free to reimplement them as you see fit.

If you use a third-party RTOS with the CrossWorks C library, you will need to use whatever your RTOS provides for

mutual exclusion, typically a semaphore, a mutex, or an event set.

CrossWorks for ARM Reference Manual Multithreading

342

CrossWorks for ARM Reference Manual Input and output

343

Input and output
The C library provides all the standard C functions for input and output except for the essential items of where to

output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan

functions, you need to customize the low-level input and output functions.

CrossWorks for ARM Reference Manual Input and output

344

Customizing putchar
To use the standard output functions putchar, puts, and printf, you need to customize the way that characters

are written to the standard output device. These output functions rely on a function __putchar that outputs a

character and returns an indication of whether it was successfully written.

The prototype for __putchar is

int __putchar(int ch, __printf_t *ctx);

Sending all output to the CrossStudio virtual terminal

The default implementation of the __putchar function uses debug_putchar if the debugIO library is used in

the project. You can remove usage of the debugIO library from your project by setting the Library > Debug I/O

Implementation property to None.

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

If the character cannot be written for any reason, putchar must return EOF. Just because a character can't

be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait

until the character is ready to be written.

The higher layers of the library do not translate C's end of line character '\\n' before passing it to putchar.

If you are directing output to a serial line connected to a terminal, for instance, you will most likely need

to output a carriage return and line feed when given the character '\\n' (ASCII code 10).

The standard functions that perform input and output are the printf and scanf functions.These functions

convert between internal binary and external printable data. In some cases, though, you need to read and write

formatted data on other channels, such as other RS232 ports. This section shows how you can extend the I/O

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTs, numbered 0 and 1, and we have a functions

uart0_putc and uart1_putc that do just that and whose prototypes are:

int uart0_putc(int ch, __printf_t *ctx);
int uart1_putc(int ch, __printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an

error. The second parameter, ctx, is the context that the high-level formatting routines use to implement the C

standard library functions.

CrossWorks for ARM Reference Manual Input and output

345

Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uart0_printf(const char *fmt, ...)
{
 char buf[80], *p;
 va_list ap;
 va_start(ap, fmt);
 vsnprintf(buf, sizeof(buf), fmt, ap);
 for (p = buf; *p; ++p)
 uart0_putc(*p, 0); // null context
 va_end(ap);
}

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it

requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce

the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters

that can be output by a single call to uart0_printf is also reduced. What would be good is a way to output

characters to one of the UARTs without requiring an intermediate buffer.

CrossWorks printf-style output

CrossWorks provides a solution for just this case by using some internal functions and data types in the

CrossWorks library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct __printf_tag
{
 size_t charcount;
 size_t maxchars;
 char *string;
 int (*output_fn)(int, struct __printf_tag *ctx);
} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need

to output. If string is non-zero, the character is appended is appended to the string pointed to by string; if

output_fn is non-zero, the character is output through the function output_fn with the context passed as the

second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum

number of characters output by the formatting routine __vfprintf.

We can use this type and function to rewrite uart0_printf:

int uart0_printf(const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);
 iod.string = 0;

CrossWorks for ARM Reference Manual Input and output

346

 iod.maxchars = INT_MAX;
 iod.output_fn = uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it

calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters

isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.

We can adapt this function to take a UART number as a parameter:

int uart_printf(int uart, const char *fmt, ...)
{
 int n;
 va_list ap;
 __printf_t iod;
 va_start(ap, fmt);
 iod.is_string = 0;
 iod.maxchars = INT_MAX;
 iod.output_fn = uart ? uart1_putc : uart0_putc;
 n = __vfprintf(\&iod, fmt, ap);
 va_end(ap);
 return n;
}

Now we can use:

uart_printf(0, "This is uart %d\n...", 0);
uart_printf(1, "..and this is uart %d\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the

uart_printf routine return void.

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a

string into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the

CrossWorks library for formatted input without requiring the intermediate buffer.

The type __stream_scanf_t is:

typedef struct
{
 char is_string;
 int (*getc_fn)(void);
 int (*ungetc_fn)(int);
} __stream_scanf_t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.

CrossWorks for ARM Reference Manual Input and output

347

Here's an implementation of functions to read and write from a single UART:

static int uart0_ungot = EOF;

int uart0_getc(void)
{
 if (uart0_ungot)
 {
 int c = uart0_ungot;
 uart0_ungot = EOF;
 return c;
 }
 else
 return read_char_from_uart(0);
}

int uart0_ungetc{int c)
{
 uart0_ungot = c;
}

You can use these two functions to perform formatted input using the UART:

int uart0_scanf(const char *fmt, ...)
{
 __stream_scanf_t iod;
 va_list a;
 int n;
 va_start(a, fmt);
 iod.is_string = 0;
 iod.getc_fn = uart0_getc;
 iod.ungetc_fn = uart0_ungetc;
 n = __vfscanf((__scanf_t *)\&iod, (const unsigned char *)fmt, a);
 va_end(a);
 return n;
}

Using this template, we can add functions to do additional formatted input from other UARTs or devices, just as

we did for formatted output.

CrossWorks for ARM Reference Manual Input and output

348

CrossWorks for ARM Reference Manual Locales

349

Locales
The CrossWorks C library supports wide characters, multi-byte characters and locales. However, as not all

programs require full localization, you can tailor the exact support provided by the CrossWorks C library to suit

your application. These sections describe how to add new locales to your application and customize the runtime

footprint of the C library.

CrossWorks for ARM Reference Manual Locales

350

Unicode, ISO 10646, and wide characters
The ISO standard 10646 is identical to the published Unicode standard and the CrossWorks C library uses the

Unicode 6.2 definition as a base. Hence, whenever you see the term Unicode in this document, it is equivalent to

Unicode 6.2 and ISO/IEC 10646:2011.

The CrossWorks C library supports both 16-bit and 32-bit wide characters, depending upon the setting of wide

character width in the project.

When compiling with 16-bit wide characters, all characters in the Basic Multilingual Plane are representable

in a single wchar_t (values 0 through 0xFFFF). When compiling with 32-bit wide characters, all characters in

the Basic Multilingual Plane and planes 1 through 16 are representable in a single wchar_t (values 0 through

0x10FFFF).

The wide character type will hold Unicode code points in a locale that is defined to use Unicode and character

type functions such as iswalpha will work correctly on all Unicode code points.

CrossWorks for ARM Reference Manual Locales

351

Multi-byte characters
CrossWorks supports multi-byte encoding and decoding of characters. Most new software on the desktop uses

Unicode internally and UTF-8 as the external, on-disk encoding for files and for transport over 8-bit mediums

such as network connections.

However, in embedded software there is still a case to use code pages, such as ISO-Latin1, to reduce the

footprint of an application whilst also providing extra characters that do not form part of the ASCII character set.

The CrossWorks C library can support both models and you can choose a combination of models, dependent

upon locale, or construct a custom locale.

CrossWorks for ARM Reference Manual Locales

352

The standard C and POSIX locales
The standard C locale is called simply C. In order to provide POSIX compatibility, the name POSIX is a synonym

for C.

The C locale is fixed and supports only the ASCII character set with character codes 0 through 127. There is no

multi-byte character support, so the character encoding between wide and narrow characters is simply one-

to-one: a narrow character is converted to a wide character by zero extension. Thus, ASCII encoding of narrow

characters is compatible with the ISO 10646 (Unicode) encoding of wide characters in this locale.

CrossWorks for ARM Reference Manual Locales

353

Additional locales in source form
The CrossWorks C library provides only the C locale; if you need other locales, you must provide those by linking

them into your application. We have constructed a number of locales from the Unicode Common Locale Data

Repository (CLDR) and provided them in source form in the $(StudioDir)/source folder for you to include

in your application.

A C library locale is divided into two parts:

the locale's date, time, numeric, and monetary formatting information

how to convert between multi-byte characters and wide characters by the functions in the C library.

The first, the locale data, is independent of how characters are represented. The second, the code set in use,

defines how to map between narrow, multi-byte, and wide characters.

CrossWorks for ARM Reference Manual Locales

354

Installing a locale
If the locale you request using setlocale is neither C nor POSIX, the C library calls the function

__user_find_locale to find a user-supplied locale. The standard implementation of this function is to return a

null pointer which indicates that no additional locales are installed and, hence, no locale matches the request.

The prototype for __user_find_locale is:

const __RAL_locale_t *__user_find_locale(const char *locale);

The parameter locale is the locale to find; the locale name is terminated either by a zero character or by a

semicolon. The locale name, up to the semicolon or zero, is identical to the name passed to setlocale when you

select a locale.

Now let's install the Hungarian locale using both UTF-8 and ISO 8859-2 encodings. The UTF-8 codecs are

included in the CrossWorks C library, but the Hungarian locale and the ISO 8859-2 codec are not.

You will find the file locale_hu_HU.c in the source directory as described in the previous section. Add this file to

your project.

Although this adds the data needed for the locale, it does not make the locale available for the C library: we need

to write some code for __user_find_locale to return the appropriate locales.

To create the locales, we need to add the following code and data to tie everything together:

#include <__crossworks.h>

static const __RAL_locale_t hu_HU_utf8 = {
 "hu_HU.utf8",
 &__RAL_hu_HU_locale,
 &__RAL_codeset_utf8
};

static const __RAL_locale_t hu_HU_iso_8859_2 = {
 "hu_HU.iso_8859_2",
 &__RAL_hu_HU_locale,
 &codeset_iso_8859_2
};

const __RAL_locale_t *
__user_find_locale(const char *locale)
{
 if (__RAL_compare_locale_name(locale, hu_HU_utf8.name) == 0)
 return &hu_HU_utf8;
 else if (__RAL_compare_locale_name(locale, hu_HU_iso_8859_2.name) == 0)
 return &hu_HU_iso_8859_2;
 else
 return 0;
}

The function __RAL_compare_locale_name matches locale names up to a terminating null character, or

a semicolon (which is required by the implementation of setlocale in the C library when setting multiple

locales using LC_ALL).

CrossWorks for ARM Reference Manual Locales

355

In addition to this, you must provide a buffer, __user_locale_name_buffer, for locale names encoded

by setlocale. The buffer must be large enough to contain five locale names, one for each category. In the

above example, the longest locale name is hu_HU.iso_8859_2 which is 16 characters in length. Using this

information, buffer must be at least (16+1)5 = 85 characters in size:

const char __user_locale_name_buffer[85];

CrossWorks for ARM Reference Manual Locales

356

Setting a locale directly
Although we support setlocale in its full generality, most likely you'll want to set a locale once and forget about

it. You can do that by including the locale in your application and writing to the instance variables that hold the

underlying locale data for the CrossWorks C library.

For instance, you might wish to use Czech locale with a UTF codeset:

static __RAL_locale_t cz_locale =
{
 "cz_CZ.utf8",
 &__RAL_cs_CZ_locale,
 &__RAL_codeset_utf8
};

You can install this directly into the locale without using setlocale:

__RAL_global_locale.__category[LC_COLLATE] = &cz_locale;
__RAL_global_locale.__category[LC_CTYPE] = &cz_locale;
__RAL_global_locale.__category[LC_MONETARY] = &cz_locale;
__RAL_global_locale.__category[LC_NUMERIC] = &cz_locale;
__RAL_global_locale.__category[LC_TIME] = &cz_locale;

CrossWorks for ARM Reference Manual Complete API reference

357

Complete API reference
This section contains a complete reference to the CrossWorks C library API.

File Description

<assert.h>
Describes the diagnostic facilities which you can build
into your application.

<debugio.h> Describes the virtual console services and semi-
hosting support that CrossStudio provides to help you
when developing your applications.

<ctype.h> Describes the character classification and
manipulation functions.

<errno.h> Describes the macros and error values returned by the
C library.

<float.h> Defines macros that expand to various limits and
parameters of the standard floating point types.

<intrinsics.h> Describes ARM-specific intrinsic functions.

<itm.h> Describes ITM access library functions.

<libarm.h> Describes ARM-specific library functions.

<limits.h> Describes the macros that define the extreme values of
underlying C types.

<locale.h> Describes support for localization specific settings.

<math.h> Describes the mathematical functions provided by the
C library.

CrossWorks for ARM Reference Manual Complete API reference

358

<setjmp.h> Describes the non-local goto capabilities of the C
library.

<stdarg.h> Describes the way in which variable parameter lists are
accessed.

<stddef.h> Describes standard type definitions.

<stdio.h> Describes the formatted input and output functions.

<stdlib.h> Describes the general utility functions provided by the
C library.

<string.h> Describes the string handling functions provided by
the C library.

<time.h> Describes the functions to get and manipulate date
and time information provided by the C library.

<wchar.h> Describes the facilities you can use to manipulate wide
characters.

CrossWorks for ARM Reference Manual Complete API reference

359

<assert.h>

API Summary

Macros

assert Allows you to place assertions and diagnostic tests into
programs

Functions

__assert User defined behaviour for the assert macro

CrossWorks for ARM Reference Manual Complete API reference

360

__assert

Synopsis

void __assert(const char *expression,
 const char *filename,
 int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can

customize its behaviour without rebuilding the library. You must implement this function where expression

is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

CrossWorks for ARM Reference Manual Complete API reference

361

assert

Synopsis

#define assert(e) ...

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro is defined as:

#define assert(ignore) ((void)0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.

#define assert(e) ((e) ? (void)0 : __assert(#e, __FILE__, __LINE__))

When such an assert is executed and e is false, assert calls the __assert function with information about the

particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__ and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

CrossWorks for ARM Reference Manual Complete API reference

362

<complex.h>

API Summary

Trigonometric functions

cacos Compute inverse cosine of a complex float

cacosf Compute inverse cosine of a complex float

casin Compute inverse sine of a complex float

casinf Compute inverse sine of a complex float

catan Compute inverse tangent of a complex float

catanf Compute inverse tangent of a complex float

ccos Compute cosine of a complex float

ccosf Compute cosine of a complex float

csin Compute sine of a complex float

csinf Compute sine of a complex float

ctan Compute tangent of a complex float

ctanf Compute tangent of a complex float

Hyperbolic trigonometric functions

cacosh Compute inverse hyperbolic cosine of a complex float

cacoshf Compute inverse hyperbolic cosine of a complex float

casinh Compute inverse hyperbolic sine of a complex float

casinhf Compute inverse hyperbolic sine of a complex float

catanh Compute inverse hyperbolic tangent of a complex
float

catanhf Compute inverse hyperbolic tangent of a complex
float

ccosh Compute hyperbolic cosine of a complex float

ccoshf Compute hyperbolic cosine of a complex float

csinh Compute hyperbolic sine of a complex float

csinhf Compute hyperbolic sine of a complex float

ctanh Compute hyperbolic tangent of a complex float

ctanhf Compute hyperbolic tangent of a complex float

Exponential and logarithmic functions

cexp Computes the base-e exponential of a complex float

cexpf Computes the base-e exponential of a complex float

clog Computes the base-e logarithm of a complex float

CrossWorks for ARM Reference Manual Complete API reference

363

clogf Computes the base-e logarithm of a complex float

Power and absolute value functions

cabs Computes the absolute value of a complex float

cabsf Computes the absolute value of a complex float

cpow Compute a complex float raised to a power

cpowf Compute a complex float raised to a power

csqrt Compute square root of a complex float

csqrtf Compute square root of a complex float

Manipulation functions

carg Compute argument of a complex float

cargf Compute argument of a complex float

cimag Compute imaginary part of a complex float

cimagf Compute imaginary part of a complex float

conj Compute conjugate of a complex float

conjf Compute conjugate of a complex float

cproj Compute projection on the Riemann sphere

cprojf Compute projection on the Riemann sphere

creal Compute real part of a complex float

crealf Compute real part of a complex float

CrossWorks for ARM Reference Manual Complete API reference

364

cabs

Synopsis

double cabs(double complex z);

Description

cabs returns the absolute value of z.

CrossWorks for ARM Reference Manual Complete API reference

365

cabsf

Synopsis

float cabsf(float complex z);

Description

cabsf returns the absolute value of z.

CrossWorks for ARM Reference Manual Complete API reference

366

cacos

Synopsis

double complex cacos(double complex z);

Description

cacos returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

367

cacosf

Synopsis

float complex cacosf(float complex z);

Description

cacosf returns the principal value the inverse cosine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [0,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

368

cacosh

Synopsis

double complex cacosh(double complex z);

Description

cacosh returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on

the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

369

cacoshf

Synopsis

float complex cacoshf(float complex _z);

Description

cacoshf returns the principal value the inverse hyperbolic cosine of z with branch cuts of values less than 1 on

the real axis. The principal value lies in the range of a half-strip of non-negative values on the real axis and in the

interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

370

carg

Synopsis

double carg(double complex z);

Description

carg computes the argument of z with a branch cut along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

371

cargf

Synopsis

float cargf(float complex z);

Description

cargf computes the argument of z with a branch cut along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

372

casin

Synopsis

double complex casin(double complex z);

Description

casin returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the real axis.

The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically unbounded

on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

373

casinf

Synopsis

float complex casinf(float complex z);

Description

casinf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

374

casinh

Synopsis

double complex casinh(double complex z);

Description

casinh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on

the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

375

casinhf

Synopsis

float complex casinhf(float complex z);

Description

casinhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-i,+i] on

the imaginary axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and

in the interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

376

catan

Synopsis

double complex catan(double complex z);

Description

catan returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

377

catanf

Synopsis

float complex catanf(float complex z);

Description

catanf returns the principal value the inverse sine of z with branch cuts outside the interval [-1,+1] on the

real axis. The principal value lies in the interval [,] on the real axis and in the range of a strip mathematically

unbounded on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

378

catanh

Synopsis

double complex catanh(double complex z);

Description

catanh returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1] on

the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in the

interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

379

catanhf

Synopsis

float complex catanhf(float complex z);

Description

catanhf returns the principal value the inverse hyperbolic sine of z with branch cuts outside the inteval [-1,+1]

on the real axis. The principal value lies in the range of a strip mathematically unbounded on the real axis and in

the interval [-i,+i] on the imaginary axis.

CrossWorks for ARM Reference Manual Complete API reference

380

ccos

Synopsis

double complex ccos(double complex z);

Description

ccos returns the complex cosine of z.

CrossWorks for ARM Reference Manual Complete API reference

381

ccosf

Synopsis

float complex ccosf(float complex z);

Description

ccosf returns the complex cosine of z.

CrossWorks for ARM Reference Manual Complete API reference

382

ccosh

Synopsis

double complex ccosh(double complex z);

Description

ccosh returns the complex hyperbolic cosine of z.

CrossWorks for ARM Reference Manual Complete API reference

383

ccoshf

Synopsis

float complex ccoshf(float complex z);

Description

ccoshf returns the complex hyperbolic cosine of z.

CrossWorks for ARM Reference Manual Complete API reference

384

cexp

Synopsis

double complex cexp(double complex z);

Description

cexp returns the complex base-e exponential value of z.

CrossWorks for ARM Reference Manual Complete API reference

385

cexpf

Synopsis

float complex cexpf(float complex z);

Description

cexpf returns the complex base-e exponential value of z.

CrossWorks for ARM Reference Manual Complete API reference

386

cimag

Synopsis

double cimag(double complex);

Description

cimag computes the imaginary part of z.

CrossWorks for ARM Reference Manual Complete API reference

387

cimagf

Synopsis

float cimagf(float complex);

Description

cimagf computes the imaginary part of z.

CrossWorks for ARM Reference Manual Complete API reference

388

clog

Synopsis

double complex clog(double complex z);

Description

clog returns the complex base-e logarithm value of z.

CrossWorks for ARM Reference Manual Complete API reference

389

clogf

Synopsis

float complex clogf(float complex z);

Description

clogf returns the complex base-e logarithm value of z.

CrossWorks for ARM Reference Manual Complete API reference

390

conj

Synopsis

double complex conj(double complex);

Description

conj computes the conjugate of z by reversing the sign of the imaginary part.

CrossWorks for ARM Reference Manual Complete API reference

391

conjf

Synopsis

float complex conjf(float complex);

Description

conjf computes the conjugate of z by reversing the sign of the imaginary part.

CrossWorks for ARM Reference Manual Complete API reference

392

cpow

Synopsis

double complex cpow(double complex x,
 double complex y);

Description

cpow computes x raised to the power y with a branch cut for the x along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

393

cpowf

Synopsis

float complex cpowf(float complex x,
 float complex y);

Description

cpowf computes x raised to the power y with a branch cut for the x along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

394

cproj

Synopsis

double complex cproj(double complex);

Description

cproj computes the projection of z on the Riemann sphere.

CrossWorks for ARM Reference Manual Complete API reference

395

cprojf

Synopsis

float complex cprojf(float complex);

Description

cprojf computes the projection of z on the Riemann sphere.

CrossWorks for ARM Reference Manual Complete API reference

396

creal

Synopsis

double creal(double complex);

Description

creal computes the real part of z.

CrossWorks for ARM Reference Manual Complete API reference

397

crealf

Synopsis

float crealf(float complex);

Description

crealf computes the real part of z.

CrossWorks for ARM Reference Manual Complete API reference

398

csin

Synopsis

double complex csin(double complex z);

Description

csin returns the complex sine of z.

CrossWorks for ARM Reference Manual Complete API reference

399

csinf

Synopsis

float complex csinf(float complex z);

Description

csinf returns the complex sine of z.

CrossWorks for ARM Reference Manual Complete API reference

400

csinh

Synopsis

double complex csinh(double complex z);

Description

csinh returns the complex hyperbolic sine of z.

CrossWorks for ARM Reference Manual Complete API reference

401

csinhf

Synopsis

float complex csinhf(float complex z);

Description

csinhf returns the complex hyperbolic sine of z.

CrossWorks for ARM Reference Manual Complete API reference

402

csqrt

Synopsis

double complex csqrt(double complex z);

Description

csqrt computes the complex square root of z with a branch cut along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

403

csqrtf

Synopsis

float complex csqrtf(float complex z);

Description

csqrtf computes the complex square root of z with a branch cut along the negative real axis.

CrossWorks for ARM Reference Manual Complete API reference

404

ctan

Synopsis

double complex ctan(double complex z);

Description

ctan returns the complex tangent of z.

CrossWorks for ARM Reference Manual Complete API reference

405

ctanf

Synopsis

float complex ctanf(float complex z);

Description

ctanf returns the complex tangent of z.

CrossWorks for ARM Reference Manual Complete API reference

406

ctanh

Synopsis

double complex ctanh(double complex z);

Description

ctanh returns the complex hyperbolic tangent of z.

CrossWorks for ARM Reference Manual Complete API reference

407

ctanhf

Synopsis

float complex ctanhf(float complex z);

Description

ctanhf returns the complex hyperbolic tangent of z.

CrossWorks for ARM Reference Manual Complete API reference

408

<ctype.h>

API Summary

Classification functions

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isblank Is character a space or horizontal tab?

iscntrl Is character a control?

isdigit Is character a decimal digit?

isgraph Is character any printing character except space?

islower Is character a lowercase letter?

isprint Is character printable?

ispunct Is character a punctuation mark?

isspace Is character a whitespace character?

isupper Is character an uppercase letter?

isxdigit Is character a hexadecimal digit?

Conversion functions

tolower Convert uppercase character to lowercase

toupper Convert lowercase character to uppercase

Classification functions (extended)

isalnum_l Is character alphanumeric?

isalpha_l Is character alphabetic?

isblank_l Is character a space or horizontal tab?

iscntrl_l Is character a control character?

isdigit_l Is character a decimal digit?

isgraph_l Is character any printing character except space?

islower_l Is character a lowercase letter?

isprint_l Is character printable?

ispunct_l Is character a punctuation mark?

isspace_l Is character a whitespace character?

isupper_l Is character an uppercase letter?

isxdigit_l Is character a hexadecimal digit?

Conversion functions (extended)

tolower_l Convert uppercase character to lowercase

CrossWorks for ARM Reference Manual Complete API reference

409

toupper_l Convert lowercase character to uppercase

CrossWorks for ARM Reference Manual Complete API reference

410

isalnum

Synopsis

int isalnum(int c);

Description

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

CrossWorks for ARM Reference Manual Complete API reference

411

isalnum_l

Synopsis

int isalnum_l(int c,
 locale_t loc);

Description

isalnum_l returns nonzero (true) if and only if the value of the argument c is a alphabetic or numeric character in

locale loc.

CrossWorks for ARM Reference Manual Complete API reference

412

isalpha

Synopsis

int isalpha(int c);

Description

isalpha returns true if the character c is alphabetic. That is, any character for which isupper or islower returns

true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iscntrl, isdigit, ispunct, or isspace is true.

In the C locale, isalpha returns nonzero (true) if and only if isupper or islower return true for value of the

argument c.

CrossWorks for ARM Reference Manual Complete API reference

413

isalpha_l

Synopsis

int isalpha_l(int c,
 locale_t loc);

Description

isalpha_l returns nonzero (true) if and only if isupper or islower return true for value of the argument c in locale

loc.

CrossWorks for ARM Reference Manual Complete API reference

414

isblank

Synopsis

int isblank(int c);

Description

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character ('\\t').

CrossWorks for ARM Reference Manual Complete API reference

415

isblank_l

Synopsis

int isblank_l(int c,
 locale_t loc);

Description

isblank_l returns nonzero (true) if and only if the value of the argument c is either a space character (' ') or the

horizontal tab character ('\\t') in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

416

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters

have values 0 through 31 and the single value 127.

CrossWorks for ARM Reference Manual Complete API reference

417

iscntrl_l

Synopsis

int iscntrl_l(int c,
 locale_t loc);

Description

iscntrl_l returns nonzero (true) if and only if the value of the argument c is a control character in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

418

isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

CrossWorks for ARM Reference Manual Complete API reference

419

isdigit_l

Synopsis

int isdigit_l(int c,
 locale_t loc);

Description

isdigit_l returns nonzero (true) if and only if the value of the argument c is a decimal digit in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

420

isgraph

Synopsis

int isgraph(int c);

Description

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

').

CrossWorks for ARM Reference Manual Complete API reference

421

isgraph_l

Synopsis

int isgraph_l(int c,
 locale_t loc);

Description

isgraph_l returns nonzero (true) if and only if the value of the argument c is any printing character except space

(' ') in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

422

islower

Synopsis

int islower(int c);

Description

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

CrossWorks for ARM Reference Manual Complete API reference

423

islower_l

Synopsis

int islower_l(int c,
 locale_t loc);

Description

islower_l returns nonzero (true) if and only if the value of the argument c is an lowercase letter in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

424

isprint

Synopsis

int isprint(int c);

Description

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

(' ').

CrossWorks for ARM Reference Manual Complete API reference

425

isprint_l

Synopsis

int isprint_l(int c,
 locale_t loc);

Description

isprint_l returns nonzero (true) if and only if the value of the argument c is any printing character including

space (' ') in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

426

ispunct

Synopsis

int ispunct(int c);

Description

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

CrossWorks for ARM Reference Manual Complete API reference

427

ispunct_l

Synopsis

int ispunct_l(int c,
 locale_t loc);

Description

ispunct_l returns nonzero (true) for every printing character for which neither isspace nor isalnum is true in in

locale loc.

CrossWorks for ARM Reference Manual Complete API reference

428

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.

The standard white-space characters are space (' '), form feed ('\\f'), new-line ('\\n'), carriage return ('\

\r'), horizontal tab ('\\t'), and vertical tab ('\v').

CrossWorks for ARM Reference Manual Complete API reference

429

isspace_l

Synopsis

int isspace_l(int c,
 locale_t loc);

Description

isspace_l returns nonzero (true) if and only if the value of the argument c is a standard white-space character in

in locale loc..

CrossWorks for ARM Reference Manual Complete API reference

430

isupper

Synopsis

int isupper(int c);

Description

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

CrossWorks for ARM Reference Manual Complete API reference

431

isupper_l

Synopsis

int isupper_l(int c,
 locale_t loc);

Description

isupper_l returns nonzero (true) if and only if the value of the argument c is an uppercase letter in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

432

isxdigit

Synopsis

int isxdigit(int c);

Description

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

CrossWorks for ARM Reference Manual Complete API reference

433

isxdigit_l

Synopsis

int isxdigit_l(int c,
 locale_t loc);

Description

isxdigit_l returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit in locale loc.

CrossWorks for ARM Reference Manual Complete API reference

434

tolower

Synopsis

int tolower(int c);

Description

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for

which isupper is true and there are one or more corresponding characters, as specified by the current locale, for

which islower is true, the tolower function returns one of the corresponding characters (always the same one for

any given locale); otherwise, the argument is returned unchanged.

Note that even though isupper can return true for some characters, tolower may return that uppercase

character unchanged as there are no corresponding lowercase characters in the locale.

CrossWorks for ARM Reference Manual Complete API reference

435

tolower_l

Synopsis

int tolower_l(int c,
 locale_t loc);

Description

tolower_l converts an uppercase letter to a corresponding lowercase letter in locale loc. If the argument c is a

character for which isupper is true in locale loc, tolower_l returns the corresponding lowercase letter; otherwise,

the argument is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

436

toupper

Synopsis

int toupper(int c);

Description

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument is a character for

which islower is true and there are one or more corresponding characters, as specified by the current locale, for

which isupper is true, toupper returns one of the corresponding characters (always the same one for any given

locale); otherwise, the argument is returned unchanged. Note that even though islower can return true for some

characters, toupper may return that lowercase character unchanged as there are no corresponding uppercase

characters in the locale.

CrossWorks for ARM Reference Manual Complete API reference

437

toupper_l

Synopsis

int toupper_l(int c,
 locale_t loc);

Description

toupper_l converts a lowercase letter to a corresponding uppercase letter in locale loc. If the argument c

is a character for which islower is true in locale loc, toupper_l returns the corresponding uppercase letter;

otherwise, the argument is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

438

<debugio.h>

API Summary

File Functions

debug_clearerr Clear error indicator

debug_fclose Closes an open stream

debug_feof Check end of file condition

debug_ferror Check error indicator

debug_fflush Flushes buffered output

debug_fgetc Read a character from a stream

debug_fgetpos Return file position

debug_fgets Read a string

debug_filesize Return the size of a file

debug_fopen Opens a file on the host PC

debug_fprintf Formatted write

debug_fprintf_c Formatted write

debug_fputc Write a character

debug_fputs Write a string

debug_fread Read data

debug_freopen Reopens a file on the host PC

debug_fscanf Formatted read

debug_fscanf_c Formatted read

debug_fseek Set file position

debug_fsetpos Teturn file position

debug_ftell Return file position

debug_fwrite Write data

debug_remove Deletes a file on the host PC

debug_rename Renames a file on the host PC

debug_rewind Set file position to the beginning

debug_tmpfile Open a temporary file

debug_tmpnam Generate temporary filename

debug_ungetc Push a character

debug_vfprintf Formatted write

debug_vfscanf Formatted read

CrossWorks for ARM Reference Manual Complete API reference

439

Debug Terminal Output Functions

debug_printf Formatted write

debug_printf_c Formatted write

debug_putchar Write a character

debug_puts Write a string

debug_vprintf Formatted write

Debug Terminal Input Functions

debug_getch Blocking character read

debug_getchar Line-buffered character read

debug_getd Line-buffered double read

debug_getf Line-buffered float read

debug_geti Line-buffered integer read

debug_getl Line-buffered long read

debug_getll Line-buffered long long read

debug_gets String read

debug_getu Line-buffered unsigned integer

debug_getul Line-buffered unsigned long read

debug_getull Line-buffered unsigned long long read

debug_kbhit Polled character read

debug_scanf Formatted read

debug_scanf_c Formatted read

debug_vscanf Formatted read

Debugger Functions

debug_abort Stop debugging

debug_break Stop target

debug_enabled Test if debug input/output is enabled

debug_evaluate Evaluate debug expression

debug_exit Stop debugging

debug_getargs Get arguments

debug_loadsymbols Load debugging symbols

debug_runtime_error Stop and report error

debug_unloadsymbols Unload debugging symbols

Misc Functions

debug_clock get clock

debug_getenv Get environment variable value

CrossWorks for ARM Reference Manual Complete API reference

440

debug_perror Display error

debug_system Execute command

debug_time get time

CrossWorks for ARM Reference Manual Complete API reference

441

debug_abort

Synopsis

void debug_abort(void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

CrossWorks for ARM Reference Manual Complete API reference

442

debug_break

Synopsis

void debug_break(void);

Description

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

CrossWorks for ARM Reference Manual Complete API reference

443

debug_clearerr

Synopsis

void debug_clearerr(DEBUG_FILE *stream);

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

CrossWorks for ARM Reference Manual Complete API reference

444

debug_clock

Synopsis

long debug_clock(void);

Description

debug_clock returns the number of milli-seconds since the start of execution.

CrossWorks for ARM Reference Manual Complete API reference

445

debug_enabled

Synopsis

int debug_enabled(void);

Description

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work. For this to work correctly, the Startup Completion Breakpoint project property needs to be

set to a point in the program where the startup code has finished initialising, this is typically main.

CrossWorks for ARM Reference Manual Complete API reference

446

debug_evaluate

Synopsis

void debug_evaluate(const char *expression);

Description

debug_evaluate instructs the debugger to evaluate the expression and display it in the debug terminal.

CrossWorks for ARM Reference Manual Complete API reference

447

debug_exit

Synopsis

__noreturn void debug_exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

CrossWorks for ARM Reference Manual Complete API reference

448

debug_fclose

Synopsis

int debug_fclose(DEBUG_FILE *stream);

Description

debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

CrossWorks for ARM Reference Manual Complete API reference

449

debug_feof

Synopsis

int debug_feof(DEBUG_FILE *stream);

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

CrossWorks for ARM Reference Manual Complete API reference

450

debug_ferror

Synopsis

int debug_ferror(DEBUG_FILE *stream);

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

CrossWorks for ARM Reference Manual Complete API reference

451

debug_fflush

Synopsis

int debug_fflush(DEBUG_FILE *stream);

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

CrossWorks for ARM Reference Manual Complete API reference

452

debug_fgetc

Synopsis

int debug_fgetc(DEBUG_FILE *stream);

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

CrossWorks for ARM Reference Manual Complete API reference

453

debug_fgetpos

Synopsis

int debug_fgetpos(DEBUG_FILE *stream,
 long *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

CrossWorks for ARM Reference Manual Complete API reference

454

debug_fgets

Synopsis

char *debug_fgets(char *s,
 int n,
 DEBUG_FILE *stream);

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input

stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

CrossWorks for ARM Reference Manual Complete API reference

455

debug_filesize

Synopsis

int debug_filesize(DEBUG_FILE *stream);

Description

debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

456

debug_fopen

Synopsis

DEBUG_FILE *debug_fopen(const char *filename,
 const char *mode);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a

host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

r open file for reading.

w create file for writing.

a open or create file for writing and position at the end of the file.

r+ open file for reading and writing.

w+ create file for reading and writing.

a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

t for a text file.

b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

CrossWorks for ARM Reference Manual Complete API reference

457

debug_fprintf

Synopsis

int debug_fprintf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent

arguments are converted for output. The format string is a standard C printf format string. The actual formatting

is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

CrossWorks for ARM Reference Manual Complete API reference

458

debug_fprintf_c

Synopsis

int debug_fprintf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fprintf_c is equivalent to debug_fprintf with the format string in code memory.

CrossWorks for ARM Reference Manual Complete API reference

459

debug_fputc

Synopsis

int debug_fputc(int c,
 DEBUG_FILE *stream);

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

CrossWorks for ARM Reference Manual Complete API reference

460

debug_fputs

Synopsis

int debug_fputs(const char *s,
 DEBUG_FILE *stream);

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual Complete API reference

461

debug_fread

Synopsis

int debug_fread(void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

CrossWorks for ARM Reference Manual Complete API reference

462

debug_freopen

Synopsis

DEBUG_FILE *debug_freopen(const char *filename,
 const char *mode,
 DEBUG_FILE *stream);

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened

file is then associated with the stream.

CrossWorks for ARM Reference Manual Complete API reference

463

debug_fscanf

Synopsis

int debug_fscanf(DEBUG_FILE *stream,
 const char *format,
 ...);

Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how

subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual

formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

CrossWorks for ARM Reference Manual Complete API reference

464

debug_fscanf_c

Synopsis

int debug_fscanf_c(DEBUG_FILE *stream,
 __code const char *format,
 ...);

Description

debug_fscanf_c is equivalent to debug_fscanf with the format string in code memory.

CrossWorks for ARM Reference Manual Complete API reference

465

debug_fseek

Synopsis

int debug_fseek(DEBUG_FILE *stream,
 long offset,
 int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.

The origin can be one of:

0 sets the position to offset bytes from the beginning of the file.

1 sets the position to offset bytes relative to the current position.

2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

CrossWorks for ARM Reference Manual Complete API reference

466

debug_fsetpos

Synopsis

int debug_fsetpos(DEBUG_FILE *stream,
 const long *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

CrossWorks for ARM Reference Manual Complete API reference

467

debug_ftell

Synopsis

long debug_ftell(DEBUG_FILE *stream);

Description

debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

468

debug_fwrite

Synopsis

int debug_fwrite(const void *ptr,
 int size,
 int nobj,
 DEBUG_FILE *stream);

Description

debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

CrossWorks for ARM Reference Manual Complete API reference

469

debug_getargs

Synopsis

int debug_getargs(unsigned bufsize,
 unsigned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a

maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the

number of entries is returned as the result.

CrossWorks for ARM Reference Manual Complete API reference

470

debug_getch

Synopsis

int debug_getch(void);

Description

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

CrossWorks for ARM Reference Manual Complete API reference

471

debug_getchar

Synopsis

int debug_getchar(void);

Description

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

CrossWorks for ARM Reference Manual Complete API reference

472

debug_getd

Synopsis

int debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to

by d.

debug_getd returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

473

debug_getenv

Synopsis

char *debug_getenv(char *name);

Description

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

CrossWorks for ARM Reference Manual Complete API reference

474

debug_getf

Synopsis

int debug_getf(float *f);

Description

debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

475

debug_geti

Synopsis

int debug_geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object

pointed to by i.

debug_geti returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

476

debug_getl

Synopsis

int debug_getl(long *l);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by l.

debug_getl returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

477

debug_getll

Synopsis

int debug_getll(long long *ll);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with 0x it is interpreted as a

hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted as

a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object

pointed to by ll.

debug_getll returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

478

debug_gets

Synopsis

char *debug_gets(char *s);

Description

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

CrossWorks for ARM Reference Manual Complete API reference

479

debug_getu

Synopsis

int debug_getu(unsigned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with 0x it is interpreted

as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned

integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

480

debug_getul

Synopsis

int debug_getul(unsigned long *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with 0x it is interpreted as

a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it is interpreted

as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object

pointed to by ul.

debug_getul returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

481

debug_getull

Synopsis

int debug_getull(unsigned long long *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is

interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with 0b it

is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the

long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

CrossWorks for ARM Reference Manual Complete API reference

482

debug_kbhit

Synopsis

int debug_kbhit(void);

Description

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

CrossWorks for ARM Reference Manual Complete API reference

483

debug_loadsymbols

Synopsis

void debug_loadsymbols(const char *filename,
 const void *address,
 const char *breaksymbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.

The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The

address is the load address which is required for debugging position independent executables, supply NULL for

regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on

or NULL.

CrossWorks for ARM Reference Manual Complete API reference

484

debug_perror

Synopsis

void debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the

errno value of the last Debug IO operation.

CrossWorks for ARM Reference Manual Complete API reference

485

debug_printf

Synopsis

int debug_printf(const char *format,
 ...);

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for output. The format string is a standard C printf format string. The

actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

CrossWorks for ARM Reference Manual Complete API reference

486

debug_printf_c

Synopsis

int debug_printf_c(__code const char *format,
 ...);

Description

debug_printf_c is equivalent to debug_printf with the format string in code memory.

CrossWorks for ARM Reference Manual Complete API reference

487

debug_putchar

Synopsis

int debug_putchar(int c);

Description

debug_putchar write the character c to the Debug Terminal.

debug_putchar returns the character written or -1 if a write error occurs.

CrossWorks for ARM Reference Manual Complete API reference

488

debug_puts

Synopsis

int debug_puts(const char *);

Description

debug_puts writes the string s to the Debug Terminal followed by a new-line character.

debug_puts returns -1 if a write error occurs, otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual Complete API reference

489

debug_remove

Synopsis

int debug_remove(const char *filename);

Description

debug_remove removes the filename denoted by filename and returns 0 on success or -1 on error. The

filename is a host PC filename which is relative to the debugger working directory.

CrossWorks for ARM Reference Manual Complete API reference

490

debug_rename

Synopsis

int debug_rename(const char *oldfilename,
 const char *newfilename);

Description

debug_rename renames the file denoted by oldpath to newpath and returns zero on success or non-zero on

error. The oldpath and newpath are host PC filenames which are relative to the debugger working directory.

CrossWorks for ARM Reference Manual Complete API reference

491

debug_rewind

Synopsis

void debug_rewind(DEBUG_FILE *stream);

Description

debug_rewind sets the current file position of the stream to the beginning of the file and clears any error and

end of file conditions.

CrossWorks for ARM Reference Manual Complete API reference

492

debug_runtime_error

Synopsis

void debug_runtime_error(const char *error);

Description

debug_runtime_error causes the debugger to stop the target, position the cursor at the line that called

debug_runtime_error, and display the null-terminated string pointed to by error.

CrossWorks for ARM Reference Manual Complete API reference

493

debug_scanf

Synopsis

int debug_scanf(const char *format,
 ...);

Description

debug_scanf reads from the Debug Terminal, under control of the string pointed to by format that specifies

how subsequent arguments are converted for input. The format string is a standard C scanf format string. The

actual formatting is performed on the host by the debugger and therefore debug_scanf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an output or encoding error occurred.

CrossWorks for ARM Reference Manual Complete API reference

494

debug_scanf_c

Synopsis

int debug_scanf_c(__code const char *format,
 ...);

Description

debug_scanf_c is equivalent to debug_scanf with the format string in code memory.

CrossWorks for ARM Reference Manual Complete API reference

495

debug_system

Synopsis

int debug_system(char *command);

Description

debug_system executes the command with the host command line interpreter and returns the commands exit

status.

CrossWorks for ARM Reference Manual Complete API reference

496

debug_time

Synopsis

long debug_time(long *ptr);

Description

debug_time returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time (UTC), according to the system clock of the host computer. The return value is stored in *ptr if ptr

is not NULL.

CrossWorks for ARM Reference Manual Complete API reference

497

debug_tmpfile

Synopsis

DEBUG_FILE *debug_tmpfile(void);

Description

debug_tmpfile creates a temporary file on the host PC which is deleted when the stream is closed.

CrossWorks for ARM Reference Manual Complete API reference

498

debug_tmpnam

Synopsis

char *debug_tmpnam(char *str);

Description

debug_tmpnam returns a unique temporary filename. If str is NULL then a static buffer is used to store the

filename, otherwise the filename is stored in str. On success a pointer to the string is returned, on failure 0 is

returned.

CrossWorks for ARM Reference Manual Complete API reference

499

debug_ungetc

Synopsis

int debug_ungetc(int c,
 DEBUG_FILE *stream);

Description

debug_ungetc pushes the character c onto the input stream. If successful c is returned, otherwise -1 is returned.

CrossWorks for ARM Reference Manual Complete API reference

500

debug_unloadsymbols

Synopsis

void debug_unloadsymbols(const char *filename);

Description

debug_unloadsymbols instructs the debugger to unload the debugging symbols (previously loaded by a call to

debug_loadsymbols) in the file denoted by filename. The filename is a host PC filename which is relative to the

debugger working directory.

CrossWorks for ARM Reference Manual Complete API reference

501

debug_vfprintf

Synopsis

int debug_vfprintf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfprintf is equivalent to debug_fprintf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual Complete API reference

502

debug_vfscanf

Synopsis

int debug_vfscanf(DEBUG_FILE *stream,
 const char *format,
 __va_list);

Description

debug_vfscanf is equivalent to debug_fscanf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual Complete API reference

503

debug_vprintf

Synopsis

int debug_vprintf(const char *format,
 __va_list);

Description

debug_vprintf is equivalent to debug_printf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual Complete API reference

504

debug_vscanf

Synopsis

int debug_vscanf(const char *format,
 __va_list);

Description

debug_vscanf is equivalent to debug_scanf with arguments passed using stdarg.h rather than a variable

number of arguments.

CrossWorks for ARM Reference Manual Complete API reference

505

<errno.h>

API Summary

Error numbers

EDOM Domain error

EILSEQ Illegal byte sequence

EINVAL Invalid argument

ENOMEM No memory available

ERANGE Result too large or too small

Macros

errno Last-set error condition

CrossWorks for ARM Reference Manual Complete API reference

506

EDOM

Synopsis

#define EDOM ...

Description

EDOM - an input argument is outside the defined domain of a mathematical function.

CrossWorks for ARM Reference Manual Complete API reference

507

EILSEQ

Synopsis

#define EILSEQ ...

Description

EILSEQ - A wide-character code has been detected that does not correspond to a valid character, or a byte

sequence does not form a valid wide-character code.

CrossWorks for ARM Reference Manual Complete API reference

508

EINVAL

Synopsis

#define EINVAL 0x06

Description

EINVAL - An argument was invalid, or a combination of arguments was invalid.

CrossWorks for ARM Reference Manual Complete API reference

509

ENOMEM

Synopsis

#define ENOMEM 0x05

Description

ENOMEM - no memory can be allocated by a function in the library. Note that malloc, calloc, and realloc do not

set errno to ENOMEM on failure, but other library routines (such as duplocale) may set errno to ENOMEM when

memory allocation fails.

CrossWorks for ARM Reference Manual Complete API reference

510

ERANGE

Synopsis

#define ERANGE ...

Description

ERANGE - the result of the function is too large (overflow) or too small (underflow) to be represented in the

available space.

CrossWorks for ARM Reference Manual Complete API reference

511

errno

Synopsis

int errno;

Description

errno is treated as an writable l-value, but the implementation of how the l-value is read an written is hidden

from the user.

The value of errno is zero at program startup, but is never set to zero by any library function. The value of errno

may be set to a nonzero value by a library function, and this effect is documented in each function that does so.

Note

The ISO standard does not specify whether errno is a macro or an identifier declared with external linkage.

Portable programs must not make assumptions about the implementation of errno.

In this implementation, errno expands to a function call to __errno (MSP430, AVR, MAXQ) or

__aeabi_errno_addr (ARM) that returns a pointer to a volatile int. This function can be implemented by the

application to provide a thread-specific errno.

CrossWorks for ARM Reference Manual Complete API reference

512

<float.h>

API Summary

Double exponent minimum and maximum values

DBL_MAX_10_EXP The maximum exponent value in base 10 of a double

DBL_MAX_EXP The maximum exponent value of a double

DBL_MIN_10_EXP The minimal exponent value in base 10 of a double

DBL_MIN_EXP The minimal exponent value of a double

Implementation

DBL_DIG The number of digits of precision of a double

DBL_MANT_DIG The number of digits in a double

DECIMAL_DIG The number of decimal digits that can be rounded
without change

FLT_DIG The number of digits of precision of a float

FLT_EVAL_METHOD The evaluation format

FLT_MANT_DIG The number of digits in a float

FLT_RADIX The radix of the exponent representation

FLT_ROUNDS The rounding mode

Float exponent minimum and maximum values

FLT_MAX_10_EXP The maximum exponent value in base 10 of a float

FLT_MAX_EXP The maximum exponent value of a float

FLT_MIN_10_EXP The minimal exponent value in base 10 of a float

FLT_MIN_EXP The minimal exponent value of a float

Double minimum and maximum values

DBL_EPSILON The difference between 1 and the least value greater
than 1 of a double

DBL_MAX The maximum value of a double

DBL_MIN The minimal value of a double

Float minimum and maximum values

FLT_EPSILON The difference between 1 and the least value greater
than 1 of a float

FLT_MAX The maximum value of a float

FLT_MIN The minimal value of a float

CrossWorks for ARM Reference Manual Complete API reference

513

DBL_DIG

Synopsis

#define DBL_DIG 15

Description

DBL_DIG specifies The number of digits of precision of a double.

CrossWorks for ARM Reference Manual Complete API reference

514

DBL_EPSILON

Synopsis

#define DBL_EPSILON 2.2204460492503131E-16

Description

DBL_EPSILON the minimum positive number such that 1.0 + DBL_EPSILON != 1.0.

CrossWorks for ARM Reference Manual Complete API reference

515

DBL_MANT_DIG

Synopsis

#define DBL_MANT_DIG 53

Description

DBL_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a double.

CrossWorks for ARM Reference Manual Complete API reference

516

DBL_MAX

Synopsis

#define DBL_MAX 1.7976931348623157E+308

Description

DBL_MAX is the maximum value of a double.

CrossWorks for ARM Reference Manual Complete API reference

517

DBL_MAX_10_EXP

Synopsis

#define DBL_MAX_10_EXP +308

Description

DBL_MAX_10_EXP is the maximum value in base 10 of the exponent part of a double.

CrossWorks for ARM Reference Manual Complete API reference

518

DBL_MAX_EXP

Synopsis

#define DBL_MAX_EXP +1024

Description

DBL_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a double.

CrossWorks for ARM Reference Manual Complete API reference

519

DBL_MIN

Synopsis

#define DBL_MIN 2.2250738585072014E-308

Description

DBL_MIN is the minimum value of a double.

CrossWorks for ARM Reference Manual Complete API reference

520

DBL_MIN_10_EXP

Synopsis

#define DBL_MIN_10_EXP -307

Description

DBL_MIN_10_EXP is the minimum value in base 10 of the exponent part of a double.

CrossWorks for ARM Reference Manual Complete API reference

521

DBL_MIN_EXP

Synopsis

#define DBL_MIN_EXP -1021

Description

DBL_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a double.

CrossWorks for ARM Reference Manual Complete API reference

522

DECIMAL_DIG

Synopsis

#define DECIMAL_DIG 17

Description

DECIMAL_DIG specifies the number of decimal digits that can be rounded to a floating-point number without

change to the value.

CrossWorks for ARM Reference Manual Complete API reference

523

FLT_DIG

Synopsis

#define FLT_DIG 6

Description

FLT_DIG specifies The number of digits of precision of a float.

CrossWorks for ARM Reference Manual Complete API reference

524

FLT_EPSILON

Synopsis

#define FLT_EPSILON 1.19209290E-07F // decimal constant

Description

FLT_EPSILON the minimum positive number such that 1.0 + FLT_EPSILON != 1.0.

CrossWorks for ARM Reference Manual Complete API reference

525

FLT_EVAL_METHOD

Synopsis

#define FLT_EVAL_METHOD 0

Description

FLT_EVAL_METHOD specifies that all operations and constants are evaluated to the range and precision of the

type.

CrossWorks for ARM Reference Manual Complete API reference

526

FLT_MANT_DIG

Synopsis

#define FLT_MANT_DIG 24

Description

FLT_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a float.

CrossWorks for ARM Reference Manual Complete API reference

527

FLT_MAX

Synopsis

#define FLT_MAX 3.40282347E+38F

Description

FLT_MAX is the maximum value of a float.

CrossWorks for ARM Reference Manual Complete API reference

528

FLT_MAX_10_EXP

Synopsis

#define FLT_MAX_10_EXP +38

Description

FLT_MAX_10_EXP is the maximum value in base 10 of the exponent part of a float.

CrossWorks for ARM Reference Manual Complete API reference

529

FLT_MAX_EXP

Synopsis

#define FLT_MAX_EXP +128

Description

FLT_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a float.

CrossWorks for ARM Reference Manual Complete API reference

530

FLT_MIN

Synopsis

#define FLT_MIN 1.17549435E-38F

Description

FLT_MIN is the minimum value of a float.

CrossWorks for ARM Reference Manual Complete API reference

531

FLT_MIN_10_EXP

Synopsis

#define FLT_MIN_10_EXP -37

Description

FLT_MIN_10_EXP is the minimum value in base 10 of the exponent part of a float.

CrossWorks for ARM Reference Manual Complete API reference

532

FLT_MIN_EXP

Synopsis

#define FLT_MIN_EXP -125

Description

FLT_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a float.

CrossWorks for ARM Reference Manual Complete API reference

533

FLT_RADIX

Synopsis

#define FLT_RADIX 2

Description

FLT_RADIX specifies the radix of the exponent representation.

CrossWorks for ARM Reference Manual Complete API reference

534

FLT_ROUNDS

Synopsis

#define FLT_ROUNDS 1

Description

FLT_ROUNDS specifies the rounding mode of floating-point addition is round to nearest.

CrossWorks for ARM Reference Manual Complete API reference

535

<intrinsics.h>

API Summary

Misc Intrinsics

__breakpoint BKPT instruction

__clrex CLREX instruction

__clz CLZ instruction

__dbg DBG instruction

__dmb DMB instruction

__dsb DSB instruction

__isb ISB instruction

__nop NOP instruction

__pld PLD instruction

__pli PLI instruction

__sev SEV instruction

__swp SWP instruction

__swpb SWPB instruction

__wfe WFE instruction

__wfi WFI instruction

__yield YIELD instruction

Coprocessor Intrinsics

__cdp CDP instruction

__cdp2 CDP2 instruction

__ldc LDC instruction

__ldc2 LDC2 instruction

__ldc2_noidx LDC2 instruction

__ldc2l LDC2L instruction

__ldc2l_noidx LDC2L instruction

__ldc_noidx LDC instruction

__ldcl LDCL instruction

__ldcl_noidx LDCL instruction

__mcr MCR instruction

__mcr2 MCR2 instruction

__mcrr MCRR instruction

CrossWorks for ARM Reference Manual Complete API reference

536

__mcrr2 MCRR2 instruction

__mrc MRC instruction

__mrc2 MRC2 instruction

__mrrc MRRC instruction

__mrrc2 MRRC2 instruction

__stc STC instruction

__stc2 STC2 instruction

__stc2l STC2L instruction

__stc_noidx STC2L instruction

__stcl STCL instruction

Interrupt Intrinsics

__disable_fiq Disable FIQ interrupts

__disable_interrupt Disable interrupt

__disable_irq Disable IRQ interrupts

__enable_fiq Enable FIQ interrupts

__enable_interrupt Enable interrupt

__enable_irq Enable IRQ interrupts

VFP Intrinsics

__fabs VABS.F64 instruction

__fabsf VABS.F32 instruction

__fma VFMA.F64 instruction

__fmaf VFMA.F32 instruction

__rintn VRINTN.F64 instruction

__rintnf VRINTN.F32 instruction

__sqrt VSQRT.F64 instruction

__sqrtf VQSRT.F32 instruction

Register Intrinsics

__get_APSR Get APSR value

__get_BASEPRI Get BASEPRI register value

__get_CONTROL Get CONTROL register value

__get_CPSR Get CPSR value

__get_FAULTMASK Get FAULTMASK register value

__get_PRIMASK Get PRIMASK register value

__set_APSR Set APSR value

__set_BASEPRI Set BASEPRI register value

CrossWorks for ARM Reference Manual Complete API reference

537

__set_CONTROL Set CONTROL register value

__set_CPSR Set CPSR value

__set_FAULTMASK Set FAULTMASK register value

__set_PRIMASK Set PRIMASK register value

Load/Store Intrinsics

__ldrbt LDRBT instruction

__ldrex LDREX instruction

__ldrexb LDREXB instruction

__ldrexd LDREXD instruction

__ldrexh LDREXH instruction

__ldrht LDRHT instruction

__ldrsbt LDRSBT instruction

__ldrsht LDRSHT instruction

__ldrt LDRT instruction

__strbt STRBT instruction

__strex STREX instruction

__strexb STREXB instruction

__strexd STREXD instruction

__strexh STREXH instruction

__strht STRHT instruction

__strt STRT instruction

DSP & SIMD Intrinsics

__qadd QADD instruction

__qadd16 QADD16 instruction

__qadd8 QADD8 instruction

__qasx QASX instruction

__qdadd QDADD instruction

__qdbl QDBL instruction

__qdsub QDSUB instruction

__qflag Get Q flag value

__qsax QSAX instruction

__qsub QSUB instruction

__qsub16 QSUB16 instruction

__qsub8 QSUB8 instruction

__sadd16 SADD16 instruction

CrossWorks for ARM Reference Manual Complete API reference

538

__sadd8 SADD8 instruction

__sasx SASX instruction

__sel SEL instruction

__shadd16 SHADD16 instruction

__shadd8 SHADD8 instruction

__shasx SHASX instruction

__shsax SHSAX instruction

__shsub16 SHSUB16 instruction

__shsub8 SHSUB8 instruction

__smlabb SMLABB instruction

__smlabt SMLABT instruction

__smlad SMLAD instruction

__smladx SMLADX instruction

__smlalbb SMLALBB instruction

__smlalbt SMLALBT instruction

__smlald SMLALD instruction

__smlaldx SMLALDX instruction

__smlaltb SMLALTB instruction

__smlaltt SMLALTT instruction

__smlatb SMLATB instruction

__smlatt SMLATT instruction

__smlawb SMLAWB instruction

__smlawt SMLAWT instruction

__smlsd SMLSD instruction

__smlsdx SMLSDX instruction

__smlsld SMLSLD instruction

__smlsldx SMLSLDX instruction

__smuad SMUAD instruction

__smuadx SMUADX instruction

__smulbb SMULBB instruction

__smulbt SMULBT instruction

__smultb SMULTB instruction

__smultt SMULTT instruction

__smulwb SMULWB instruction

__smulwt SMULWT instruction

CrossWorks for ARM Reference Manual Complete API reference

539

__smusd SMUSD instruction

__smusdx SMUSDX instruction

__ssat SSAT instruction

__ssat16 SSAT16 instruction

__ssax SSAX instruction

__ssub16 SSUB16 instruction

__ssub8 SSUB8 instruction

__sxtab16 SXTAB16 instruction

__sxtb16 SXTB16 instruction

__uadd16 UADD16 instruction

__uadd8 UADD8 instruction

__uasx UASX instruction

__uhadd16 UHADD16 instruction

__uhadd8 UHADD8 instruction

__uhasx UHASX instruction

__uhsax UHSAX instruction

__uhsub16 UHSUB16 instruction

__uhsub8 UHSUB8 instruction

__uqadd16 UQADD16 instruction

__uqadd8 UQADD8 instruction

__uqasx UQASX instruction

__uqsax UQSAX instruction

__uqsub16 USUB16 instruction

__uqsub8 UQSUB8 instruction

__usad8 USAD8 instruction

__usad8a USADA8 instruction

__usat USAT instruction

__usat16 USAT16 instruction

__usax USAX instruction

__usub8 USUB8 instruction

__uxtab16 UXTAB16 instruction

__uxtb16 UXTB16 instruction

Reversing Intrinsics

__rbit RBIT instruction

__rev REV instruction

CrossWorks for ARM Reference Manual Complete API reference

540

__rev16 REV16 instruction

__revsh REVSH instruction

CrossWorks for ARM Reference Manual Complete API reference

541

__breakpoint

Synopsis

void __breakpoint(unsigned val);

Description

__breakpoint inserts a BKPT instruction where val is a compile time constant.

CrossWorks for ARM Reference Manual Complete API reference

542

__cdp

Synopsis

void __cdp(unsigned coproc,
 unsigned opc1,
 unsigned crd,
 unsigned crn,
 unsigned crm,
 unsigned opc2);

Description

__cdp inserts a CDP instruction. All arguments are compile time constants.

CrossWorks for ARM Reference Manual Complete API reference

543

__cdp2

Synopsis

void __cdp2(unsigned coproc,
 unsigned opc1,
 unsigned crd,
 unsigned crn,
 unsigned crm,
 unsigned opc2);

Description

__cdp2 inserts a CDP2 instruction. All arguments are compile time constants.

CrossWorks for ARM Reference Manual Complete API reference

544

__clrex

Synopsis

void __clrex(void);

Description

__clrex inserts a CLREX instruction.

CrossWorks for ARM Reference Manual Complete API reference

545

__clz

Synopsis

unsigned char __clz(unsigned val);

Description

__clz returns the number of leading zeros in val.

CrossWorks for ARM Reference Manual Complete API reference

546

__dbg

Synopsis

void __dbg(unsigned option);

Description

__dbg inserts a DBG instruction where option is a compile time constant.

CrossWorks for ARM Reference Manual Complete API reference

547

__disable_fiq

Synopsis

int __disable_fiq(void);

Description

__disable_fiq sets the F bit in the CPSR and returns the previous F bit value.

CrossWorks for ARM Reference Manual Complete API reference

548

__disable_interrupt

Synopsis

void __disable_interrupt(void);

Description

__disable_interrupt set the PRIMASK for Cortex-M parts and sets the I and F bit in the CPSR for ARM parts.

CrossWorks for ARM Reference Manual Complete API reference

549

__disable_irq

Synopsis

int __disable_irq(void);

Description

__disable_irq sets the I bit in the CPSR and returns the previous I bit value.

CrossWorks for ARM Reference Manual Complete API reference

550

__dmb

Synopsis

void __dmb(void);

Description

__dmb inserts a DMB instruction.

CrossWorks for ARM Reference Manual Complete API reference

551

__dsb

Synopsis

void __dsb(void);

Description

__dsb inserts a DSB instruction.

CrossWorks for ARM Reference Manual Complete API reference

552

__enable_fiq

Synopsis

void __enable_fiq(void);

Description

__enable_fiq clears the F bit in the CPSR.

CrossWorks for ARM Reference Manual Complete API reference

553

__enable_interrupt

Synopsis

void __enable_interrupt(void);

Description

__enable_interrupt clears the PRIMASK for Cortex-M parts and clears the I and F bit in the CPSR for ARM parts.

CrossWorks for ARM Reference Manual Complete API reference

554

__enable_irq

Synopsis

void __enable_irq(void);

Description

__enable_irq clears the I bit in the CPSR.

CrossWorks for ARM Reference Manual Complete API reference

555

__fabs

Synopsis

double __fabs(double val);

Description

__fabs inserts a VABS.F64 instruction. Returns the absolute value of val.

CrossWorks for ARM Reference Manual Complete API reference

556

__fabsf

Synopsis

float __fabsf(float val);

Description

__fabsf inserts a VABS.F32 instruction. Returns the absolute value of val.

CrossWorks for ARM Reference Manual Complete API reference

557

__fma

Synopsis

double __fma(double a,
 double b,
 double c);

Description

__fma inserts a VFMA.F64 instruction. Returns the value of + * .

CrossWorks for ARM Reference Manual Complete API reference

558

__fmaf

Synopsis

double __fmaf(double a,
 double b,
 double c);

Description

__fmaf inserts a VFMA.F32 instruction. Returns the value of + * .

CrossWorks for ARM Reference Manual Complete API reference

559

__get_APSR

Synopsis

unsigned __get_APSR(void);

Description

__get_APSR returns the value of the APSR/CPSR for Cortex-M/ARM parts.

CrossWorks for ARM Reference Manual Complete API reference

560

__get_BASEPRI

Synopsis

unsigned __get_BASEPRI(void);

Description

__get_BASEPRI returns the value of the Cortex-M3/M4 BASEPRI register.

CrossWorks for ARM Reference Manual Complete API reference

561

__get_CONTROL

Synopsis

unsigned __get_CONTROL(void);

Description

__get_CONTROL returns the value of the Cortex-M CONTROL register.

CrossWorks for ARM Reference Manual Complete API reference

562

__get_CPSR

Synopsis

unsigned __get_CPSR(void);

Description

__get_CPSR returns the value of the ARM CPSR register.

CrossWorks for ARM Reference Manual Complete API reference

563

__get_FAULTMASK

Synopsis

unsigned __get_FAULTMASK(void);

Description

__get_FAULTMASK returns the value of the Cortex-M3/M4 FAULTMASK register.

CrossWorks for ARM Reference Manual Complete API reference

564

__get_PRIMASK

Synopsis

unsigned __get_PRIMASK(void);

Description

__get_PRIMASK returns the value of the Cortex-M PRIMASK register.

CrossWorks for ARM Reference Manual Complete API reference

565

__isb

Synopsis

void __isb(void);

Description

__isb inserts a ISB instruction.

CrossWorks for ARM Reference Manual Complete API reference

566

__ldc

Synopsis

void __ldc(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc inserts a LDC instruction where coproc and Crd are compile time constants and ptr points to the word of

data to load.

CrossWorks for ARM Reference Manual Complete API reference

567

__ldc2

Synopsis

void __ldc2(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc2 inserts a LDC2 instruction where coproc and Crd are compile time constants and ptr points to the word

of data to load.

CrossWorks for ARM Reference Manual Complete API reference

568

__ldc2_noidx

Synopsis

void __ldc2_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc2_noidx inserts a LDC2 instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to load.

CrossWorks for ARM Reference Manual Complete API reference

569

__ldc2l

Synopsis

void __ldc2l(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldc2l inserts a LDC2L instruction where coproc and Crd are compile time constants and ptr points to the word

of data to load.

CrossWorks for ARM Reference Manual Complete API reference

570

__ldc2l_noidx

Synopsis

void __ldc2l_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc2l_noidx inserts a LDC2L instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to load.

CrossWorks for ARM Reference Manual Complete API reference

571

__ldc_noidx

Synopsis

void __ldc_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldc_noidx inserts a LDC instruction where coproc, Crd and option are compile time constants and ptr points

to the word of data to load.

CrossWorks for ARM Reference Manual Complete API reference

572

__ldcl

Synopsis

void __ldcl(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__ldcl inserts a LDCL instruction where coproc and Crd are compile time constants and ptr points to the word of

data to load.

CrossWorks for ARM Reference Manual Complete API reference

573

__ldcl_noidx

Synopsis

void __ldcl_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__ldcl_noidx inserts a LDCL instruction where coproc, Crd and option are compile time constants and ptr points

to the word of data to load.

CrossWorks for ARM Reference Manual Complete API reference

574

__ldrbt

Synopsis

unsigned __ldrbt(unsigned char *ptr);

Description

__ldrbt inserts a LDRBT instruction. Returns the byte of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

575

__ldrex

Synopsis

unsigned __ldrex(unsigned *ptr);

Description

__ldrex inserts a LDREX instruction. Returns the word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

576

__ldrexb

Synopsis

unsigned __ldrexb(unsigned char *ptr);

Description

__ldrexb inserts a LDREXB instruction. Returns the byte of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

577

__ldrexd

Synopsis

unsigned long long __ldrexd(unsigned long long *ptr);

Description

__ldrexd inserts a LDREXD instruction. Returns the double word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

578

__ldrexh

Synopsis

unsigned __ldrexh(unsigned short *ptr);

Description

__ldrexh inserts a LDREXH instruction. Returns the half word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

579

__ldrht

Synopsis

unsigned __ldrht(unsigned short *ptr);

Description

__ldrht inserts a LDRHT instruction. Returns the half word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

580

__ldrsbt

Synopsis

unsigned __ldrsbt(signed char *ptr);

Description

__ldrsbt inserts a LDRSBT instruction. Returns the sign extended byte of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

581

__ldrsht

Synopsis

unsigned __ldrsht(short *ptr);

Description

__ldrsht inserts a LDRSHT instruction. Returns the sign extended half word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

582

__ldrt

Synopsis

unsigned __ldrt(unsigned *ptr);

Description

__ldrt inserts a LDRT instruction. Returns the word of data at memory address ptr.

CrossWorks for ARM Reference Manual Complete API reference

583

__mcr

Synopsis

void __mcr(unsigned coproc,
 unsigned opc1,
 unsigned src,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mcr inserts a MCR instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants and src is

the value to write.

CrossWorks for ARM Reference Manual Complete API reference

584

__mcr2

Synopsis

void __mcr2(unsigned coproc,
 unsigned opc1,
 unsigned src,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mcr2 inserts a MCR2 instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants and src

is the value to write.

CrossWorks for ARM Reference Manual Complete API reference

585

__mcrr

Synopsis

void __mcrr(unsigned coproc,
 unsigned opc1,
 unsigned src1,
 unsigned src2,
 unsigned CRn);

Description

__mcrr inserts a MCRR instruction. Where coproc, opc1 and Crn are compile time constants and src1, src2 are

the values to write.

CrossWorks for ARM Reference Manual Complete API reference

586

__mcrr2

Synopsis

void __mcrr2(unsigned coproc,
 unsigned opc1,
 unsigned src1,
 unsigned src2,
 unsigned CRn);

Description

__mcrr2 inserts a MCRR2 instruction. Where coproc, opc1 and Crn are compile time constants and src1, src2 are

the values to write.

CrossWorks for ARM Reference Manual Complete API reference

587

__mrc

Synopsis

unsigned __mrc(unsigned coproc,
 unsigned opc1,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mrc inserts a MRC instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants. __mrc

returns the value read.

CrossWorks for ARM Reference Manual Complete API reference

588

__mrc2

Synopsis

unsigned __mrc2(unsigned coproc,
 unsigned opc1,
 unsigned CRn,
 unsigned CRm,
 unsigned opc2);

Description

__mrc2 inserts a MRC2 instruction. Where coproc, opc1, Crn, Crm and opc2 are compile time constants. __mrc2

returns the value read.

CrossWorks for ARM Reference Manual Complete API reference

589

__mrrc

Synopsis

void __mrrc(unsigned coproc,
 unsigned opc1,
 unsigned *dst1,
 unsigned *dst2,
 unsigned CRn);

Description

__mrrc inserts a MRRC instruction. Where coproc, opc1 and Crn are compile time constants and dst1, dst2 are

the values read.

CrossWorks for ARM Reference Manual Complete API reference

590

__mrrc2

Synopsis

void __mrrc2(unsigned coproc,
 unsigned opc1,
 unsigned *dst1,
 unsigned *dst2,
 unsigned CRn);

Description

__mrrc2 inserts a MRRC2 instruction. Where coproc, opc1 and Crn are compile time constants and dst1, dst2 are

the values read.

CrossWorks for ARM Reference Manual Complete API reference

591

__nop

Synopsis

void __nop(void);

Description

__nop inserts a NOP instruction.

CrossWorks for ARM Reference Manual Complete API reference

592

__pld

Synopsis

void __pld(void *ptr);

Description

__pld inserts a PLD instruction. Where ptr specifies the memory address.

CrossWorks for ARM Reference Manual Complete API reference

593

__pli

Synopsis

void __pli(void *ptr);

Description

__pli inserts a PLI instruction. Where ptr specifies the memory address.

CrossWorks for ARM Reference Manual Complete API reference

594

__qadd

Synopsis

int __qadd(int val1,
 int val2);

Description

__qadd inserts a QADD instruction. Returns the 32-bit saturating signed equivalent of res = val1 + val2. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual Complete API reference

595

__qadd16

Synopsis

int16x2 __qadd16(int16x2 val1,
 int16x2 val2);

Description

__qadd16 inserts a QADD16 instruction. __qadd16 returns the 16-bit signed saturated equivalent of

res[0] = val1[0] + val2[0],

res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

596

__qadd8

Synopsis

int8x4 __qadd8(int8x4 val1,
 int8x4 val2);

Description

__qadd8 inserts a QADD8 instruction. __qadd8 returns the 8-bit signed saturated equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

res[2] = val1[2] + val2[2]

res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

597

__qasx

Synopsis

int16x2 __qasx(int16x2 val1,
 int16x2 val2);

Description

__qasx inserts a QASX instruction. __qasx returns the 16-bit signed saturated equivalent of

res[0] = val1[1] - val2[1]

res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

598

__qdadd

Synopsis

int __qdadd(int val1,
 int val2);

Description

__qdadd inserts a QDADD instruction. __qdadd returns the 32-bit signed saturated equivalent of res = val1 +

(2*val2). This operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual Complete API reference

599

__qdbl

Synopsis

int __qdbl(int val);

Description

__qdbl inserts a QADD instruction. __qdbl returns the 32-bit signed saturated equivalent of res = val + val. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual Complete API reference

600

__qdsub

Synopsis

int __qdsub(int val1,
 int val2);

Description

__qdsub inserts a QDSUB instruction. __qdsub returns the 32-bit signed saturated equivalent of val1 - (2*val2).

This operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual Complete API reference

601

__qflag

Synopsis

int __qflag(void);

Description

__qflag returns the value of the Q flag.

CrossWorks for ARM Reference Manual Complete API reference

602

__qsax

Synopsis

int16x2 __qsax(int16x2 val1,
 int16x2 val2);

Description

__qsax inserts a QSAX instruction. __qsax returns the 16-bit signed saturated equivalent of

res[0] = val1[0] + val2[1]

res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

603

__qsub

Synopsis

int __qsub(int val1,
 int val2);

Description

__qsub inserts a QSUB instruction. __qsub returns the 32-bit signed saturated equivalent of res=val1-val2. This

operation sets the Q flag if saturation occurs.

CrossWorks for ARM Reference Manual Complete API reference

604

__qsub16

Synopsis

int16x2 __qsub16(int16x2 val1,
 int16x2 val2);

Description

__qsub16 inserts a QSUB16 instruction. __qsub16 returns the 16-bit signed saturated equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

605

__qsub8

Synopsis

int8x4 __qsub8(int8x4 val1,
 int8x4 val2);

Description

__qsub8 inserts a QSUB8 instruction. __qsub8 returns the 8-bit signed saturated equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

res[2] = val1[2] - val2[2]

res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

606

__rbit

Synopsis

unsigned __rbit(unsigned val);

Description

__rbit inserts a RBIT instruction. __rbit returns the bit reversed equivalent of val.

CrossWorks for ARM Reference Manual Complete API reference

607

__rev

Synopsis

unsigned __rev(unsigned val);

Description

__rev inserts a REV instruction. __rev returns the equivalent of

res[0] = val[3]

res[1] = val[2]

res[2] = val[1]

res[3] = val[0]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

608

__rev16

Synopsis

unsigned __rev16(unsigned val);

Description

__rev16 inserts a REV16 instruction. __rev16 returns the equivalent of

res[0] = val[1]

res[1] = val[0]

res[2] = val[3]

res[3] = val[2]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

609

__revsh

Synopsis

unsigned __revsh(unsigned val);

Description

__revsh inserts a REVSH instruction. __revsh returns the 16-bit sign extended equivalent of

res[0] = val[1]

res[1] = val[0]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

610

__rintn

Synopsis

double __rintn(double val);

Description

__rintn inserts a VRINTN.F64 instruction. Returns the rounded integer value of val.

CrossWorks for ARM Reference Manual Complete API reference

611

__rintnf

Synopsis

float __rintnf(float val);

Description

__rintnf inserts a VRINTN.F32 instruction. Returns the rounded integer value of val.

CrossWorks for ARM Reference Manual Complete API reference

612

__sadd16

Synopsis

int16x2 __sadd16(int16x2 val1,
 int16x2 val2);

Description

__sadd16 inserts a SADD16 instruction. __sadd16 returns the 16-bit signed equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

613

__sadd8

Synopsis

int8x4 __sadd8(int8x4 val1,
 int8x4 val2);

Description

__sadd8 inserts a SADD8 instruction. __sadd8 returns the 8-bit signed equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

res[2] = val1[2] + val2[2]

res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

614

__sasx

Synopsis

int16x2 __sasx(int16x2 val1,
 int16x2 val2);

Description

__sasx inserts a SASX instruction. __sasx returns the 16-bit signed equivalent of

res[0] = val1[0] - val2[1]

res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

615

__sel

Synopsis

uint8x4 __sel(uint8x4 val1,
 uint8x4 val2);

Description

__sel inserts a SEL instruction. __sel returns the equivalent of

res[0] = GE[0] ? val1[0] : val2[0]

res[1] = GE[1] ? val1[1] : val2[1]

res[2] = GE[2] ? val1[2] : val2[2]

res[3] = GE[3] ? val1[3] : val2[3]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

616

__set_APSR

Synopsis

void __set_APSR(unsigned val);

Description

__set_APSR sets the value of the APSR i.e. the condition bits and the GE bits.

CrossWorks for ARM Reference Manual Complete API reference

617

__set_BASEPRI

Synopsis

void __set_BASEPRI(unsigned val);

Description

__set_BASEPRI sets the value of the Cortex-M3/M4 BASEPRI register.

CrossWorks for ARM Reference Manual Complete API reference

618

__set_CONTROL

Synopsis

void __set_CONTROL(unsigned val);

Description

__set_CONTROL set the value of the Cortex-M CONTROL register.

CrossWorks for ARM Reference Manual Complete API reference

619

__set_CPSR

Synopsis

void __set_CPSR(unsigned val);

Description

__set_CPSR sets the value of the ARM CPSR.

CrossWorks for ARM Reference Manual Complete API reference

620

__set_FAULTMASK

Synopsis

void __set_FAULTMASK(unsigned val);

Description

__set_FAULTMASK sets the value of the Cortex-M3/M4 FAULTMASK register.

CrossWorks for ARM Reference Manual Complete API reference

621

__set_PRIMASK

Synopsis

void __set_PRIMASK(unsigned val);

Description

__set_PRIMASK sets the value of the Cortex-M3/M4 PRIMASK register.

CrossWorks for ARM Reference Manual Complete API reference

622

__sev

Synopsis

void __sev(void);

Description

__sev inserts a SEV instruction.

CrossWorks for ARM Reference Manual Complete API reference

623

__shadd16

Synopsis

int16x2 __shadd16(int16x2 val1,
 int16x2 val2);

Description

__shadd16 inserts a SHADD16 instruction. __shadd16 returns the 16-bit signed equivalent of

res[0] = (val1[0] + val2[0])/2

res[1] = (val1[1] + val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

624

__shadd8

Synopsis

int8x4 __shadd8(int8x4 val1,
 int8x4 val2);

Description

__shadd8 inserts a SHADD8 instruction. __shadd8 returns the 8-bit signed equivalent of

res[0] = (val1[0] + val2[0])/2

res[1] = (val1[1] + val2[1])/2

res[2] = (val1[2] + val2[2])/2

res[3] = (val1[3] + val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

625

__shasx

Synopsis

int16x2 __shasx(int16x2 val1,
 int16x2 val2);

Description

__shasx inserts a SHASX instruction. __shasx returns the 16-bit signed equivalent of

res[0] = (val1[0] - val2[1])/2

res[1] = (val1[1] + val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

626

__shsax

Synopsis

int16x2 __shsax(int16x2 val1,
 int16x2 val2);

Description

__shsax inserts a SHSAX instruction. __shsax returns the 16-bit signed equivalent of

res[0] = (val1[0] + val2[1])/2

res[1] = (val1[1] - val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

627

__shsub16

Synopsis

int16x2 __shsub16(int16x2 val1,
 int16x2 val2);

Description

__shsub16 inserts a SHSUB16 instruction. __shsub16 returns the 16-bit signed equivalent of

res[0] = (val1[0] - val2[0])/2

res[1] = (val1[1] - val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

628

__shsub8

Synopsis

int8x4 __shsub8(int8x4 val1,
 int8x4 val2);

Description

__shsub8 inserts a SHSUB8 instruction. __shsub8 returns the 8-bit signed equivalent of

res[0] = (val1[0] - val2[0])/2

res[1] = (val1[1] - val2[1])/2

res[2] = (val1[2] - val2[2])/2

res[3] = (val1[3] - val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

629

__smlabb

Synopsis

int __smlabb(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlabb inserts a SMLABB instruction. __smlabb returns the equivalent of

res = val1[0] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

630

__smlabt

Synopsis

int __smlabt(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlabt inserts a SMLABT instruction. __smlabt returns the equivalent of

res = val1[0] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

631

__smlad

Synopsis

int __smlad(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlad inserts a SMLAD instruction. __smlad returns the 16-bit signed equivalent of

res = val1[0] * val2[0] + val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

632

__smladx

Synopsis

int __smladx(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smladx inserts a SMLADX instruction. __smladx returns the 16-bit signed equivalent of

res = val1[0] * val2[1] + val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

633

__smlalbb

Synopsis

long long __smlalbb(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlalbb inserts a SMLALBB instruction. __smlalbb returns the equivalent of

res = val1[0] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

634

__smlalbt

Synopsis

long long __smlalbt(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlalbt inserts a SMLALBT instruction. __smlalbt returns the equivalent of

res = val1[0] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

635

__smlald

Synopsis

long long __smlald(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlald inserts a SMLALD instruction. __smlald returns the equivalent of

res = val1[0] * val2[0] + val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

636

__smlaldx

Synopsis

long long __smlaldx(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaldx inserts a SMLALDX instruction. __smlaldx returns the equivalent of

res = val1[0] * val2[1] + val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

637

__smlaltb

Synopsis

long long __smlaltb(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaltb inserts a SMLALTB instruction. __smlaltb returns the equivalent of

res = val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

638

__smlaltt

Synopsis

long long __smlaltt(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlaltt inserts a SMLALTT instruction. __smlaltt returns the equivalent of

res = val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

639

__smlatb

Synopsis

int __smlatb(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlatb inserts a SMLATB instruction. __smlatb returns the equivalent of

res = val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

640

__smlatt

Synopsis

int __smlatt(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlatt inserts a SMLATT instruction. __smlatt returns the equivalent of

res = val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

641

__smlawb

Synopsis

int __smlawb(int val1,
 int16x2 val2,
 int val3);

Description

__smlawb inserts a SMLAWB instruction. __smlawb returns the equivalent of

res = (val1 * val2[0] + (val3 << 16)) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

642

__smlawt

Synopsis

int __smlawt(int val1,
 int16x2 val2,
 int val3);

Description

__smlawt inserts a SMLAWT instruction. __smlawt returns the equivalent of

res = (val1 * val2[1] + (val3 << 16)) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

643

__smlsd

Synopsis

int __smlsd(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlsd inserts a SMLSD instruction. __smlsd returns the equivalent of

res = val1[0] * val2[0] - val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

644

__smlsdx

Synopsis

int __smlsdx(int16x2 val1,
 int16x2 val2,
 int val3);

Description

__smlsdx inserts a SMLSDX instruction. __smlsdx returns the equivalent of

res = val1[0] * val2[1] - val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

645

__smlsld

Synopsis

long long __smlsld(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlsld inserts a SMLSLD instruction. __smlsld returns the equivalent of

res = val1[0] * val2[0] - val1[1] * val2[1] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

646

__smlsldx

Synopsis

long long __smlsldx(int16x2 val1,
 int16x2 val2,
 long long val3);

Description

__smlsldx inserts a SMLSLDX instruction. __smlsldx returns the equivalent of

res = val1[0] * val2[1] - val1[1] * val2[0] + val3

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

647

__smuad

Synopsis

int __smuad(int16x2 val1,
 int16x2 val2);

Description

__smuad inserts a SMUAD instruction. __smuad returns the equivalent of

res = val1[0] * val2[0] + val1[1] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

648

__smuadx

Synopsis

int __smuadx(int16x2 val1,
 int16x2 val2);

Description

__smuadx inserts a SMUADX instruction. __smuadx returns the equivalent of

res = val1[0] * val2[1] + val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the Q flag if overflow occurs

on the addition.

CrossWorks for ARM Reference Manual Complete API reference

649

__smulbb

Synopsis

int __smulbb(int16x2 val1,
 int16x2 val2);

Description

__smulbb inserts a SMULBB instruction. __smulbb returns the equivalent of

res = val1[0] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

650

__smulbt

Synopsis

int __smulbt(int16x2 val1,
 int16x2 val2);

Description

__smulbt inserts a SMULBT instruction. __smulbt returns the equivalent of

res = val1[0] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

651

__smultb

Synopsis

int __smultb(int16x2 val1,
 int16x2 val2);

Description

__smultb inserts a SMULTB instruction. __smultb returns the equivalent of

res = val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

652

__smultt

Synopsis

int __smultt(int16x2 val1,
 int16x2 val2);

Description

__smultt inserts a SMULTT instruction. __smultt returns the equivalent of

res = val1[1] * val2[1]

where [1] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

653

__smulwb

Synopsis

int __smulwb(int16x2 val1,
 int val2);

Description

__smulwb inserts a SMULWB instruction. __smulwb returns the equivalent of

res = (val1[0] * val2) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

654

__smulwt

Synopsis

int __smulwt(int16x2 val1,
 int val2);

Description

__smulwt inserts a SMULWT instruction. __smulwt returns the equivalent of

res = (val1[1] * val2) >> 16

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

655

__smusd

Synopsis

int __smusd(int16x2 val1,
 int16x2 val2);

Description

__smusd inserts a SMUSD instruction. __smusd returns the equivalent of

res = val1[0] * val2[0] - val1[1] * val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

656

__smusdx

Synopsis

int __smusdx(int16x2 val1,
 int16x2 val2);

Description

__smusdx inserts a SMUSDX instruction. __smusdx returns the equivalent of

res = val1[0] * val2[1] - val1[1] * val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

657

__sqrt

Synopsis

double __sqrt(double val);

Description

__sqrt inserts a VSQRT.F64 instruction.

CrossWorks for ARM Reference Manual Complete API reference

658

__sqrtf

Synopsis

float __sqrtf(float val);

Description

__sqrtf inserts a VSQRT.F32 instruction.

CrossWorks for ARM Reference Manual Complete API reference

659

__ssat

Synopsis

int __ssat(int val,
 unsigned sat);

Description

__ssat inserts a SSAT instruction. __ssat returns val saturated to the signed range of sat where sat is a compile

time constant.

CrossWorks for ARM Reference Manual Complete API reference

660

__ssat16

Synopsis

int16x2 __ssat16(int16x2 val,
 unsigned sat);

Description

__ssat16 inserts a SSAT16 instruction. __ssat16 returns the equivalent of

res[0] = val[0] saturated to the signed range of sat

res[1] = val[1] saturated to the signed range of sat

where [0] is the lower 16 bits and [1] is the upper 16 bits and sat is a compile time constant.

CrossWorks for ARM Reference Manual Complete API reference

661

__ssax

Synopsis

int16x2 __ssax(int16x2 val1,
 int16x2 val2);

Description

__ssax inserts a SSAX instruction. __ssax returns the equivalent of

res[0] = val1[0] + val2[1]

res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the GE bits.

CrossWorks for ARM Reference Manual Complete API reference

662

__ssub16

Synopsis

int16x2 __ssub16(int16x2 val1,
 int16x2 val2);

Description

__ssub16 inserts a SSUB16 instruction. __ssub16 returns the 16-bit signed equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

663

__ssub8

Synopsis

int8x4 __ssub8(int8x4 val1,
 int8x4 val2);

Description

__ssub8 inserts a SSUB8 instruction. __ssub8 returns the 8-bit signed equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

res[2] = val1[2] - val2[2]

res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

664

__stc

Synopsis

void __stc(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc inserts a STC instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual Complete API reference

665

__stc2

Synopsis

void __stc2(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc2 inserts a STC2 instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual Complete API reference

666

__stc2l

Synopsis

void __stc2l(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stc2l inserts a STC2L instruction where coproc and Crd are compile time constants and ptr points to the word

of data to store.

CrossWorks for ARM Reference Manual Complete API reference

667

__stc_noidx

Synopsis

void __stc_noidx(unsigned coproc,
 unsigned Crd,
 unsigned *ptr,
 unsigned option);

Description

__stc_noidx inserts a STC2L instruction where coproc, Crd and option are compile time constants and ptr

points to the word of data to store.

CrossWorks for ARM Reference Manual Complete API reference

668

__stcl

Synopsis

void __stcl(unsigned coproc,
 unsigned Crd,
 unsigned *ptr);

Description

__stcl inserts a STCL instruction where coproc and Crd are compile time constants and ptr points to the word of

data to store.

CrossWorks for ARM Reference Manual Complete API reference

669

__strbt

Synopsis

void __strbt(unsigned char val,
 unsigned char *ptr);

Description

__strbt inserts a STRBT instruction.

CrossWorks for ARM Reference Manual Complete API reference

670

__strex

Synopsis

int __strex(unsigned val,
 unsigned *ptr);

Description

__strex inserts a STREX instruction.

CrossWorks for ARM Reference Manual Complete API reference

671

__strexb

Synopsis

int __strexb(unsigned char val,
 unsigned *char ptr);

Description

__strexb inserts a STREXB instruction.

CrossWorks for ARM Reference Manual Complete API reference

672

__strexd

Synopsis

int __strexd(unsigned long long val,
 unsigned *long long ptr);

Description

__strexd inserts a STREXD instruction.

CrossWorks for ARM Reference Manual Complete API reference

673

__strexh

Synopsis

int __strexh(unsigned short val,
 unsigned *short ptr);

Description

__strexh inserts a STREXH instruction.

CrossWorks for ARM Reference Manual Complete API reference

674

__strht

Synopsis

void __strht(unsigned short val,
 unsigned short *ptr);

Description

__strht inserts a STRHT instruction.

CrossWorks for ARM Reference Manual Complete API reference

675

__strt

Synopsis

void __strt(unsigned val,
 unsigned *ptr);

Description

__strt inserts a STRT instruction.

CrossWorks for ARM Reference Manual Complete API reference

676

__swp

Synopsis

unsigned __swp(unsigned val,
 unsigned *ptr);

Description

__swp inserts a SWP instruction.

CrossWorks for ARM Reference Manual Complete API reference

677

__swpb

Synopsis

unsigned __swpb(unsigned char val,
 unsigned char *ptr);

Description

__swpb inserts a SWPB instruction.

CrossWorks for ARM Reference Manual Complete API reference

678

__sxtab16

Synopsis

int16x2 __sxtab16(int16x2 val1,
 uint8x4 val2);

Description

__sxtab16 inserts a SXTAB16 instruction. __sxtab16 returns the 16-bit signed equivalent of

res[0] = val1[0] + (short)val2[0]

res[1] = val1[1] + (short)val2[2]

where res[0] & val1[0] are the lower 16 bits, res[1] & val1[1] are the upper 16 bits, val2[0] is the lower 8 bits

and val2[2] is the 8 bits starting at bit position 16.

CrossWorks for ARM Reference Manual Complete API reference

679

__sxtb16

Synopsis

int16x2 __sxtb16(int8x4 val);

Description

__sxtb16 inserts a SXTB16 instruction. __sxtb16 returns the 16-bit signed equivalent of

res[0] = (short)val[0]

res[1] = (short)val[2]

where res[0] is the lower 16 bits, res[1] is the upper 16 bits, val[0] is the lower 8 bits and val[2] is the 8 bits

starting at bit position 16.

CrossWorks for ARM Reference Manual Complete API reference

680

__uadd16

Synopsis

uint16x2 __uadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uadd16 inserts a UADD16 instruction. __uadd16 returns the 16-bit unsigned equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

681

__uadd8

Synopsis

uint8x4 __uadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uadd8 inserts a UADD8 instruction. __uadd8 returns the 8-bit unsigned equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

res[2] = val1[2] + val2[2]

res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

682

__uasx

Synopsis

uint16x2 __uasx(uint16x2 val1,
 uint16x2 val2);

Description

__uasx inserts a UASX instruction. __uasx returns the 16-bit unsigned equivalent of

res[0] = val1[0] - val2[1]

res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. The GE bits of the APSR are set.

CrossWorks for ARM Reference Manual Complete API reference

683

__uhadd16

Synopsis

uint16x2 __uhadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uhadd16 inserts a UHADD16 instruction. __uhadd16 returns the 16-bit unsigned equivalent of

res[0] = (val1[0] + val2[0])/2

res[1] = (val1[1] + val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

684

__uhadd8

Synopsis

uint8x4 __uhadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uhadd8 inserts a UHADD8 instruction. __uhadd8 returns the 8-bit unsigned equivalent of

res[0] = (val1[0] + val2[0])/2

res[1] = (val1[1] + val2[1])/2

res[2] = (val1[2] + val2[2])/2

res[3] = (val1[3] + val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

685

__uhasx

Synopsis

uint16x2 __uhasx(uint16x2 val1,
 uint16x2 val2);

Description

__uhasx inserts a UHASX instruction. __uhasx returns the 16-bit unsigned equivalent of

res[0] = (val1[0] - val2[1])/2

res[1] = (val1[1] + val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

686

__uhsax

Synopsis

uint16x2 __uhsax(uint16x2 val1,
 uint16x2 val2);

Description

__uhsax inserts a UHSAX instruction. __uhsax returns the 16-bit unsigned equivalent of

res[0] = (val1[0] + val2[1])/2

res[1] = (val1[1] - val2[0])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

687

__uhsub16

Synopsis

uint16x2 __uhsub16(uint16x2 val1,
 uint16x2 val2);

Description

__uhsub16 inserts a UHSUB16 instruction. __uhsub16 returns the 16-bit unsigned equivalent of

res[0] = (val1[0] - val2[0])/2

res[1] = (val1[1] - val2[1])/2

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

688

__uhsub8

Synopsis

uint8x4 __uhsub8(uint8x4 val1,
 uint8x4 val2);

Description

__uhsub8 inserts a UHSUB8 instruction. __uhsub8 returns the 8-bit unsigned equivalent of

res[0] = (val1[0] - val2[0])/2

res[1] = (val1[1] - val2[1])/2

res[2] = (val1[2] - val2[2])/2

res[3] = (val1[3] - val2[3])/2

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

689

__uqadd16

Synopsis

uint16x2 __uqadd16(uint16x2 val1,
 uint16x2 val2);

Description

__uqadd16 inserts a UQADD16 instruction. __uqadd16 returns the 16-bit unsigned saturated equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

690

__uqadd8

Synopsis

uint8x4 __uqadd8(uint8x4 val1,
 uint8x4 val2);

Description

__uqadd8 inserts a UQADD8 instruction. __uqadd8 returns the 8-bit unsigned saturated equivalent of

res[0] = val1[0] + val2[0]

res[1] = val1[1] + val2[1]

res[2] = val1[2] + val2[2]

res[3] = val1[3] + val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

691

__uqasx

Synopsis

uint16x2 __uqasx(uint16x2 val1,
 uint16x2 val2);

Description

__uqasx inserts a UQASX instruction. __uqasx returns the 16-bit signed saturated equivalent of

res[0] = val1[0] - val2[1]

res[1] = val1[1] + val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

692

__uqsax

Synopsis

uint16x2 __uqsax(uint16x2 val1,
 uint16x2 val2);

Description

__uqsax inserts a UQSAX instruction. __uqsax returns the 16-bit signed saturated equivalent of

res[0] = val1[0] + val2[1]

res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits.

CrossWorks for ARM Reference Manual Complete API reference

693

__uqsub16

Synopsis

uint16x2 __uqsub16(uint16x2 val1,
 uint16x2 val2);

Description

__uqsub16 inserts a USUB16 instruction. __uqsub16 returns the 16-bit unsigned equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

694

__uqsub8

Synopsis

uint8x4 __uqsub8(uint8x4 val1,
 uint8x4 val2);

Description

__uqsub8 inserts a UQSUB8 instruction. __uqsub8 returns the 8-bit unsigned saturated equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

res[2] = val1[2] - val2[2]

res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

695

__usad8

Synopsis

unsigned __usad8(uint8x4 val1,
 uint8x4 val2);

Description

__usad8 inserts a USAD8 instruction. __usad8 returns the 8-bit unsigned equivalent of

res = abs(val1[0] - val2[0]) + abs(val1[1] - val2[1]) + (val1[2] - val2[2]) + (val1[3] - val2[3])

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

696

__usad8a

Synopsis

unsigned __usad8a(uint8x4 val1,
 uint8x4 val2,
 unsigned val3);

Description

__usad8a inserts a USADA8 instruction. __usad8a returns the 8-bit unsigned equivalent of

res = abs(val1[0] - val2[0]) + abs(val1[1] - val2[1]) + (val1[2] - val2[2]) + (val1[3] - val2[3]) + val3

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

697

__usat

Synopsis

int __usat(int val,
 unsigned sat);

Description

__usat inserts a USAT instruction. __usat returns val saturated to the unsigned range of sat where sat is a

compile time constant.

CrossWorks for ARM Reference Manual Complete API reference

698

__usat16

Synopsis

int16x2 __usat16(int16x2 val,
 const unsigned sat);

Description

__usat16 inserts a USAT16 instruction. __usat16 returns the equivalent of

res[0] = val[0] saturated to the unsigned range of sat

res[1] = val[1] saturated to the unsigned range of sat

where [0] is the lower 16 bits and [1] is the upper 16 bits and sat is a compile time constant.

CrossWorks for ARM Reference Manual Complete API reference

699

__usax

Synopsis

int16x2 __usax(int16x2 val1,
 int16x2 val2);

Description

__usax inserts a USAX instruction. __usax returns the equivalent of

res[0] = val1[0] + val2[1]

res[1] = val1[1] - val2[0]

where [0] is the lower 16 bits and [1] is the upper 16 bits. This operation sets the GE bits.

CrossWorks for ARM Reference Manual Complete API reference

700

__usub8

Synopsis

uint8x4 __usub8(uint8x4 val1,
 uint8x4 val2);

Description

__usub8 inserts a USUB8 instruction. __usub8 returns the 8-bit unsigned equivalent of

res[0] = val1[0] - val2[0]

res[1] = val1[1] - val2[1]

res[2] = val1[2] - val2[2]

res[3] = val1[3] - val2[3]

where [0] is the lower 8 bits and [3] is the upper 8 bits.

CrossWorks for ARM Reference Manual Complete API reference

701

__uxtab16

Synopsis

int16x2 __uxtab16(int16x2 val1,
 uint8x4 val2);

Description

__uxtab16 inserts a UXTAB16 instruction. __uxtab16 returns the 16-bit unsigned equivalent of

res[0] = val1[0] + (unsigned short)val2[0]

res[1] = val1[1] + (unsigned short)val2[2]

where res[0] & val1[0] are the lower 16 bits, res[1] & val1[1] are the upper 16 bits, val2[0] is the lower 8 bits

and val2[2] is the 8 bits starting at bit position 16.

CrossWorks for ARM Reference Manual Complete API reference

702

__uxtb16

Synopsis

int16x2 __uxtb16(int8x4 val);

Description

__uxtb16 inserts a UXTB16 instruction. __uxtb16 returns the 16-bit unsigned equivalent of

res[0] = (unsigned short)val[0]

res[1] = (unsigned short)val[2]

where res[0] is the lower 16 bits, res[1] is the upper 16 bits, val[0] is the lower 8 bits and val[2] is the 8 bits

starting at bit position 16.

CrossWorks for ARM Reference Manual Complete API reference

703

__wfe

Synopsis

void __wfe(void);

Description

__wfe inserts a WFE instruction.

CrossWorks for ARM Reference Manual Complete API reference

704

__wfi

Synopsis

void __wfi(void);

Description

__wfi inserts a WFI instruction.

CrossWorks for ARM Reference Manual Complete API reference

705

__yield

Synopsis

void __yield(void);

Description

__yield inserts a YIELD instruction.

CrossWorks for ARM Reference Manual Complete API reference

706

<iso646.h>

Overview

The header <iso646.h> defines macros that expand to the corresponding tokens to ease writing C programs

with keyboards that do not have keys for frequently-used operators.

API Summary

Macros

and Alternative spelling for logical and operator

and_eq Alternative spelling for logical and-equals operator

bitand Alternative spelling for bitwise and operator

bitor Alternative spelling for bitwise or operator

compl Alternative spelling for bitwise complement operator

not Alternative spelling for logical not operator

not_eq Alternative spelling for not-equal operator

or Alternative spelling for logical or operator

or_eq Alternative spelling for bitwise or-equals operator

xor Alternative spelling for bitwise exclusive or operator

xor_eq Alternative spelling for bitwise exclusive-or-equals
operator

CrossWorks for ARM Reference Manual Complete API reference

707

and

Synopsis

#define and &&

Description

and defines the alternative spelling for &&.

CrossWorks for ARM Reference Manual Complete API reference

708

and_eq

Synopsis

#define and_eq &=

Description

and_eq defines the alternative spelling for &=.

CrossWorks for ARM Reference Manual Complete API reference

709

bitand

Synopsis

#define bitand &

Description

bitand defines the alternative spelling for &.

CrossWorks for ARM Reference Manual Complete API reference

710

bitor

Synopsis

#define bitor |

Description

bitor defines the alternative spelling for |.

CrossWorks for ARM Reference Manual Complete API reference

711

compl

Synopsis

#define compl ~

Description

compl defines the alternative spelling for ~.

CrossWorks for ARM Reference Manual Complete API reference

712

not

Synopsis

#define not !

Description

not defines the alternative spelling for !.

CrossWorks for ARM Reference Manual Complete API reference

713

not_eq

Synopsis

#define not_eq !=

Description

not_eq defines the alternative spelling for !=.

CrossWorks for ARM Reference Manual Complete API reference

714

or

Synopsis

#define or ||

Description

or defines the alternative spelling for ||.

CrossWorks for ARM Reference Manual Complete API reference

715

or_eq

Synopsis

#define or_eq |=

Description

or_eq defines the alternative spelling for |=.

CrossWorks for ARM Reference Manual Complete API reference

716

xor

Synopsis

#define xor ^

Description

xor defines the alternative spelling for ^.

CrossWorks for ARM Reference Manual Complete API reference

717

xor_eq

Synopsis

#define xor_eq ^=

Description

xor_eq defines the alternative spelling for ^=.

CrossWorks for ARM Reference Manual Complete API reference

718

<itm.h>

API Summary

Variables

ITM_base The base address of the ITM peripheral

Functions

ITM_channel_enabled Check if an ITM channel is enabled

ITM_send_byte Send a byte to an ITM channel

ITM_send_half_word Send a half word to an ITM channel

ITM_send_pc Send the program counter of the caller to an ITM
channel

ITM_send_word Send a word to an ITM channel

CrossWorks for ARM Reference Manual Complete API reference

719

ITM_base

Synopsis

unsigned *ITM_base;

Description

ITM_base is the base address of the ITM peripheral. It must be assigned for ITM on V7A/V7R architectures. It is

not required for V7M architectures.

CrossWorks for ARM Reference Manual Complete API reference

720

ITM_channel_enabled

Synopsis

int ITM_channel_enabled(int n);

Description

ITM_channel_enabled returns 1 if the given ITM channel is enabled otherwise it returns 0.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual Complete API reference

721

ITM_send_byte

Synopsis

void ITM_send_byte(int n,
 unsigned char b);

Description

ITM_send_byte sends the byte b to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual Complete API reference

722

ITM_send_half_word

Synopsis

void ITM_send_half_word(int n,
 unsigned short s);

Description

ITM_send_half_word sends the half word s to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual Complete API reference

723

ITM_send_pc

Synopsis

void ITM_send_pc(int n);

Description

ITM_send_pc sends the program counter of the caller to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual Complete API reference

724

ITM_send_word

Synopsis

void ITM_send_word(int n,
 unsigned w);

Description

ITM_send_word sends the word w to the ITM channel n.

n is the ITM channel number from 0 to 31.

CrossWorks for ARM Reference Manual Complete API reference

725

<libarm.h>

API Summary

Functions

libarm_dcc_read Read a word of data from the host over JTAG using the
ARM's debug comms channel.

libarm_dcc_write Write a word of data to the host over JTAG using the
ARM debug comms channel.

libarm_disable_fiq Disable FIQ interrupts.

libarm_disable_irq Disable IRQ interrupts.

libarm_disable_irq_fiq Disables IRQ and FIQ interrupts and return the
previous enable state.

libarm_enable_fiq Enable FIQ interrupts.

libarm_enable_irq Enable IRQ interrupts.

libarm_enable_irq_fiq Enable IRQ and FIQ interrupts.

libarm_get_cpsr Get the value of the CPSR.

libarm_isr_disable_irq Re-disable ARM's global interrupts from within an IRQ
interrupt service routine.

libarm_isr_enable_irq Re-enable ARM's global interrupts from within an IRQ
interrupt service routine.

libarm_mmu_flat_initialise_level_1_table Create a flat mapped level 1 translation table.

libarm_mmu_flat_initialise_level_2_small_page_tableCreate a level 2 small page table for an address range.

libarm_mmu_flat_set_level_1_cacheable_region Mark region of memory described by level 1 section
descriptors as cacheable.

libarm_mmu_flat_set_level_2_small_page_cacheable_regionMark region of memory described by level 2 small
page table descriptors as cacheable.

libarm_restore_irq_fiq Restores the IRQ and FIQ interrupt enable state.

libarm_run_dcc_port_server Serve commands from the ARM's debug
communication channel.

libarm_set_cpsr Set the value of the CPSR.

libarm_set_fiq Enables or disables FIQ interrupts.

libarm_set_irq Enables or disables IRQ interrupts.

CrossWorks for ARM Reference Manual Complete API reference

726

libarm_dcc_read

Synopsis

unsigned long libarm_dcc_read(void);

Description

libarm_dcc_read returns The data read from the debug comms channel.

The ARM's debug comms channel is usually used by debuggers so reading from this port with a debugger

attached can cause unpredictable results.

CrossWorks for ARM Reference Manual Complete API reference

727

libarm_dcc_write

Synopsis

void libarm_dcc_write(unsigned long data);

Description

data The data to write to the debug comms channel.

The ARM's debug comms channel is usually used by debuggers so writing to this port with a debugger attached

can cause unpredictable results.

CrossWorks for ARM Reference Manual Complete API reference

728

libarm_disable_fiq

Synopsis

void libarm_disable_fiq(void);

Description

This function disables FIQ interrupts by setting the F bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

// Disable FIQ interrupts
libarm_disable_fiq();

CrossWorks for ARM Reference Manual Complete API reference

729

libarm_disable_irq

Synopsis

void libarm_disable_irq(void);

Description

This function disables IRQ interrupts by setting the I bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

// Disable IRQ interrupts
libarm_disable_irq();

CrossWorks for ARM Reference Manual Complete API reference

730

libarm_disable_irq_fiq

Synopsis

int libarm_disable_irq_fiq(void);

Description

libarm_disable_irq_fiq returns The IRQ and FIQ enable state prior to disabling the IRQ and FIQ interrupts.

This function disables both IRQ and FIQ interrupts, it also returns the previous IRQ and FIQ enable state so that it

can be restored using libarm_restore_irq_fiq.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

int s;

// Disable IRQ and FIQ interrupts
s = libarm_disable_irq_fiq();

// Restore IRQ and FIQ interrupts
libarm_restore_irq_fiq(s);

CrossWorks for ARM Reference Manual Complete API reference

731

libarm_enable_fiq

Synopsis

void libarm_enable_fiq(void);

Description

This function enables FIQ interrupts by clearing the F bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

// Enable FIQ interrupts
libarm_enable_fiq();

CrossWorks for ARM Reference Manual Complete API reference

732

libarm_enable_irq

Synopsis

void libarm_enable_irq(void);

Description

This function enables IRQ interrupts by clearing the I bit in the CPSR register.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example:

// Enable IRQ interrupts
libarm_enable_irq();

CrossWorks for ARM Reference Manual Complete API reference

733

libarm_enable_irq_fiq

Synopsis

void libarm_enable_irq_fiq(void);

Description

libarm_enable_irq_fiq returns The IRQ and FIQ enable state prior to enabling the IRQ and FIQ interrupts.

This function enables both IRQ and FIQ interrupts.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

// Enable IRQ and FIQ interrupts
libarm_enable_irq_fiq();

CrossWorks for ARM Reference Manual Complete API reference

734

libarm_get_cpsr

Synopsis

unsigned long libarm_get_cpsr(void);

Description

libarm_get_cpsr returns The value of the CPSR.

This function returns the value of the CPSR (Current Program Status Register).

CrossWorks for ARM Reference Manual Complete API reference

735

libarm_isr_disable_irq

Synopsis

void libarm_isr_disable_irq(void);

Description

A call to libarm_isr_enable_irq must have been made prior to calling this function.

Note that this call should only be made from within an IRQ interrupt handler.

CrossWorks for ARM Reference Manual Complete API reference

736

libarm_isr_enable_irq

Synopsis

void libarm_isr_enable_irq(void);

Description

ARM IRQ interrupts are automatically disabled on entry to an interrupt handler and subsequently re-enabled on

exit. You can use libarm_isr_enable_irq to re-enable interrupts from within an interrupt handler so that higher-

priority interrupts may interrupt the current interrupt handler.

This call must be accompanied with a call to libarm_isr_disable_irq prior to completion of the interrupt service

routine.

Note that this function should only be called from within an IRQ interrupt handler and that calling this function

changes the operating mode, and therefore the stack, so if it is being called from a C function you should not use

any automatic variables within that function.

CrossWorks for ARM Reference Manual Complete API reference

737

libarm_mmu_flat_initialise_level_1_table

Synopsis

void libarm_mmu_flat_initialise_level_1_table(void *translation_table);

Description

translation_table A pointer to the start of the translation table.

This function creates a flat mapped (i.e. virtual addresses == physical addresses) level 1 MMU translation table at

the location pointed to by translation_table (the translation table is 16BKytes in size).

Note that this function only initialises the translation table, it doesn't set the translation table base register.

CrossWorks for ARM Reference Manual Complete API reference

738

libarm_mmu_flat_initialise_level_2_small_page_table

Synopsis

void libarm_mmu_flat_initialise_level_2_small_page_table(void *translation_table,
 void *start,
 size_t size,
 void *coarse_page_tables);

Description

translation_table A pointer to the start of the translation table.

start A pointer to the start address of the address range.

size The size of the address range in bytes.

coarse_page_tables A pointer to the start address of the coarse page tables.

This function creates a level 2 small page table for the specified address range, it requires a level 1 translation

table to be createdi using libarm_mmu_flat_initialise_level_1_table prior to calling.

CrossWorks for ARM Reference Manual Complete API reference

739

libarm_mmu_flat_set_level_1_cacheable_region

Synopsis

void libarm_mmu_flat_set_level_1_cacheable_region(void *translation_table,
 void *start,
 size_t size);

Description

translation_table A pointer to the start of the translation table.

start A pointer to the start of the cacheable region.

size The size of the cacheable region in bytes.

This function marks a region of memory described by level 1 section descriptors as cacheable, it requires a level 1

translation table to be created using libarm_mmu_flat_initialise_level_1_table prior to calling.

CrossWorks for ARM Reference Manual Complete API reference

740

libarm_mmu_flat_set_level_2_small_page_cacheable_region

Synopsis

void libarm_mmu_flat_set_level_2_small_page_cacheable_region(void *translation_table,
 void *start,
 size_t size);

Description

translation_table A pointer to the start of the translation table.

start A pointer to the start address of the cacheable region.

size The size of the cacheable region in bytes.

This function marks a region of memory described by level 2 small page table

descriptors as cacheable, it requires a level 2 small page table table to be created using

libarm_mmu_flat_initialise_level_2_small_page_table prior to calling.

CrossWorks for ARM Reference Manual Complete API reference

741

libarm_restore_irq_fiq

Synopsis

void libarm_restore_irq_fiq(int disable_irq_fiq_return);

Description

disable_irq_fiq_return The value returned from libarm_disable_irq_fiq.

This function restores the IRQ and FIQ enable state to the state it was in before a call to libarm_disable_irq_fiq.

Note that this function modifies the CPSR register's control field and therefore will only work when the CPU is

executing in a privileged operating mode.

Example

int s;

// Disable IRQ and FIQ interrupts
s = libarm_disable_irq_fiq();

// Restore IRQ and FIQ interrupts
libarm_restore_irq_fiq(s);

CrossWorks for ARM Reference Manual Complete API reference

742

libarm_run_dcc_port_server

Synopsis

void libarm_run_dcc_port_server(void);

Description

CrossWorks uses the ARM's debug communication channel to carry operations such as memory access, to

do this a simple client server protocol is run over the channel. This function runs the debug communications

channel server, it returns when the host terminates the server.

CrossWorks for ARM Reference Manual Complete API reference

743

libarm_set_cpsr

Synopsis

void libarm_set_cpsr(unsigned long cpsr);

Description

cpsr The value the CPSR should be set to.

This function sets the value of all fields of the CPSR (Current Program Status Register).

CrossWorks for ARM Reference Manual Complete API reference

744

libarm_set_fiq

Synopsis

int libarm_set_fiq(int enable);

Description

enable If non-zero FIQ interrupts will be enabled, otherwise they will be disabled.

libarm_set_fiq returns The FIQ enable state prior to enabling the FIQ interrupt.

This function enables or disables FIQ interrupts. It modifies the CPSR register's control field and therefore will

only work when the CPU is executing in a privileged operating mode.

Example

// Enable FIQ interrupts
libarm_set_fiq(1);

// Disable FIQ interrupts
libarm_set_fiq(0);

CrossWorks for ARM Reference Manual Complete API reference

745

libarm_set_irq

Synopsis

int libarm_set_irq(int enable);

Description

enable If non-zero IRQ interrupts will be enabled, otherwise they will be disabled.

libarm_set_irq returns The IRQ enable state prior to enabling the IRQ interrupt.

This function enables or disables IRQ interrupts. It modifies the CPSR register's control field and therefore will

only work when the CPU is executing in a privileged operating mode.

Example

// Disable IRQ interrupts if enabled
int en = libarm_set_irq(0);

// Restore IRQ interrupts
libarm_set_irq(en);

CrossWorks for ARM Reference Manual Complete API reference

746

<limits.h>

API Summary

Long integer minimum and maximum values

LONG_MAX Maximum value of a long integer

LONG_MIN Minimum value of a long integer

ULONG_MAX Maximum value of an unsigned long integer

Character minimum and maximum values

CHAR_MAX Maximum value of a plain character

CHAR_MIN Minimum value of a plain character

SCHAR_MAX Maximum value of a signed character

SCHAR_MIN Minimum value of a signed character

UCHAR_MAX Maximum value of an unsigned char

Long long integer minimum and maximum values

LLONG_MAX Maximum value of a long long integer

LLONG_MIN Minimum value of a long long integer

ULLONG_MAX Maximum value of an unsigned long long integer

Short integer minimum and maximum values

SHRT_MAX Maximum value of a short integer

SHRT_MIN Minimum value of a short integer

USHRT_MAX Maximum value of an unsigned short integer

Integer minimum and maximum values

INT_MAX Maximum value of an integer

INT_MIN Minimum value of an integer

UINT_MAX Maximum value of an unsigned integer

Type sizes

CHAR_BIT Number of bits in a character

Multi-byte values

MB_LEN_MAX maximum number of bytes in a multi-byte character

CrossWorks for ARM Reference Manual Complete API reference

747

CHAR_BIT

Synopsis

#define CHAR_BIT 8

Description

CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

CrossWorks for ARM Reference Manual Complete API reference

748

CHAR_MAX

Synopsis

#define CHAR_MAX 255

Description

CHAR_MAX is the maximum value for an object of type char.

CrossWorks for ARM Reference Manual Complete API reference

749

CHAR_MIN

Synopsis

#define CHAR_MIN 0

Description

CHAR_MIN is the minimum value for an object of type char.

CrossWorks for ARM Reference Manual Complete API reference

750

INT_MAX

Synopsis

#define INT_MAX 2147483647

Description

INT_MAX is the maximum value for an object of type int.

CrossWorks for ARM Reference Manual Complete API reference

751

INT_MIN

Synopsis

#define INT_MIN (-2147483647 - 1)

Description

INT_MIN is the minimum value for an object of type int.

CrossWorks for ARM Reference Manual Complete API reference

752

LLONG_MAX

Synopsis

#define LLONG_MAX 9223372036854775807LL

Description

LLONG_MAX is the maximum value for an object of type long long int.

CrossWorks for ARM Reference Manual Complete API reference

753

LLONG_MIN

Synopsis

#define LLONG_MIN (-9223372036854775807LL - 1)

Description

LLONG_MIN is the minimum value for an object of type long long int.

CrossWorks for ARM Reference Manual Complete API reference

754

LONG_MAX

Synopsis

#define LONG_MAX 2147483647L

Description

LONG_MAX is the maximum value for an object of type long int.

CrossWorks for ARM Reference Manual Complete API reference

755

LONG_MIN

Synopsis

#define LONG_MIN (-2147483647L - 1)

Description

LONG_MIN is the minimum value for an object of type long int.

CrossWorks for ARM Reference Manual Complete API reference

756

MB_LEN_MAX

Synopsis

#define MB_LEN_MAX 4

Description

MB_LEN_MAX is the maximum number of bytes in a multi-byte character for any supported locale. Unicode (ISO

10646) characters between 0 and 10FFFF inclusive are supported which convert to a maximum of four bytes in

the UTF-8 encoding.

CrossWorks for ARM Reference Manual Complete API reference

757

SCHAR_MAX

Synopsis

#define SCHAR_MAX 127

Description

SCHAR_MAX is the maximum value for an object of type signed char.

CrossWorks for ARM Reference Manual Complete API reference

758

SCHAR_MIN

Synopsis

#define SCHAR_MIN (-128)

Description

SCHAR_MIN is the minimum value for an object of type signed char.

CrossWorks for ARM Reference Manual Complete API reference

759

SHRT_MAX

Synopsis

#define SHRT_MAX 32767

Description

SHRT_MAX is the maximum value for an object of type short int.

CrossWorks for ARM Reference Manual Complete API reference

760

SHRT_MIN

Synopsis

#define SHRT_MIN (-32767 - 1)

Description

SHRT_MIN is the minimum value for an object of type short int.

CrossWorks for ARM Reference Manual Complete API reference

761

UCHAR_MAX

Synopsis

#define UCHAR_MAX 255

Description

UCHAR_MAX is the maximum value for an object of type unsigned char.

CrossWorks for ARM Reference Manual Complete API reference

762

UINT_MAX

Synopsis

#define UINT_MAX 4294967295U

Description

UINT_MAX is the maximum value for an object of type unsigned int.

CrossWorks for ARM Reference Manual Complete API reference

763

ULLONG_MAX

Synopsis

#define ULLONG_MAX 18446744073709551615ULL

Description

ULLONG_MAX is the maximum value for an object of type unsigned long long int.

CrossWorks for ARM Reference Manual Complete API reference

764

ULONG_MAX

Synopsis

#define ULONG_MAX 4294967295UL

Description

ULONG_MAX is the maximum value for an object of type unsigned long int.

CrossWorks for ARM Reference Manual Complete API reference

765

USHRT_MAX

Synopsis

#define USHRT_MAX 65535

Description

USHRT_MAX is the maximum value for an object of type unsigned short int.

CrossWorks for ARM Reference Manual Complete API reference

766

<locale.h>

API Summary

Structures

lconv Formatting info for numeric values

Functions

localeconv Get current locale data

setlocale Set Locale

CrossWorks for ARM Reference Manual Complete API reference

767

lconv

Synopsis

typedef struct {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
 char int_p_cs_precedes;
 char int_n_cs_precedes;
 char int_p_sep_by_space;
 char int_n_sep_by_space;
 char int_p_sign_posn;
 char int_n_sign_posn;
} lconv;

Description

lconv structure holds formatting information on how numeric values are to be written. Note that the order of

fields in this structure is not consistent between implementations, nor is it consistent between C89 and C99

standards.

The members decimal_point, grouping, and thousands_sep are controlled by LC_NUMERIC, the remainder by

LC_MONETARY.

The members int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,

int_p_sep_by_space. and int_p_sign_posn are added by the C99 standard.

We have standardized on the ordering specified by the ARM EABI for the base of this structure. This ordering is

neither that of C89 nor C99.

Member Description

currency_symbol Local currency symbol.

decimal_point Decimal point separator.

frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the local format.

CrossWorks for ARM Reference Manual Complete API reference

768

grouping Specifies the amount of digits that form each of the
groups to be separated by thousands_sep separator
for non-monetary quantities.

int_curr_symbol International currency symbol.

int_frac_digits Amount of fractional digits to the right of the decimal
point for monetary quantities in the international
format.

mon_decimal_point Decimal-point separator used for monetary quantities.

mon_grouping Specifies the amount of digits that form each of the
groups to be separated by mon_thousands_sep
separator for monetary quantities.

mon_thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for monetary quantities.

negative_sign Sign to be used for negative monetary quantities.

n_cs_precedes Whether the currency symbol should precede negative
monetary quantities.

n_sep_by_space Whether a space should appear between the currency
symbol and negative monetary quantities.

n_sign_posn Position of the sign for negative monetary quantities.

positive_sign Sign to be used for nonnegative (positive or zero)
monetary quantities.

p_cs_precedes Whether the currency symbol should precede
nonnegative (positive or zero) monetary quantities.

p_sep_by_space Whether a space should appear between the currency
symbol and nonnegative (positive or zero) monetary
quantities.

p_sign_posn Position of the sign for nonnegative (positive or zero)
monetary quantities.

thousands_sep Separators used to delimit groups of digits to the left
of the decimal point for non-monetary quantities.

CrossWorks for ARM Reference Manual Complete API reference

769

localeconv

Synopsis

 localeconv(void);

Description

localeconv returns a pointer to a structure of type lconv with the corresponding values for the current locale

filled in.

CrossWorks for ARM Reference Manual Complete API reference

770

setlocale

Synopsis

char *setlocale(int category,
 const char *locale);

Description

setlocale sets the current locale. The category parameter can have the following values:

Name Locale affected

LC_ALL Entire locale

LC_COLLATE Affects strcoll and strxfrm

LC_CTYPE Affects character handling

LC_MONETARY Affects monetary formatting information

LC_NUMERIC Affects decimal-point character in I/O and string
formatting operations

LC_TIME Affects strftime

The locale parameter contains the name of a C locale to set or if NULL is passed the current locale is not

changed.

Return Value

setlocale returns the name of the current locale.

CrossWorks for ARM Reference Manual Complete API reference

771

<math.h>

API Summary

Comparison Macros

isgreater Is greater

isgreaterequal Is greater or equal

isless Is less

islessequal Is less or equal

islessgreater Is less or greater

isunordered Is unordered

Classification Macros

fpclassify Classify floating type

isfinite Test for a finite value

isinf Test for infinity

isnan Test for NaN

isnormal Test for a normal value

signbit Test sign

Trigonometric functions

cos Compute cosine of a double

cosf Compute cosine of a float

sin Compute sine of a double

sinf Compute sine of a float

tan Compute tangent of a double

tanf Compute tangent of a double

Inverse trigonometric functions

acos Compute inverse cosine of a double

acosf Compute inverse cosine of a float

asin Compute inverse sine of a double

asinf Compute inverse sine of a float

atan Compute inverse tangent of a double

atan2 Compute inverse tangent of a ratio of doubles

atan2f Compute inverse tangent of a ratio of floats

atanf Compute inverse tangent of a float

Exponential and logarithmic functions

CrossWorks for ARM Reference Manual Complete API reference

772

exp Compute exponential of a double

exp2 Compute binary exponential of a double

exp2f Compute binary exponential of a float

expf Compute exponential of a float

expm1 Compute exponential minus one of a double

expm1f Compute exponential minus one of a float

frexp Set exponent of a double

frexpf Set exponent of a float

ilogb Compute integer binary logarithm of a double

ilogbf Compute integer binary logarithm of a float

ldexp Adjust exponent of a double

ldexpf Adjust exponent of a float

log Compute natural logarithm of a double

log10 Compute common logarithm of a double

log10f Compute common logarithm of a float

log1p Compute natural logarithm plus one of a double

log1pf Compute natural logarithm plus one of a float

log2 Compute binary logarithm of a double

log2f Compute binary logarithm of a float

logb Compute floating-point base logarithm of a double

logbf Compute floating-point base logarithm of a float

logf Compute natural logarithm of a float

scalbln Scale a double

scalblnf Scale a float

scalbn Scale a double

scalbnf Scale a float

Rounding and remainder functions

ceil Compute smallest integer not greater than a double

ceilf Compute smallest integer not greater than a float

floor Compute largest integer not greater than a double

floorf Compute largest integer not greater than a float

fmod Compute remainder after division of two doubles

fmodf Compute remainder after division of two floats

llrint Round and cast double to long long

llrintf Round and cast float to long long

CrossWorks for ARM Reference Manual Complete API reference

773

llround Round and cast double to long long

llroundf Round and cast float to long long

lrint Round and cast double to long

lrintf Round and cast float to long

lround Round and cast double to long

lroundf Round and cast float to long

modf Break a double into integer and fractional parts

modff Break a float into integer and fractional parts

nearbyint Round double to nearby integral value

nearbyintf Round float to nearby integral value

remainder Compute remainder of a double

remainderf Compute remainder of a float

remquo Compute remainder and quotient of a double

remquof Compute remainder and quotient of a float

rint Round a double to an integral value

rintf Round a float to an integral value

round Round a double to the nearest integral value

roundf Round a float to the nearest integral value

trunc Truncate a double value

truncf Truncate a float value

Power functions

cbrt Compute cube root of a double

cbrtf Compute cube root of a float

hypot Compute complex magnitude of two doubles

hypotf Compute complex magnitude of two floats

pow Raise a double to a power

powf Raise a float to a power

sqrt Compute square root of a double

sqrtf Compute square root of a float

Absolute value functions

fabs Compute absolute value of a double

fabsf Compute absolute value of a float

Maximum, minimum, and positive difference functions

fdim Compute positive difference of two doubles

fdimf Compute positive difference of two floats

CrossWorks for ARM Reference Manual Complete API reference

774

fmax Compute maximum of two doubles

fmaxf Compute maximum of two floats

fmin Compute minimum of two doubles

fminf Compute minimum of two floats

Hyperbolic functions

cosh Compute hyperbolic cosine of a double

coshf Compute hyperbolic cosine of a float

sinh Compute hyperbolic sine of a double

sinhf Compute hyperbolic sine of a float

tanh Compute hyperbolic tangent of a double

tanhf Compute hyperbolic tangent of a float

Inverse hyperbolic functions

acosh Compute inverse hyperbolic cosine of a double

acoshf Compute inverse hyperbolic cosine of a float

asinh Compute inverse hyperbolic sine of a double

asinhf Compute inverse hyperbolic sine of a float

atanh Compute inverse hyperbolic tangent of a double

atanhf Compute inverse hyperbolic tangent of a float

Fused multiply functions

fma Compute fused multiply-add of doubles

fmaf Compute fused multiply-add of floats

Floating-point manipulation functions

copysign Copy magnitude and sign of a double

copysignf Copy magnitude and sign of a float

nextafter Next representable double value

nextafterf Next representable float value

Error and Gamma functions

erf Compute error function of a double

erfc Compute complementary error function of a double

erfcf Compute complementary error function of a float

erff Compute error function of a float

lgamma Compute log-gamma function of a double

lgammaf Compute log-gamma function of a float

tgamma Compute gamma function of a double

tgammaf Compute gamma function of a float

CrossWorks for ARM Reference Manual Complete API reference

775

acos

Synopsis

double acos(double x);

Description

acos returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

If x is NaN, acos returns x. If |x| > 1, acos returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

776

acosf

Synopsis

float acosf(float x);

Description

acosf returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the

interval [0, PI] radians.

If |a| 1, errno is set to EDOM and acosf returns HUGE_VAL.

If x is NaN, acosf returns x. If |x| > 1, acosf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

777

acosh

Synopsis

double acosh(double x);

Description

acosh returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acosh returns HUGE_VAL.

If x < 1, acosh returns NaN.

If x is NaN, acosh returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

778

acoshf

Synopsis

float acoshf(float x);

Description

acoshf returns the non-negative inverse hyperbolic cosine of x.

acosh(x) is defined as log(x + sqrt(x^2 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acoshf returns HUGE_VALF.

If x < 1, acoshf returns NaN.

If x is NaN, acoshf returns that NaN.

CrossWorks for ARM Reference Manual Complete API reference

779

asin

Synopsis

double asin(double x);

Description

asin returns the principal value, in radians, of the inverse circular sine of x. The principal value lies in the interval

[, +] radians.

If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

If x is NaN, asin returns x. If |x| > 1, asin returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

780

asinf

Synopsis

float asinf(float x);

Description

asinf returns the principal value, in radians, of the inverse circular sine of val. The principal value lies in the

interval [, +] radians.

If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

If x is NaN, asinf returns x. If |x| > 1, asinf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

781

asinh

Synopsis

double asinh(double x);

Description

asinh calculates the hyperbolic sine of x.

If |x| > ~709.782, errno is set to EDOM and asinh returns HUGE_VAL.

If x is +, , or NaN, asinh returns |x|. If |x| > ~709.782, asinh returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

782

asinhf

Synopsis

float asinhf(float x);

Description

asinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errnois set to EDOM and asinhf returns HUGE_VALF.

If x is +, , or NaN, asinhf returns |x|. If |x| > ~88.7228, asinhf returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

783

atan

Synopsis

double atan(double x);

Description

atan returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

CrossWorks for ARM Reference Manual Complete API reference

784

atan2

Synopsis

double atan2(double y,
 double x);

Description

atan2 returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [, +] radians. If x = y = 0, errno is

set to EDOM and atan2 returns HUGE_VAL.

atan2(x, NaN) is NaN.

atan2(NaN, x) is NaN.

atan2(0, +(anything but NaN)) is 0.

atan2(0, (anything but NaN)) is .

atan2((anything but 0 and NaN), 0) is .

atan2((anything but and NaN), +) is 0.

atan2((anything but and NaN),) is .

atan2(, +) is .

atan2(,) is .

atan2(, (anything but 0, NaN, and)) is .

CrossWorks for ARM Reference Manual Complete API reference

785

atan2f

Synopsis

float atan2f(float y,
 float x);

Description

atan2f returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [, +] radians.

If x = y = 0, errno is set to EDOM and atan2f returns HUGE_VALF.

atan2f(x, NaN) is NaN.

atan2f(NaN, x) is NaN.

atan2f(0, +(anything but NaN)) is 0.

atan2f(0, (anything but NaN)) is .

atan2f((anything but 0 and NaN), 0) is .

atan2f((anything but and NaN), +) is 0.

atan2f((anything but and NaN),) is .

atan2f(, +) is .

atan2f(,) is .

atan2f(, (anything but 0, NaN, and)) is .

CrossWorks for ARM Reference Manual Complete API reference

786

atanf

Synopsis

float atanf(float x);

Description

atanf returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [, +] radians.

CrossWorks for ARM Reference Manual Complete API reference

787

atanh

Synopsis

double atanh(double x);

Description

atanh returns the inverse hyperbolic tangent of x.

If |x| 1, errno is set to EDOM and atanh returns HUGE_VAL.

If |x| > 1 atanh returns NaN.

If x is NaN, atanh returns that NaN.

If x is 1, atanh returns .

If x is 1, atanh returns .

CrossWorks for ARM Reference Manual Complete API reference

788

atanhf

Synopsis

float atanhf(float x);

Description

atanhf returns the inverse hyperbolic tangent of x.

If |x| > 1 atanhf returns NaN. If x is NaN, atanhf returns that NaN. If x is 1, atanhf returns . If x is 1, atanhf returns .

CrossWorks for ARM Reference Manual Complete API reference

789

cbrt

Synopsis

double cbrt(double x);

Description

cbrt computes the cube root of x.

CrossWorks for ARM Reference Manual Complete API reference

790

cbrtf

Synopsis

float cbrtf(float x);

Description

cbrtf computes the cube root of x.

CrossWorks for ARM Reference Manual Complete API reference

791

ceil

Synopsis

double ceil(double x);

Description

ceil computes the smallest integer value not less than x.

ceil (0) is 0. ceil () is .

CrossWorks for ARM Reference Manual Complete API reference

792

ceilf

Synopsis

float ceilf(float x);

Description

ceilf computes the smallest integer value not less than x.

ceilf (0) is 0. ceilf () is .

CrossWorks for ARM Reference Manual Complete API reference

793

copysign

Synopsis

double copysign(double x,
 double y);

Description

copysign returns a value with the magnitude of x and the sign of y.

CrossWorks for ARM Reference Manual Complete API reference

794

copysignf

Synopsis

float copysignf(float x,
 float y);

Description

copysignf returns a value with the magnitude of x and the sign of y.

CrossWorks for ARM Reference Manual Complete API reference

795

cos

Synopsis

double cos(double x);

Description

cos returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cos returns HUGE_VAL.

If x is NaN, cos returns x. If |x| is , cos returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

796

cosf

Synopsis

float cosf(float x);

Description

cosf returns the radian circular cosine of x.

If |x| > 10^9, errno is set to EDOM and cosf returns HUGE_VALF.

If x is NaN, cosf returns x. If |x| is , cosf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

797

cosh

Synopsis

double cosh(double x);

Description

cosh calculates the hyperbolic cosine of x.

If |x| > ~709.782, errno is set to EDOM and cosh returns HUGE_VAL.

If x is +, , or NaN, cosh returns |x|.> If |x| > ~709.782, cosh returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

798

coshf

Synopsis

float coshf(float x);

Description

coshf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

If x is +, , or NaN, coshf returns |x|.

If |x| > ~88.7228, coshf returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

799

erf

Synopsis

double erf(double x);

Description

erf returns the error function for x.

CrossWorks for ARM Reference Manual Complete API reference

800

erfc

Synopsis

double erfc(double x);

Description

erfc returns the complementary error function for x.

CrossWorks for ARM Reference Manual Complete API reference

801

erfcf

Synopsis

float erfcf(float x);

Description

erfcf returns the complementary error function for x.

CrossWorks for ARM Reference Manual Complete API reference

802

erff

Synopsis

float erff(float x);

Description

erff returns the error function for x.

CrossWorks for ARM Reference Manual Complete API reference

803

exp

Synopsis

double exp(double x);

Description

exp computes the base-e exponential of x.

If |x| > ~709.782, errno is set to EDOM and exp returns HUGE_VAL.

If x is NaN, exp returns NaN.

If x is , exp returns .

If x is , exp returns 0.

CrossWorks for ARM Reference Manual Complete API reference

804

exp2

Synopsis

double exp2(double x);

Description

exp2 returns 2 raised to the power of x.

CrossWorks for ARM Reference Manual Complete API reference

805

exp2f

Synopsis

float exp2f(float x);

Description

exp2f returns 2 raised to the power of x.

CrossWorks for ARM Reference Manual Complete API reference

806

expf

Synopsis

float expf(float x);

Description

expf computes the base-e exponential of x.

If |x| > ~88.722, errno is set to EDOM and expf returns HUGE_VALF. If x is NaN, expf returns NaN.

If x is , expf returns .

If x is , expf returns 0.

CrossWorks for ARM Reference Manual Complete API reference

807

expm1

Synopsis

double expm1(double x);

Description

expm1 returns e raised to the power of x minus one.

CrossWorks for ARM Reference Manual Complete API reference

808

expm1f

Synopsis

float expm1f(float x);

Description

expm1f returns e raised to the power of x minus one.

CrossWorks for ARM Reference Manual Complete API reference

809

fabs

Synopsis

double fabs(double x);

CrossWorks for ARM Reference Manual Complete API reference

810

fabsf

Synopsis

float fabsf(float x);

Description

fabsf computes the absolute value of the floating-point number x.

CrossWorks for ARM Reference Manual Complete API reference

811

fdim

Synopsis

double fdim(double x,
 double y);

Description

fdim returns the positive difference between x and y.

CrossWorks for ARM Reference Manual Complete API reference

812

fdimf

Synopsis

float fdimf(float x,
 float y);

Description

fdimf returns the positive difference between x and y.

CrossWorks for ARM Reference Manual Complete API reference

813

floor

Synopsis

double floor(double);

floor computes the largest integer value not greater than x.

floor (0) is 0. floor () is .

CrossWorks for ARM Reference Manual Complete API reference

814

floorf

Synopsis

float floorf(float);

floorf computes the largest integer value not greater than x.

floorf(0) is 0. floorf() is .

CrossWorks for ARM Reference Manual Complete API reference

815

fma

Synopsis

double fma(double x,
 double y,
 double z);

Description

fma computes x y + z with a single rounding.

CrossWorks for ARM Reference Manual Complete API reference

816

fmaf

Synopsis

float fmaf(float x,
 float y,
 float z);

Description

fmaf computes x y + z with a single rounding.

CrossWorks for ARM Reference Manual Complete API reference

817

fmax

Synopsis

double fmax(double x,
 double y);

Description

fmax determines the maximum of x and y.

fmax (NaN, y) is y. fmax (x, NaN) is x.

CrossWorks for ARM Reference Manual Complete API reference

818

fmaxf

Synopsis

float fmaxf(float x,
 float y);

Description

fmaxf determines the maximum of x and y.

fmaxf (NaN, y) is y. fmaxf(x, NaN) is x.

CrossWorks for ARM Reference Manual Complete API reference

819

fmin

Synopsis

double fmin(double x,
 double y);

Description

fmin determines the minimum of x and y.

fmin (NaN, y) is y. fmin (x, NaN) is x.

CrossWorks for ARM Reference Manual Complete API reference

820

fminf

Synopsis

float fminf(float x,
 float y);

Description

fminf determines the minimum of x and y.

fminf (NaN, y) is y. fminf (x, NaN) is x.

CrossWorks for ARM Reference Manual Complete API reference

821

fmod

Synopsis

double fmod(double x,
 double y);

Description

fmod computes the floating-point remainder of x divided by y. #b #this returns the value x n y, for some integer

n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmod (NaN, y) is NaN. fmod (x, NaN) is NaN. fmod (0, y) is 0 for y not zero.

fmod (, y) is NaN.

fmod (x, 0) is NaN.

fmod (x,) is x for x not infinite.

CrossWorks for ARM Reference Manual Complete API reference

822

fmodf

Synopsis

float fmodf(float x,
 float y);

Description

fmodf computes the floating-point remainder of x divided by y. fmodf returns the value x n y, for some integer n

such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmodf (NaN, y) is NaN. fmodf (x, NaN) is NaN. fmodf (0, y) is 0 for y not zero.

fmodf (, y) is NaN.

fmodf (x, 0) is NaN.

fmodf (x,) is x for x not infinite.

CrossWorks for ARM Reference Manual Complete API reference

823

fpclassify

Synopsis

#define fpclassify(x) (__is_float32(x) ? __float32_classify(x) : __float64_classify(x))

Description

fpclassify classifies x as NaN, infinite, normal, subnormal, zero, or into another implementation-defined

category. fpclassify returns one of:

FP_ZERO

FP_SUBNORMAL

FP_NORMAL

FP_INFINITE

FP_NAN

CrossWorks for ARM Reference Manual Complete API reference

824

frexp

Synopsis

double frexp(double x,
 int *exp);

Description

frexp breaks a floating-point number into a normalized fraction and an integral power of 2.

frexp stores power of two in the int object pointed to by exp and returns the value x, such that x has a

magnitude in the interval [1/2, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is or NaN, frexp returns x and stores zero into the int object pointed to by exp.

CrossWorks for ARM Reference Manual Complete API reference

825

frexpf

Synopsis

float frexpf(float x,
 int *exp);

Description

frexpf breaks a floating-point number into a normalized fraction and an integral power of 2.

frexpf stores power of two in the int object pointed to by frexpf and returns the value x, such that x has a

magnitude in the interval [, 1) or zero, and value equals x * 2^exp.

If x is zero, both parts of the result are zero.

If x is or NaN, frexpf returns x and stores zero into the int object pointed to by exp.

CrossWorks for ARM Reference Manual Complete API reference

826

hypot

Synopsis

double hypot(double x,
 double y);

Description

hypot computes the square root of the sum of the squares of x and y, sqrt(x*x + y*y), without undue overflow or

underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypot computes the length of

the hypotenuse.

If x or y is + or , hypot returns .

If x or y is NaN, hypot returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

827

hypotf

Synopsis

float hypotf(float x,
 float y);

Description

hypotf computes the square root of the sum of the squares of x and y, sqrtf(x*x + y*y), without undue overflow

or underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypotf computes the length

of the hypotenuse.

If x or y is + or , hypotf returns . If x or y is NaN, hypotf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

828

ilogb

Synopsis

int ilogb(double x);

Description

ilogb returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

CrossWorks for ARM Reference Manual Complete API reference

829

ilogbf

Synopsis

int ilogbf(float x);

Description

ilogbf returns the integral part of the logarithm of x, using FLT_RADIX as the base for the logarithm.

CrossWorks for ARM Reference Manual Complete API reference

830

isfinite

Synopsis

#define isfinite(x) (sizeof(x) == sizeof(float) ? __float32_isfinite(x) : __float64_isfinite(x))

Description

isfinite determines whether x is a finite value (zero, subnormal, or normal, and not infinite or NaN). isfinite

returns a non-zero value if and only if x has a finite value.

CrossWorks for ARM Reference Manual Complete API reference

831

isgreater

Synopsis

#define isgreater(x,y) (!isunordered(x, y) && (x > y))

Description

isgreater returns whether x is greater than y.

CrossWorks for ARM Reference Manual Complete API reference

832

isgreaterequal

Synopsis

#define isgreaterequal(x,y) (!isunordered(x, y) && (x >= y))

Description

isgreaterequal returns whether x is greater than or equal to y.

CrossWorks for ARM Reference Manual Complete API reference

833

isinf

Synopsis

#define isinf(x) (sizeof(x) == sizeof(float) ? __float32_isinf(x) : __float64_isinf(x))

Description

isinf determines whether x is an infinity (positive or negative). The determination is based on the type of the

argument.

CrossWorks for ARM Reference Manual Complete API reference

834

isless

Synopsis

#define isless(x,y) (!isunordered(x, y) && (x < y))

Description

isless returns whether x is less than y.

CrossWorks for ARM Reference Manual Complete API reference

835

islessequal

Synopsis

#define islessequal(x,y) (!isunordered(x, y) && (x <= y))

Description

islessequal returns whether x is less than or equal to y.

CrossWorks for ARM Reference Manual Complete API reference

836

islessgreater

Synopsis

#define islessgreater(x,y) (!isunordered(x, y) && (x < y || x > y))

Description

islessgreater returns whether x is less than or greater than y.

CrossWorks for ARM Reference Manual Complete API reference

837

isnan

Synopsis

#define isnan(x) (sizeof(x) == sizeof(float) ? __float32_isnan(x) : __float64_isnan(x))

Description

isnan determines whether x is a NaN. The determination is based on the type of the argument.

CrossWorks for ARM Reference Manual Complete API reference

838

isnormal

Synopsis

#define isnormal(x) (sizeof(x) == sizeof(float) ? __float32_isnormal(x) : __float64_isnormal(x))

Description

isnormal determines whether x is a normal value (zero, subnormal, or normal, and not infinite or NaN).. isnormal

returns a non-zero value if and only if x has a normal value.

CrossWorks for ARM Reference Manual Complete API reference

839

isunordered

Synopsis

#define isunordered(a,b) (fpclassify(a) == FP_NAN || fpclassify(b) == FP_NAN)

Description

isunordered returns whether x or y are unordered values.

CrossWorks for ARM Reference Manual Complete API reference

840

ldexp

Synopsis

double ldexp(double x,
 int exp);

Description

ldexp multiplies a floating-point number by an integral power of 2.

ldexp returns x * 2^exp.

If the result overflows, errno is set to ERANGE and ldexp returns HUGE_VALF.

If x is or NaN, ldexp returns x. If the result overflows, ldexp returns .

CrossWorks for ARM Reference Manual Complete API reference

841

ldexpf

Synopsis

float ldexpf(float x,
 int exp);

Description

ldexpf multiplies a floating-point number by an integral power of 2.

ldexpf returns x * 2^exp. If the result overflows, errno is set to ERANGE and ldexpf returns HUGE_VALF.

If x is or NaN, ldexpf returns x. If the result overflows, ldexpf returns .

CrossWorks for ARM Reference Manual Complete API reference

842

lgamma

Synopsis

double lgamma(double x);

Description

lgamma returns the natural logarithm of the gamma function for x.

CrossWorks for ARM Reference Manual Complete API reference

843

lgammaf

Synopsis

float lgammaf(float x);

Description

lgammaf returns the natural logarithm of the gamma function for x.

CrossWorks for ARM Reference Manual Complete API reference

844

llrint

Synopsis

long long int llrint(double x);

Description

llrint rounds x to an integral value and returns it as a long long int.

CrossWorks for ARM Reference Manual Complete API reference

845

llrintf

Synopsis

long long int llrintf(float x);

Description

llrintf rounds x to an integral value and returns it as a long long int.

CrossWorks for ARM Reference Manual Complete API reference

846

llround

Synopsis

long long int llround(double x);

Description

llround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

CrossWorks for ARM Reference Manual Complete API reference

847

llroundf

Synopsis

long long int llroundf(float x);

Description

llroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long long

int.

CrossWorks for ARM Reference Manual Complete API reference

848

log

Synopsis

double log(double x);

Description

log computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and log returns HUGE_VAL. If x < 0, errno is set to EDOM and log returns

HUGE_VAL.

If x < 0 or x = , log returns NaN.

If x = 0, log returns .

If x = , log returns .

If x = NaN, log returns x.

CrossWorks for ARM Reference Manual Complete API reference

849

log10

Synopsis

double log10(double x);

Description

log10 computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10 returns HUGE_VAL. If x < 0, errno is set to EDOM and log10 returns

HUGE_VAL.

If x < 0 or x = , log10 returns NaN.

If x = 0, log10 returns .

If x = , log10 returns .

If x = NaN, log10 returns x.

CrossWorks for ARM Reference Manual Complete API reference

850

log10f

Synopsis

float log10f(float x);

Description

log10f computes the base-10 logarithm of x.

If x = 0, errno is set to ERANGE and log10f returns HUGE_VALF. If x < 0, errno is set to EDOM and log10f returns

HUGE_VALF.

If x < 0 or x = , log10f returns NaN.

If x = 0, log10f returns .

If x = , log10f returns .

If x = NaN, log10f returns x.

CrossWorks for ARM Reference Manual Complete API reference

851

log1p

Synopsis

double log1p(double x);

Description

log1p computes the base-e logarithm of x plus one.

CrossWorks for ARM Reference Manual Complete API reference

852

log1pf

Synopsis

float log1pf(float x);

Description

log1pf computes the base-e logarithm of x plus one.

CrossWorks for ARM Reference Manual Complete API reference

853

log2

Synopsis

double log2(double x);

Description

log2 computes the base-2 logarithm of x.

CrossWorks for ARM Reference Manual Complete API reference

854

log2f

Synopsis

float log2f(float x);

Description

log2f computes the base-2 logarithm of x.

CrossWorks for ARM Reference Manual Complete API reference

855

logb

Synopsis

double logb(double x);

Description

logb computes the base-FLT_RADIX logarithm of x.

CrossWorks for ARM Reference Manual Complete API reference

856

logbf

Synopsis

float logbf(float x);

Description

logbf computes the base-FLT_RADIX logarithm of x.

CrossWorks for ARM Reference Manual Complete API reference

857

logf

Synopsis

float logf(float x);

Description

logf computes the base-e logarithm of x.

If x = 0, errno is set to ERANGE and logf returns HUGE_VALF. If x < 0, errno is set to EDOM and logf returns

HUGE_VALF.

If x < 0 or x = , logf returns NaN.

If x = 0, logf returns .

If x = , logf returns .

If x = NaN, logf returns x.

CrossWorks for ARM Reference Manual Complete API reference

858

lrint

Synopsis

long int lrint(double x);

Description

lrint rounds x to an integral value and returns it as a long int.

CrossWorks for ARM Reference Manual Complete API reference

859

lrintf

Synopsis

long int lrintf(float x);

Description

lrintf rounds x to an integral value and returns it as a long int.

CrossWorks for ARM Reference Manual Complete API reference

860

lround

Synopsis

long int lround(double x);

Description

lround rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

CrossWorks for ARM Reference Manual Complete API reference

861

lroundf

Synopsis

long int lroundf(float x);

Description

lroundf rounds x to an integral value, with halfway cases rounded away from zero, and returns it as a long int.

CrossWorks for ARM Reference Manual Complete API reference

862

modf

Synopsis

double modf(double x,
 double *iptr);

Description

modf breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modf returns the signed

fractional part of x.

CrossWorks for ARM Reference Manual Complete API reference

863

modff

Synopsis

float modff(float x,
 float *iptr);

Description

modff breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modff returns the signed

fractional part of x.

CrossWorks for ARM Reference Manual Complete API reference

864

nearbyint

Synopsis

double nearbyint(double);

Description

nearbyint Rounds x to an integral value.

CrossWorks for ARM Reference Manual Complete API reference

865

nearbyintf

Synopsis

float nearbyintf(float);

Description

nearbyintf Rounds x to an integral value.

CrossWorks for ARM Reference Manual Complete API reference

866

nextafter

Synopsis

double nextafter(double x,
 double y);

Description

nextafter Returns the next representable value after x in the direction of y.

CrossWorks for ARM Reference Manual Complete API reference

867

nextafterf

Synopsis

float nextafterf(float x,
 float y);

Description

nextafterf Returns the next representable value after x in the direction of y.

CrossWorks for ARM Reference Manual Complete API reference

868

pow

Synopsis

double pow(double x,
 double y);

Description

pow computes x raised to the power y.

If x < 0 and y 0, errno is set to EDOM and pow returns HUGE_VAL. If x 0 and y is not an integer value, errno is set

to EDOM and pow returns HUGE_VAL.

If y = 0, pow returns 1.

If y = 1, pow returns x.

If y = NaN, pow returns NaN.

If x = NaN and y is anything other than 0, pow returns NaN.

If x < 1 or 1 < x, and y = +, pow returns +.

If x < 1 or 1 < x, and y = , pow returns 0.

If 1 < x < 1 and y = +, pow returns +0.

If 1 < x < 1 and y = , pow returns +.

If x = +1 or x = 1 and y = + or y = , pow returns NaN.

If x = +0 and y > 0 and y NaN, pow returns +0.

If x = 0 and y > 0 and y NaN or y not an odd integer, pow returns +0.

If x = +0 and y and y NaN, pow returns +.

If x = 0 and y > 0 and y NaN or y not an odd integer, pow returns +.

If x = 0 and y is an odd integer, pow returns 0.

If x = + and y > 0 and y NaN, pow returns +.

If x = + and y < 0 and y NaN, pow returns +0.

If x = , pow returns pow(0, y)

If x < 0 and x and y is a non-integer, pow returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

869

powf

Synopsis

float powf(float x,
 float y);

Description

powf computes x raised to the power y.

If x < 0 and y 0, errno. is set to EDOM and powf returns HUGE_VALF. If x 0 and y is not an integer value, errno is

set to EDOM and pow returns HUGE_VALF.

If y = 0, powf returns 1.

If y = 1, powf returns x.

If y = NaN, powf returns NaN.

If x = NaN and y is anything other than 0, powf returns NaN.

If x < 1 or 1 < x, and y = +, powf returns +.

If x < 1 or 1 < x, and y = , powf returns 0.

If 1 < x < 1 and y = +, powf returns +0.

If 1 < x < 1 and y = , powf returns +.

If x = +1 or x = 1 and y = + or y = , powf returns NaN.

If x = +0 and y > 0 and y NaN, powf returns +0.

If x = 0 and y > 0 and y NaN or y not an odd integer, powf returns +0.

If x = +0 and y and y NaN, powf returns +.

If x = 0 and y > 0 and y NaN or y not an odd integer, powf returns +.

If x = 0 and y is an odd integer, powf returns 0.

If x = + and y > 0 and y NaN, powf returns +.

If x = + and y < 0 and y NaN, powf returns +0.

If x = , powf returns powf(0, y)

If x < 0 and x and y is a non-integer, powf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

870

remainder

Synopsis

double remainder(double numer,
 double denom);

Description

remainder computes the remainder of numer divided by denom.

CrossWorks for ARM Reference Manual Complete API reference

871

remainderf

Synopsis

float remainderf(float numer,
 float denom);

Description

remainderf computes the remainder of numer divided by denom.

CrossWorks for ARM Reference Manual Complete API reference

872

remquo

Synopsis

double remquo(double numer,
 double denom,
 int *quot);

Description

remquo computes the remainder of numer divided by denom and the quotient pointed by quot.

CrossWorks for ARM Reference Manual Complete API reference

873

remquof

Synopsis

float remquof(float numer,
 float denom,
 int *quot);

Description

remquof computes the remainder of numer divided by denom and the quotient pointed by quot.

CrossWorks for ARM Reference Manual Complete API reference

874

rint

Synopsis

double rint(double x);

Description

rint rounds x to an integral value.

CrossWorks for ARM Reference Manual Complete API reference

875

rintf

Synopsis

float rintf(float x);

Description

rintf rounds x to an integral value.

CrossWorks for ARM Reference Manual Complete API reference

876

round

Synopsis

double round(double x);

Description

round rounds x to an integral value, with halfway cases rounded away from zero.

CrossWorks for ARM Reference Manual Complete API reference

877

roundf

Synopsis

float roundf(float x);

Description

roundf rounds x to an integral value, with halfway cases rounded away from zero.

CrossWorks for ARM Reference Manual Complete API reference

878

scalbln

Synopsis

double scalbln(double x,
 long int exp);

Description

scalbln multiplies x by FLT_RADIX raised to the power exp.

CrossWorks for ARM Reference Manual Complete API reference

879

scalblnf

Synopsis

float scalblnf(float x,
 long int exp);

Description

scalblnf multiplies x by FLT_RADIX raised to the power exp.

CrossWorks for ARM Reference Manual Complete API reference

880

scalbn

Synopsis

double scalbn(double x,
 int exp);

Description

scalbn multiplies a floating-point number by an integral power of DBL_RADIX.

As floating-point arithmetic conforms to IEC 60559, DBL_RADIX is 2 and scalbn is (in this implementation)

identical to ldexp.

scalbn returns x * DBL_RADIX^exp.

If the result overflows, errno is set to ERANGE and scalbn returns HUGE_VAL.

If x is or NaN, scalbn returns x.

If the result overflows, scalbn returns .

See Also

ldexp

CrossWorks for ARM Reference Manual Complete API reference

881

scalbnf

Synopsis

float scalbnf(float x,
 int exp);

Description

scalbnf multiplies a floating-point number by an integral power of FLT_RADIX.

As floating-point arithmetic conforms to IEC 60559, FLT_RADIX is 2 and scalbnf is (in this implementation)

identical to ldexpf.

scalbnf returns x * FLT_RADIX ^exp.

If the result overflows, errno is set to ERANGE and scalbnf returns HUGE_VALF.

If x is or NaN, scalbnf returns x. If the result overflows, scalbnf returns .

See Also

ldexpf

CrossWorks for ARM Reference Manual Complete API reference

882

signbit

Synopsis

#define signbit(x) (sizeof(x) == sizeof(float) ? __float32_signbit(x) : __float64_signbit(x))

Description

signbit macro determines whether the sign of x is negative. signbit returns a non-zero value if and only if x is

negative.

CrossWorks for ARM Reference Manual Complete API reference

883

sin

Synopsis

double sin(double x);

Description

sin returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sin returns HUGE_VAL.

sin returns x if x is NaN. sin returns NaN if |x| is .

CrossWorks for ARM Reference Manual Complete API reference

884

sinf

Synopsis

float sinf(float x);

Description

sinf returns the radian circular sine of x.

If |x| > 10^9, errno is set to EDOM and sinf returns HUGE_VALF.

sinf returns x if x is NaN. sinf returns NaN if |x| is .

CrossWorks for ARM Reference Manual Complete API reference

885

sinh

Synopsis

double sinh(double x);

Description

sinh calculates the hyperbolic sine of x.

If |x| .782, errno is set to EDOM and sinh returns HUGE_VAL.

If x is +, , or NaN, sinh returns |x|. If |x| > ~709.782, sinh returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

886

sinhf

Synopsis

float sinhf(float x);

Description

sinhf calculates the hyperbolic sine of x.

If |x| > ~88.7228, errno is set to EDOM and sinhf returns HUGE_VALF.

If x is +, , or NaN, sinhf returns |x|. If |x| > ~88.7228, sinhf returns + or depending upon the sign of x.

CrossWorks for ARM Reference Manual Complete API reference

887

sqrt

Synopsis

double sqrt(double x);

Description

sqrt computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the argument

is less than zero sqrt deviates and always uses IEC 60559 semantics.

If x is +0, sqrt returns +0.

If x is 0, sqrt returns 0.

If x is , sqrt returns .

If x < 0, sqrt returns NaN.

If x is NaN, sqrt returns that NaN.

CrossWorks for ARM Reference Manual Complete API reference

888

sqrtf

Synopsis

float sqrtf(float x);

Description

sqrtf computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the

argument is less than zero sqrtf deviates and always uses IEC 60559 semantics.

If x is +0, sqrtf returns +0.

If x is 0, sqrtf returns 0.

If x is , sqrtf returns .

If x < 0, sqrtf returns NaN.

If x is NaN, sqrtf returns that NaN.

CrossWorks for ARM Reference Manual Complete API reference

889

tan

Synopsis

double tan(double x);

Description

tan returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tan returns HUGE_VAL.

If x is NaN, tan returns x. If |x| is , tan returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

890

tanf

Synopsis

float tanf(float x);

Description

tanf returns the radian circular tangent of x.

If |x| > 10^9, errno is set to EDOM and tanf returns HUGE_VALF.

If x is NaN, tanf returns x. If |x| is , tanf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

891

tanh

Synopsis

double tanh(double x);

Description

tanh calculates the hyperbolic tangent of x.

If x is NaN, tanh returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

892

tanhf

Synopsis

float tanhf(float x);

Description

tanhf calculates the hyperbolic tangent of x.

If x is NaN, tanhf returns NaN.

CrossWorks for ARM Reference Manual Complete API reference

893

tgamma

Synopsis

double tgamma(double x);

Description

tgamma returns the gamma function for x.

CrossWorks for ARM Reference Manual Complete API reference

894

tgammaf

Synopsis

float tgammaf(float x);

Description

tgammaf returns the gamma function for x.

CrossWorks for ARM Reference Manual Complete API reference

895

trunc

Synopsis

double trunc(double x);

Description

trunc rounds x to an integral value that is not larger in magnitude than x.

CrossWorks for ARM Reference Manual Complete API reference

896

truncf

Synopsis

float truncf(float x);

Description

truncf rounds x to an integral value that is not larger in magnitude than x.

CrossWorks for ARM Reference Manual Complete API reference

897

<setjmp.h>

API Summary

Functions

longjmp Restores the saved environment

setjmp Save calling environment for non-local jump

CrossWorks for ARM Reference Manual Complete API reference

898

longjmp

Synopsis

__noreturn void longjmp(jmp_buf env,
 int val);

Description

longjmp restores the environment saved by setjmp in the corresponding env argument. If there has been no

such invocation, or if the function containing the invocation of setjmp has terminated execution in the interim,

the behavior of longjmp is undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of setjmp had just

returned the value specified by val.

Note

longjmp cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Objects of automatic storage allocation that are local to the function containing the invocation of the

corresponding setjmp that do not have volatile qualified type and have been changed between the setjmp

invocation and this call are indeterminate.

CrossWorks for ARM Reference Manual Complete API reference

899

setjmp

Synopsis

int setjmp(jmp_buf env);

Description

setjmp saves its calling environment in the env for later use by the longjmp function.

On return from a direct invocation setjmp returns the value zero. On return from a call to the longjmp function,

the setjmp returns a nonzero value determined by the call to longjmp.

The environment saved by a call to setjmp consists of information sufficient for a call to the longjmp function to

return execution to the correct block and invocation of that block, were it called recursively.

CrossWorks for ARM Reference Manual Complete API reference

900

<stdarg.h>

API Summary

Macros

va_arg Get variable argument value

va_copy Copy var args

va_end Finish access to variable arguments

va_start Start access to variable arguments

CrossWorks for ARM Reference Manual Complete API reference

901

va_arg

Synopsis

type va_arg(va_list ap,
 type);

Description

va_arg expands to an expression that has the specified type and the value of the type argument. The ap

parameter must have been initialized by va_start or va_copy, without an intervening invocation of va_end. You

can create a pointer to a va_list and pass that pointer to another function, in which case the original function

may make further use of the original list after the other function returns.

Each invocation of the va_arg macro modifies ap so that the values of successive arguments are returned in

turn. The parameter type must be a type name such that the type of a pointer to an object that has the specified

type can be obtained simply by postfixing a * to type.

If there is no actual next argument, or if type is not compatible with the type of the actual next argument (as

promoted according to the default argument promotions), the behavior of va_arg is undefined, except for the

following cases:

one type is a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;

one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns the value of the argument after

that specified by parmN. Successive invocations return the values of the remaining arguments in succession.

CrossWorks for ARM Reference Manual Complete API reference

902

va_copy

Synopsis

void va_copy(va_list dest,
 val_list src);

Description

va_copy initializes dest as a copy of src, as if the va_start macro had been applied to dest followed by the same

sequence of uses of the va_arg macro as had previously been used to reach the present state of src. Neither

the va_copy nor va_start macro shall be invoked to reinitialize dest without an intervening invocation of the

va_end macro for the same dest.

CrossWorks for ARM Reference Manual Complete API reference

903

va_end

Synopsis

void va_end(va_list ap);

Description

va_end indicates a normal return from the function whose variable argument list ap was initialised by va_start

or va_copy. The va_end macro may modify ap so that it is no longer usable without being reinitialized by

va_start or va_copy. If there is no corresponding invocation of va_start or va_copy, or if va_end is not invoked

before the return, the behavior is undefined.

CrossWorks for ARM Reference Manual Complete API reference

904

va_start

Synopsis

void va_start(va_list ap,
 paramN);

Description

va_start initializes ap for subsequent use by the va_arg and va_end macros.

The parameter parmN is the identifier of the last fixed parameter in the variable parameter list in the function

definition (the one just before the ', ...').

The behaviour of va_start and va_arg is undefined if the parameter parmN is declared with the register

storage class, with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions.

va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be invoked to reinitialize ap without an intervening invocation of the va_end

macro for the same ap.

CrossWorks for ARM Reference Manual Complete API reference

905

<stddef.h>

API Summary

Macros

NULL NULL pointer

offsetof offsetof

Types

max_align_t max_align_t type

ptrdiff_t ptrdiff_t type

size_t size_t type

CrossWorks for ARM Reference Manual Complete API reference

906

NULL

Synopsis

#define NULL 0

Description

NULL is the null pointer constant.

CrossWorks for ARM Reference Manual Complete API reference

907

max_align_t

Synopsis

typedef long double max_align_t;

Description

max_align_t is a type whose alignment requirement is at least as strict (as large) as that of every scalar type.

CrossWorks for ARM Reference Manual Complete API reference

908

offsetof

Synopsis

#define offsetof(type, member)

Description

offsetof returns the offset in bytes to the structure member, from the beginning of its structure type.

CrossWorks for ARM Reference Manual Complete API reference

909

ptrdiff_t

Synopsis

typedef __RAL_PTRDIFF_T ptrdiff_t;

Description

ptrdiff_t is the signed integral type of the result of subtracting two pointers.

CrossWorks for ARM Reference Manual Complete API reference

910

size_t

Synopsis

typedef __RAL_SIZE_T size_t;

Description

size_t is the unsigned integral type returned by the sizeof operator.

CrossWorks for ARM Reference Manual Complete API reference

911

<stdio.h>

API Summary

Character and string I/O functions

getchar Read a character from standard input

gets Read a string from standard input

putchar Write a character to standard output

puts Write a string to standard output

Formatted output functions

printf Write formatted text to standard output

snprintf Write formatted text to a string with truncation

sprintf Write formatted text to a string

vprintf Write formatted text to standard output using variable
argument context

vsnprintf Write formatted text to a string with truncation using
variable argument context

vsprintf Write formatted text to a string using variable
argument context

Formatted input functions

scanf Read formatted text from standard input

sscanf Read formatted text from string

vscanf Read formatted text from standard using variable
argument context

vsscanf Read formatted text from a string using variable
argument context

CrossWorks for ARM Reference Manual Complete API reference

912

getchar

Synopsis

int getchar(void);

Description

getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getchar returns EOF.

CrossWorks for ARM Reference Manual Complete API reference

913

gets

Synopsis

char *gets(char *s);

Description

gets reads characters from standard input into the array pointed to by s until end-of-file is encountered or a

new-line character is read. Any new-line character is discarded, and a null character is written immediately after

the last character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have been read into the array, the

contents of the array remain unchanged and gets returns a null pointer. If a read error occurs during the

operation, the array contents are indeterminate and gets returns a null pointer.

CrossWorks for ARM Reference Manual Complete API reference

914

printf

Synopsis

int printf(const char *format,
 ...);

Description

printf writes to the standard output stream using putchar, under control of the string pointed to by format that

specifies how subsequent arguments are converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

printf returns the number of characters transmitted, or a negative value if an output or encoding error occurred.

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not %, which are copied unchanged to

the output stream; and conversion specifications, each of which results in fetching zero or more subsequent

arguments, converting them, if applicable, according to the corresponding conversion specifier, and then

writing the result to the output stream.

Each conversion specification is introduced by the character %. After the % the following appear in sequence:

Zero or more flags (in any order) that modify the meaning of the conversion specification.

An optional minimum field width. If the converted value has fewer characters than the field width, it is

padded with spaces (by default) on the left (or right, if the left adjustment flag has been given) to the field

width. The field width takes the form of an asterisk * or a decimal integer.

An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x, and X

conversions, the number of digits to appear after the decimal-point character for e, E, f, and F conversions,

the maximum number of significant digits for the g and G conversions, or the maximum number of

bytes to be written for s conversions. The precision takes the form of a period . followed either by an

asterisk * or by an optional decimal integer; if only the period is specified, the precision is taken as zero. If

a precision appears with any other conversion specifier, the behavior is undefined.

An optional length modifier that specifies the size of the argument.

A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument

supplies the field width or precision. The arguments specifying field width, or precision, or both, must appear

(in that order) before the argument (if any) to be converted. A negative field width argument is taken as a - flag

followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

CrossWorks for ARM Reference Manual Complete API reference

915

Some library variants do not support width and precision specifiers in order to reduce code and data space

requirements; please ensure that you have selected the correct library in the Printf Width/Precision Support

property of the project if you use these.

Flag characters

The flag characters and their meanings are:

-
The result of the conversion is left-justified within the field. The default, if this flag is not specified, is that the

result of the conversion is left-justified within the field.

+
The result of a signed conversion always begins with a plus or minus sign. The default, if this flag is not

specified, is that it begins with a sign only when a negative value is converted.

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a

space is prefixed to the result. If the space and + flags both appear, the space flag is ignored.

#
The result is converted to an alternative form. For o conversion, it increases the precision, if and only

if necessary, to force the first digit of the result to be a zero (if the value and precision are both zero, a

single 0 is printed). For x or X conversion, a nonzero result has 0x or 0X prefixed to it. For e, E, f, F, g, and G

conversions, the result of converting a floating-point number always contains a decimal-point character,

even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions

only if a digit follows it.) For g and F conversions, trailing zeros are not removed from the result. As an

extension, when used in p conversion, the results has # prefixed to it. For other conversions, the behavior is

undefined.

0
For d, i, o, u, x, X, e, E, f, F, g, and G conversions, leading zeros (following any indication of sign or base) are

used to pad to the field width rather than performing space padding, except when converting an infinity or

NaN. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions, if a precision is

specified, the 0 flag is ignored. For other conversions, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

hh
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or unsigned char

argument (the argument will have been promoted according to the integer promotions, but its value will

be converted to signed char or unsigned char before printing); or that a following n conversion specifier

applies to a pointer to a signed char argument.

CrossWorks for ARM Reference Manual Complete API reference

916

h
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int or unsigned short int

argument (the argument will have been promoted according to the integer promotions, but its value is

converted to short int or unsigned short int before printing); or that a following n conversion specifier

applies to a pointer to a short int argument.

l
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or unsigned long int

argument; that a following n conversion specifier applies to a pointer to a long int argument; or has no

effect on a following e, E, f, F, g, or G conversion specifier. Some library variants do not support the l length

modifier in order to reduce code and data space requirements; please ensure that you have selected the

correct library in the Printf Integer Support property of the project if you use this length modifier.

ll
Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long long int or unsigned

long long int argument; that a following n conversion specifier applies to a pointer to a long long int

argument. Some library variants do not support the ll length modifier in order to reduce code and data

space requirements; please ensure that you have selected the correct library in the Printf Integer Support

property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

d, i
The argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum

number of digits to appear; if the value being converted can be represented in fewer digits, it is expanded

with leading spaces. The default precision is one. The result of converting a zero value with a precision of

zero is no characters.

o, u, x, X
The unsigned argument is converted to unsigned octal for o, unsigned decimal for u, or unsigned

hexadecimal notation for x or X in the style dddd the letters abcdef are used for x conversion and the

letters ABCDEF for X conversion. The precision specifies the minimum number of digits to appear; if the

value being converted can be represented in fewer digits, it is expanded with leading spaces. The default

precision is one. The result of converting a zero value with a precision of zero is no characters.

f, F
A double argument representing a floating-point number is converted to decimal notation in the

style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,

CrossWorks for ARM Reference Manual Complete API reference

917

no decimal-point character appears. If a decimal-point character appears, at least one digit appears before

it. The value is rounded to the appropriate number of digits. A double argument representing an infinity

is converted to inf. A double argument representing a NaN is converted to nan. The F conversion specifier

produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the f and F

conversion specifiers in order to reduce code and data space requirements; please ensure that you have

selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

e, E
A double argument representing a floating-point number is converted in the style [-]d.dddedd, where

there is one digit (which is nonzero if the argument is nonzero) before the decimal-point character and the

number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the precision

is zero and the # flag is not specified, no decimal-point character appears. The value is rounded to the

appropriate number of digits. The E conversion specifier produces a number with E instead of e introducing

the exponent. The exponent always contains at least two digits, and only as many more digits as necessary

to represent the exponent. If the value is zero, the exponent is zero. A double argument representing an

infinity is converted to inf. A double argument representing a NaN is converted to nan. The E conversion

specifier produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the

f and F conversion specifiers in order to reduce code and data space requirements; please ensure that you

have selected the correct library in the Printf Floating Point Support} property of the project if you use

these conversion specifiers.

g, G
A double argument representing a floating-point number is converted in style f or e (or in style F or e in

the case of a G conversion specifier), with the precision specifying the number of significant digits. If the

precision is zero, it is taken as one. The style used depends on the value converted; style e (or E) is used only

if the exponent resulting from such a conversion is less than -4 or greater than or equal to the precision.

Trailing zeros are removed from the fractional portion of the result unless the # flag is specified; a decimal-

point character appears only if it is followed by a digit. A double argument representing an infinity is

converted to inf. A double argument representing a NaN is converted to nan. The G conversion specifier

produces INF or NAN instead of inf or nan, respectively. Some library variants do not support the f and F

conversion specifiers in order to reduce code and data space requirements; please ensure that you have

selected the correct library in the Printf Floating Point Support property of the project if you use these

conversion specifiers.

c
The argument is converted to an unsigned char, and the resulting character is written.

s
The argument is be a pointer to the initial element of an array of character type. Characters from the array

are written up to (but not including) the terminating null character. If the precision is specified, no more

than that many characters are written. If the precision is not specified or is greater than the size of the array,

the array must contain a null character.

CrossWorks for ARM Reference Manual Complete API reference

918

p
The argument is a pointer to void. The value of the pointer is converted in the same format as the x

conversion specifier with a fixed precision of 2*sizeof(void *).

n
The argument is a pointer to a signed integer into which is written the number of characters written to the

output stream so far by the call to the formatting function. No argument is converted, but one is consumed.

If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

%
A % character is written. No argument is converted.

Note that the C99 width modifier l used in conjunction with the c and s conversion specifiers is not supported

and nor are the conversion specifiers a and A.

CrossWorks for ARM Reference Manual Complete API reference

919

putchar

Synopsis

int putchar(int c);

Description

putchar writes the character c to the standard output stream.

putchar returns the character written. If a write error occurs, putchar returns EOF.

CrossWorks for ARM Reference Manual Complete API reference

920

puts

Synopsis

int puts(const char *s);

Description

puts writes the string pointed to by s to the standard output stream using putchar and appends a new-line

character to the output. The terminating null character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative value.

CrossWorks for ARM Reference Manual Complete API reference

921

scanf

Synopsis

int scanf(const char *format,
 ...);

Description

scanf reads input from the standard input stream under control of the string pointed to by format that specifies

the admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, scanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Formatted input control strings

The format is composed of zero or more directives: one or more white-space characters, an ordinary character

(neither % nor a white-space character), or a conversion specification.

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

An optional assignment-suppressing character *.

An optional nonzero decimal integer that specifies the maximum field width (in characters).

An optional length modifier that specifies the size of the receiving object.

A conversion specifier character that specifies the type of conversion to be applied.

The formatted input function executes each directive of the format in turn. If a directive fails, the function

returns. Failures are described as input failures (because of the occurrence of an encoding error or the

unavailability of input characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-space

character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next characters of the stream. If any of those

characters differ from the ones composing the directive, the directive fails and the differing and subsequent

characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from

being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described below for

each specifier. A conversion specification is executed in the following steps:

CrossWorks for ARM Reference Manual Complete API reference

922

Input white-space characters (as specified by the isspace function) are skipped, unless the specification

includes a [, c, or n specifier.

An input item is read from the stream, unless the specification includes an n specifier. An input item is

defined as the longest sequence of input characters which does not exceed any specified field width

and which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item

remains unread. If the length of the input item is zero, the execution of the directive fails; this condition is

a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream,

in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count of input

characters) is converted to a type appropriate to the conversion specifier. If the input item is not a

matching sequence, the execution of the directive fails: this condition is a matching failure. Unless

assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed

to by the first argument following the format argument that has not already received a conversion result.

If this object does not have an appropriate type, or if the result of the conversion cannot be represented

in the object, the behavior is undefined.

Length modifiers

The length modifiers and their meanings are:

hh
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

signed char or pointer to unsigned char.

h
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

short int or unsigned short int.

l
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

long int or unsigned long int; that a following e, E, f, F, g, or G conversion specifier applies to an argument

with type pointer to double. Some library variants do not support the l length modifier in order to reduce

code and data space requirements; please ensure that you have selected the correct library in the Printf

Integer Support property of the project if you use this length modifier.

ll
Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with type pointer to

long long int or unsigned long long int. Some library variants do not support the ll length modifier in order

to reduce code and data space requirements; please ensure that you have selected the correct library in the

Printf Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is

undefined. Note that the C99 length modifiers j, z, t, and L are not supported.

CrossWorks for ARM Reference Manual Complete API reference

923

Conversion specifiers

d
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtol function with the value 10 for the base argument. The corresponding argument

must be a pointer to signed integer.

i
Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the

strtol function with the value zero for the base argument. The corresponding argument must be a pointer

to signed integer.

o
Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence

of the strtol function with the value 18 for the base argument. The corresponding argument must be a

pointer to signed integer.

u
Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 10 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

x
Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject

sequence of the strtoul function with the value 16 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

e, f, g
Matches an optionally signed floating-point number whose format is the same as expected for the

subject sequence of the strtod function. The corresponding argument shall be a pointer to floating. Some

library variants do not support the e, f and F conversion specifiers in order to reduce code and data space

requirements; please ensure that you have selected the correct library in the Scanf Floating Point Support

property of the project if you use these conversion specifiers.

c
Matches a sequence of characters of exactly the number specified by the field width (one if no field width

is present in the directive). The corresponding argument must be a pointer to the initial element of a

character array large enough to accept the sequence. No null character is added.

s
Matches a sequence of non-white-space characters The corresponding argument must be a pointer to the

initial element of a character array large enough to accept the sequence and a terminating null character,

which will be added automatically.

CrossWorks for ARM Reference Manual Complete API reference

924

[
Matches a nonempty sequence of characters from a set of expected characters (the scanset). The

corresponding argument must be a pointer to the initial element of a character array large enough to

accept the sequence and a terminating null character, which will be added automatically. The conversion

specifier includes all subsequent characters in the format string, up to and including the matching right

bracket]. The characters between the brackets (the scanlist) compose the scanset, unless the character after

the left bracket is a circumflex ^, in which case the scanset contains all characters that do not appear in

the scanlist between the circumflex and the right bracket. If the conversion specifier begins with [] or[^],

the right bracket character is in the scanlist and the next following right bracket character is the matching

right bracket that ends the specification; otherwise the first following right bracket character is the one that

ends the specification. If a - character is in the scanlist and is not the first, nor the second where the first

character is a ^, nor the last character, it is treated as a member of the scanset. Some library variants do not

support the [conversion specifier in order to reduce code and data space requirements; please ensure that

you have selected the correct library in the Scanf Classes Supported property of the project if you use this

conversion specifier.

p
Reads a sequence output by the corresponding %p formatted output conversion. The corresponding

argument must be a pointer to a pointer to void.

n
No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to

be written the number of characters read from the input stream so far by this call to the formatted input

function. Execution of a %n directive does not increment the assignment count returned at the completion

of execution of the fscanf function. No argument is converted, but one is consumed. If the conversion

specification includes an assignment-suppressing character or a field width, the behavior is undefined.

%
Matches a single % character; no conversion or assignment occurs.

Note that the C99 width modifier l used in conjunction with the c, s, and [conversion specifiers is not supported

and nor are the conversion specifiers a and A.

CrossWorks for ARM Reference Manual Complete API reference

925

snprintf

Synopsis

int snprintf(char *s,
 size_t n,
 const char *format,
 ...);

Description

snprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n>.

CrossWorks for ARM Reference Manual Complete API reference

926

sprintf

Synopsis

int sprintf(char *s,
 const char *format,
 ...);

Description

sprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. A null character is written at the end of the characters written;

it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

CrossWorks for ARM Reference Manual Complete API reference

927

sscanf

Synopsis

int sscanf(const char *s,
 const char *format,
 ...);

Description

sscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments as

pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, sscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

CrossWorks for ARM Reference Manual Complete API reference

928

vprintf

Synopsis

int vprintf(const char *format,
 __va_list arg);

Description

vprintf writes to the standard output stream using putchar under control of the string pointed to by format that

specifies how subsequent arguments are converted for output. Before calling vprintf, arg must be initialized by

the va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke the va_end macro.

vprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

Note

vprintf is equivalent to printf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual Complete API reference

929

vscanf

Synopsis

int vscanf(const char *format,
 __va_list arg);

Description

vscanf reads input from the standard input stream under control of the string pointed to by format that

specifies the admissible input sequences and how they are to be converted for assignment, using subsequent

arguments as pointers to the objects to receive the converted input. Before calling vscanf, arg must be

initialized by the va_start macro (and possibly subsequent va_arg calls). vscanf does not invoke the va_end

macro.

If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vscanf is equivalent to scanf with the variable argument list replaced arg.

CrossWorks for ARM Reference Manual Complete API reference

930

vsnprintf

Synopsis

int vsnprintf(char *s,
 size_t n,
 const char *format,
 __va_list arg);

Description

vsnprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsnprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n1st are

discarded rather than being written to the array, and a null character is written at the end of the characters

actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsnprintf returns the number of characters that would have been written had n been sufficiently large, not

counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n.

Note

vsnprintf is equivalent to snprintf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual Complete API reference

931

vsprintf

Synopsis

int vsprintf(char *s,
 const char *format,
 __va_list arg);

Description

vsprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output. Before calling vsprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsprintf does not invoke the va_end macro.

A null character is written at the end of the characters written; it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Note

vsprintf is equivalent to sprintf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual Complete API reference

932

vsscanf

Synopsis

int vsscanf(const char *s,
 const char *format,
 __va_list arg);

Description

vsscanf reads input from the string s under control of the string pointed to by format that specifies the

admissible input sequences and how they are to be converted for assignment, using subsequent arguments

as pointers to the objects to receive the converted input. Before calling vsscanf, arg must be initialized by the

va_start macro (and possibly subsequent va_arg calls). vsscanf does not invoke the va_end macro.

If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vsscanf

returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

CrossWorks for ARM Reference Manual Complete API reference

933

<stdlib.h>

API Summary

Macros

EXIT_FAILURE EXIT_FAILURE

EXIT_SUCCESS EXIT_SUCCESS

MB_CUR_MAX Maximum number of bytes in a multi-byte character in
the current locale

RAND_MAX RAND_MAX

Types

div_t Structure containing quotient and remainder after
division of an int

ldiv_t Structure containing quotient and remainder after
division of a long

lldiv_t Structure containing quotient and remainder after
division of a long long

Integer arithmetic functions

abs Return an integer absolute value

div Divide two ints returning quotient and remainder

labs Return a long integer absolute value

ldiv Divide two longs returning quotient and remainder

llabs Return a long long integer absolute value

lldiv Divide two long longs returning quotient and
remainder

Memory allocation functions

calloc Allocate space for an array of objects and initialize
them to zero

free Frees allocated memory for reuse

malloc Allocate space for a single object

realloc Resizes allocated memory space or allocates memory
space

String to number conversions

atof Convert string to double

atoi Convert string to int

atol Convert string to long

atoll Convert string to long long

CrossWorks for ARM Reference Manual Complete API reference

934

strtod Convert string to double

strtof Convert string to float

strtol Convert string to long

strtoll Convert string to long long

strtoul Convert string to unsigned long

strtoull Convert string to unsigned long long

Pseudo-random sequence generation functions

rand Return next random number in sequence

srand Set seed of random number sequence

Search and sort functions

bsearch Search a sorted array

qsort Sort an array

Environment

atexit Set function to be execute on exit

exit Terminates the calling process

Number to string conversions

itoa Convert int to string

lltoa Convert long long to string

ltoa Convert long to string

ulltoa Convert unsigned long long to string

ultoa Convert unsigned long to string

utoa Convert unsigned to string

Multi-byte/wide character conversion functions

mblen Determine number of bytes in a multi-byte character

mblen_l Determine number of bytes in a multi-byte character

Multi-byte/wide string conversion functions

mbstowcs Convert multi-byte string to wide string

mbstowcs_l Convert multi-byte string to wide string using
specified locale

mbtowc Convert multi-byte character to wide character

mbtowc_l Convert multi-byte character to wide character

CrossWorks for ARM Reference Manual Complete API reference

935

EXIT_FAILURE

Synopsis

#define EXIT_FAILURE 1

Description

EXIT_FAILURE pass to exit on unsuccessful termination.

CrossWorks for ARM Reference Manual Complete API reference

936

EXIT_SUCCESS

Synopsis

#define EXIT_SUCCESS 0

Description

EXIT_SUCCESS pass to exit on successful termination.

CrossWorks for ARM Reference Manual Complete API reference

937

MB_CUR_MAX

Synopsis

#define MB_CUR_MAX __RAL_mb_max(&__RAL_global_locale)

Description

MB_CUR_MAX expands to a positive integer expression with type size_t that is the maximum number of bytes

in a multi-byte character for the extended character set specified by the current locale (category LC_CTYPE).

MB_CUR_MAX is never greater than MB_LEN_MAX.

CrossWorks for ARM Reference Manual Complete API reference

938

RAND_MAX

Synopsis

#define RAND_MAX 32767

Description

RAND_MAX expands to an integer constant expression that is the maximum value returned by rand.

CrossWorks for ARM Reference Manual Complete API reference

939

abs

Synopsis

int abs(int j);

Description

abs returns the absolute value of the integer argument j.

CrossWorks for ARM Reference Manual Complete API reference

940

atexit

Synopsis

int atexit(void (*func)(void));

Description

atexit registers function to be called when the application has exited. The functions registered with atexit are

executed in reverse order of their registration. atexit returns 0 on success and non-zero on failure.

CrossWorks for ARM Reference Manual Complete API reference

941

atof

Synopsis

double atof(const char *nptr);

Description

atof converts the initial portion of the string pointed to by nptr to a double representation.

atof does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atof is equivalent to strtod(nptr, (char **)NULL).

atof returns the converted value.

See Also

strtod

CrossWorks for ARM Reference Manual Complete API reference

942

atoi

Synopsis

int atoi(const char *nptr);

Description

atoi converts the initial portion of the string pointed to by nptr to an int representation.

atoi does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoi is equivalent to (int)strtol(nptr, (char **)NULL, 10).

atoi returns the converted value.

See Also

strtol

CrossWorks for ARM Reference Manual Complete API reference

943

atol

Synopsis

long int atol(const char *nptr);

Description

atol converts the initial portion of the string pointed to by nptr to a long int representation.

atol does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atol is equivalent to strtol(nptr, (char **)NULL, 10).

atol returns the converted value.

See Also

strtol

CrossWorks for ARM Reference Manual Complete API reference

944

atoll

Synopsis

long long int atoll(const char *nptr);

Description

atoll converts the initial portion of the string pointed to by nptr to a long long int representation.

atoll does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoll is equivalent to strtoll(nptr, (char **)NULL, 10).

atoll returns the converted value.

See Also

strtoll

CrossWorks for ARM Reference Manual Complete API reference

945

bsearch

Synopsis

void *bsearch(const void *key,
 const void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

Description

bsearch searches the array *base for the specified *key and returns a pointer to the first entry that matches or

null if no match. The array should have num elements of size bytes and be sorted by the same algorithm as the

compare function.

The compare function should return a negative value if the first parameter is less than second parameter, zero if

the parameters are equal, and a positive value if the first parameter is greater than the second parameter.

CrossWorks for ARM Reference Manual Complete API reference

946

calloc

Synopsis

void *calloc(size_t nobj,
 size_t size);

Description

calloc allocates space for an array of nmemb objects, each of whose size is size. The space is initialized to all zero

bits.

calloc returns a null pointer if the space for the array of object cannot be allocated from free memory; if space for

the array can be allocated, calloc returns a pointer to the start of the allocated space.

CrossWorks for ARM Reference Manual Complete API reference

947

div

Synopsis

div_t div(int numer,
 int denom);

Description

div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

div_t

CrossWorks for ARM Reference Manual Complete API reference

948

div_t

Description

div_t stores the quotient and remainder returned by div.

CrossWorks for ARM Reference Manual Complete API reference

949

exit

Synopsis

__noreturn void exit(int exit_code);

Description

exit returns to the startup code and performs the appropriate cleanup process.

CrossWorks for ARM Reference Manual Complete API reference

950

free

Synopsis

void free(void *p);

Description

free causes the space pointed to by ptr to be deallocated, that is, made available for further allocation. If ptr is a

null pointer, no action occurs.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

CrossWorks for ARM Reference Manual Complete API reference

951

itoa

Synopsis

char *itoa(int val,
 char *buf,
 int radix);

Description

itoa converts val to a string in base radix and places the result in buf.

itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

ltoa, lltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual Complete API reference

952

labs

Synopsis

long int labs(long int j);

Description

labs returns the absolute value of the long integer argument j.

CrossWorks for ARM Reference Manual Complete API reference

953

ldiv

Synopsis

ldiv_t ldiv(long int numer,
 long int denom);

Description

ldiv computes numer / denom and numer % denom in a single operation.

ldiv returns a structure of type ldiv_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

ldiv_t

CrossWorks for ARM Reference Manual Complete API reference

954

ldiv_t

Description

ldiv_t stores the quotient and remainder returned by ldiv.

CrossWorks for ARM Reference Manual Complete API reference

955

llabs

Synopsis

long long int llabs(long long int j);

Description

llabs returns the absolute value of the long long integer argument j.

CrossWorks for ARM Reference Manual Complete API reference

956

lldiv

Synopsis

lldiv_t lldiv(long long int numer,
 long long int denom);

lldiv computes numer / denom and numer % denom in a single operation.

lldiv returns a structure of type lldiv_t comprising both the quotient and the remainder. The structures contain

the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments

numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

lldiv_t

CrossWorks for ARM Reference Manual Complete API reference

957

lldiv_t

Description

lldiv_t stores the quotient and remainder returned by lldiv.

CrossWorks for ARM Reference Manual Complete API reference

958

lltoa

Synopsis

char *lltoa(long long val,
 char *buf,
 int radix);

Description

lltoa converts val to a string in base radix and places the result in buf.

lltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, ltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual Complete API reference

959

ltoa

Synopsis

char *ltoa(long val,
 char *buf,
 int radix);

Description

ltoa converts val to a string in base radix and places the result in buf.

ltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

itoa, lltoa, ultoa, ulltoa, utoa

CrossWorks for ARM Reference Manual Complete API reference

960

malloc

Synopsis

void *malloc(size_t size);

Description

malloc allocates space for an object whose size is specified by 'b size and whose value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from free memory; if space for the

object can be allocated, malloc returns a pointer to the start of the allocated space.

CrossWorks for ARM Reference Manual Complete API reference

961

mblen

Synopsis

int mblen(const char *s,
 size_t n);

Description

mblen determines the number of bytes contained in the multi-byte character pointed to by s in the current

locale.

If s is a null pointer, mblen returns a nonzero or zero value, if multi-byte character encodings, respectively, do or

do not have state-dependent encodings

If s is not a null pointer, mblen either returns 0 (if s points to the null character), or returns the number of bytes

that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);

Note

It is guaranteed that no library function in the Standard C library calls mblen.

See Also

mblen_l, mbtowc

CrossWorks for ARM Reference Manual Complete API reference

962

mblen_l

Synopsis

int mblen_l(const char *s,
 size_t n,
 __locale_s *loc);

Description

mblen_l determines the number of bytes contained in the multi-byte character pointed to by s in the locale loc.

If s is a null pointer, mblen_l returns a nonzero or zero value, if multi-byte character encodings, respectively, do

or do not have state-dependent encodings

If s is not a null pointer, mblen_l either returns 0 (if s points to the null character), or returns the number of bytes

that are contained in the multi-byte character (if the next n or fewer bytes form a valid multi-byte character), or

returns 1 (if they do not form a valid multi-byte character).

Note

Except that the conversion state of the mbtowc_l function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n, loc);

Note

It is guaranteed that no library function in the Standard C library calls mblen_l.

See Also

mblen_l, mbtowc_l

CrossWorks for ARM Reference Manual Complete API reference

963

mbstowcs

Synopsis

size_t mbstowcs(wchar_t *pwcs,
 const char *s,
 size_t n);

Description

mbstowcs converts a sequence of multi-byte characters that begins in the initial shift state from the array

pointed to by s into a sequence of corresponding wide characters and stores not more than n wide characters

into the array pointed to by pwcs.

No multi-byte characters that follow a null character (which is converted into a null wide character) will be

examined or converted. Each multi-byte character is converted as if by a call to the mbtowc function, except that

the conversion state of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs. If copying takes place between

objects that overlap, the behavior is undefined.

mbstowcs returns 1 if an invalid multi-byte character is encountered, otherwise mbstowcs returns the number

of array elements modified (if any), not including a terminating null wide character.

CrossWorks for ARM Reference Manual Complete API reference

964

mbstowcs_l

Synopsis

size_t mbstowcs_l(wchar_t *pwcs,
 const char *s,
 size_t n,
 __locale_s *loc);

Description

mbstowcs_l is as mbstowcs except that the local loc is used for the conversion as opposed to the current locale.

See Also

mbstowcs.

CrossWorks for ARM Reference Manual Complete API reference

965

mbtowc

Synopsis

int mbtowc(wchar_t *pwc,
 const char *s,
 size_t n);

Description

mbtowc converts a single multi-byte character to a wide character in the current locale.

If s is a null pointer, mbtowc returns a nonzero value if multi-byte character encodings are state-dependent in

the current locale, and zero otherwise.

If s is not null and the object that s points to is a wide-character null character, mbtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc returns the length in

bytes of the multi-byte character.

If the object that points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc_l

CrossWorks for ARM Reference Manual Complete API reference

966

mbtowc_l

Synopsis

int mbtowc_l(wchar_t *pwc,
 const char *s,
 size_t n,
 __locale_s *loc);

Description

mbtowc_l converts a single multi-byte character to a wide character in locale loc.

If s is a null pointer, mbtowc_l returns a nonzero value if multi-byte character encodings are state-dependent in

the locale loc, and zero otherwise.

If s is not null and the object that s points to is a wide-character null character, mbtowc_l returns 0.

If s is not null and the object that points to forms a valid multi-byte character, mbtowc_l returns the length in

bytes of the multi-byte character.

If the object that s points to does not form a valid multi-byte character within the first n characters, it returns 1.

See Also

mbtowc

CrossWorks for ARM Reference Manual Complete API reference

967

qsort

Synopsis

void qsort(void *buf,
 size_t num,
 size_t size,
 int (*compare)(const void *, const void *));

qsort sorts the array *base using the compare function. The array should have num elements of size bytes. The

compare function should return a negative value if the first parameter is less than second parameter, zero if the

parameters are equal and a positive value if the first parameter is greater than the second parameter.

CrossWorks for ARM Reference Manual Complete API reference

968

rand

Synopsis

int rand(void);

Description

rand computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.

rand returns the computed pseudo-random integer.

CrossWorks for ARM Reference Manual Complete API reference

969

realloc

Synopsis

void *realloc(void *p,
 size_t size);

Description

realloc deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size

specified by size. The contents of the new object is identical to that of the old object prior to deallocation,

up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have

indeterminate values.

If ptr is a null pointer, realloc behaves like realloc for the specified size. If memory for the new object cannot be

allocated, the old object is not deallocated and its value is unchanged.

realloc returns a pointer to the new object (which may have the same value as a pointer to the old object), or a

null pointer if the new object could not be allocated.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

CrossWorks for ARM Reference Manual Complete API reference

970

srand

Synopsis

void srand(unsigned int seed);

Description

srand uses the argument seed as a seed for a new sequence of pseudo-random numbers to be returned by

subsequent calls to rand. If srand is called with the same seed value, the same sequence of pseudo-random

numbers is generated.

If rand is called before any calls to srand have been made, a sequence is generated as if srand is first called with

a seed value of 1.

See Also

rand

CrossWorks for ARM Reference Manual Complete API reference

971

strtod

Synopsis

double strtod(const char *nptr,
 char **endptr);

Description

strtod converts the initial portion of the string pointed to by nptr to a double representation.

First, strtod decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtod then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by strtod, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VAL is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

972

strtof

Synopsis

float strtof(const char *nptr,
 char **endptr);

Description

strtof converts the initial portion of the string pointed to by nptr to a double representation.

First, strtof decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string

of one or more unrecognized characters, including the terminating null character of the input string. strtof then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer

to the final string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, HUGE_VALF is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

973

strtol

Synopsis

long int strtol(const char *nptr,
 char **endptr,
 int base);

Description

strtol converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtol decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtol then attempts to convert the subject sequence to an integer,

and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual Complete API reference

974

strtol returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MIN or LONG_MAX is returned according to the sign

of the value, if any, and the value of the macro errno is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

975

strtoll

Synopsis

long long int strtoll(const char *nptr,
 char **endptr,
 int base);

Description

strtoll converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoll decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoll then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual Complete API reference

976

strtoll returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MIN or LLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

977

strtoul

Synopsis

unsigned long int strtoul(const char *nptr,
 char **endptr,
 int base);

Description

strtoul converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoul decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoul then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual Complete API reference

978

strtoul returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LONG_MAX or ULONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

979

strtoull

Synopsis

unsigned long long int strtoull(const char *nptr,
 char **endptr,
 int base);

Description

strtoull converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtoull decomposes the input string into three parts: an initial, possibly empty, sequence of white-space

characters (as specified by isspace), a subject sequence resembling an integer represented in some radix

determined by the value of base, and a final string of one or more unrecognized characters, including the

terminating null character of the input string. strtoull then attempts to convert the subject sequence to an

integer, and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional

plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified

by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters 0x or 0X may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-

white-space character, that is of the expected form. The subject sequence contains no characters if the input

string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting

with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the

value of base is between 2 and 36, it is used as the base for conversion.

If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by endptr, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

CrossWorks for ARM Reference Manual Complete API reference

980

strtoull returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct

value is outside the range of representable values, LLONG_MAX or ULLONG_MAX is returned according to the

sign of the value, if any, and the value of the macro ERANGE is stored in errno.

CrossWorks for ARM Reference Manual Complete API reference

981

ulltoa

Synopsis

char *ulltoa(unsigned long long val,
 char *buf,
 int radix);

Description

ulltoa converts val to a string in base radix and places the result in buf.

ulltoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, utoa

CrossWorks for ARM Reference Manual Complete API reference

982

ultoa

Synopsis

char *ultoa(unsigned long val,
 char *buf,
 int radix);

Description

ultoa converts val to a string in base radix and places the result in buf.

ultoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ulltoa, utoa

CrossWorks for ARM Reference Manual Complete API reference

983

utoa

Synopsis

char *utoa(unsigned val,
 char *buf,
 int radix);

Description

utoa converts val to a string in base radix and places the result in buf.

utoa returns buf as the result.

If radix is greater than 36, the result is undefined.

See Also

itoa, ltoa, lltoa, ultoa, ulltoa

CrossWorks for ARM Reference Manual Complete API reference

984

<string.h>

Overview

The header file <string.h> defines functions that operate on arrays that are interpreted as null-terminated

strings.

Various methods are used for determining the lengths of the arrays, but in all cases a char * or void * argument

points to the initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,

the behavior is undefined.

Where an argument declared as size_t n specifies the length of an array for a function, n can have the value zero

on a call to that function. Unless explicitly stated otherwise in the description of a particular function, pointer

arguments must have valid values on a call with a zero size. On such a call, a function that locates a character

finds no occurrence, a function that compares two character sequences returns zero, and a function that copies

characters copies zero characters.

API Summary

Copying functions

memccpy Copy memory with specified terminator (POSIX
extension)

memcpy Copy memory

memcpy_fast Copy memory

memmove Safely copy overlapping memory

mempcpy Copy memory (GNU extension)

strcat Concatenate strings

strcpy Copy string

strdup Duplicate string (POSIX extension)

strlcat Copy string up to a maximum length with terminator
(BSD extension)

strlcpy Copy string up to a maximum length with terminator
(BSD extension)

strncat Concatenate strings up to maximum length

strncpy Copy string up to a maximum length

strndup Duplicate string (POSIX extension)

Comparison functions

memcmp Compare memory

strcasecmp Compare strings ignoring case (POSIX extension)

CrossWorks for ARM Reference Manual Complete API reference

985

strcmp Compare strings

strncasecmp Compare strings up to a maximum length ignoring
case (POSIX extension)

strncmp Compare strings up to a maximum length

Search functions

memchr Search memory for a character

strcasestr Find first case-insensitive occurrence of a string within
string

strchr Find character within string

strcspn Compute size of string not prefixed by a set of
characters

strncasestr Find first case-insensitive occurrence of a string within
length-limited string

strnchr Find character in a length-limited string

strnlen Calculate length of length-limited string (POSIX
extension)

strnstr Find first occurrence of a string within length-limited
string

strpbrk Find first occurrence of characters within string

strrchr Find last occurrence of character within string

strsep Break string into tokens (4.4BSD extension)

strspn Compute size of string prefixed by a set of characters

strstr Find first occurrence of a string within string

strtok Break string into tokens

strtok_r Break string into tokens, reentrant version (POSIX
extension)

Miscellaneous functions

memset Set memory to character

strerror Decode error code

strlen Calculate length of string

CrossWorks for ARM Reference Manual Complete API reference

986

memccpy

Synopsis

void *memccpy(void *s1,
 const void *s2,
 int c,
 size_t n);

Description

memccpy copies at most n characters from the object pointed to by s2 into the object pointed to by s1. The

copying stops as soon as n characters are copied or the character c is copied into the destination object pointed

to by s1. The behavior of memccpy is undefined if copying takes place between objects that overlap.

memccpy returns a pointer to the character immediately following c in s1, or NULL if c was not found in the first

n characters of s2.

Note

memccpy conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual Complete API reference

987

memchr

Synopsis

void *memchr(const void *s,
 int c,
 size_t n);

Description

memchr locates the first occurrence of c (converted to an unsigned char) in the initial n characters (each

interpreted as unsigned char) of the object pointed to by s. Unlike strchr, memchr does not terminate a search

when a null character is found in the object pointed to by s.

memchr returns a pointer to the located character, or a null pointer if c does not occur in the object.

CrossWorks for ARM Reference Manual Complete API reference

988

memcmp

Synopsis

int memcmp(const void *s1,
 const void *s2,
 size_t n);

Description

memcmp compares the first n characters of the object pointed to by s1 to the first n characters of the object

pointed to by s2. memcmp returns an integer greater than, equal to, or less than zero as the object pointed to

by s1 is greater than, equal to, or less than the object pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

989

memcpy

Synopsis

void *memcpy(void *s1,
 const void *s2,
 size_t n);

Description

memcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

memcpy is undefined if copying takes place between objects that overlap.

memcpy returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

990

memcpy_fast

Synopsis

void *memcpy_fast(void *s1,
 const void *s2,
 size_t n);

Description

memcpy_fast copies n characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of memcpy_fast is undefined if copying takes place between objects that overlap. The implementation

of memcpy_fast is optimized for speed for all cases of memcpy and as such has a large code memory

requirement. This function is implemented for little-endian ARM and 32-bit Thumb-2 instruction sets only.

memcpy_fast returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

991

memmove

Synopsis

void *memmove(void *s1,
 const void *s2,
 size_t n);

Description

memmove copies n characters from the object pointed to by s2 into the object pointed to by s1 ensuring that

if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n characters from the object pointed

to by s2 are first copied into a temporary array of n characters that does not overlap the objects pointed to by s1

and s2, and then the n characters from the temporary array are copied into the object pointed to by s1.

memmove returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

992

mempcpy

Synopsis

void *mempcpy(void *s1,
 const void *s2,
 size_t n);

Description

mempcpy copies n characters from the object pointed to by s2 into the object pointed to by s1. The behavior of

mempcpy is undefined if copying takes place between objects that overlap.

mempcpy returns a pointer to the byte following the last written byte.

Note

This is an extension found in GNU libc.

CrossWorks for ARM Reference Manual Complete API reference

993

memset

Synopsis

void *memset(void *s,
 int c,
 size_t n);

Description

memset copies the value of c (converted to an unsigned char) into each of the first n characters of the object

pointed to by s.

memset returns the value of s.

CrossWorks for ARM Reference Manual Complete API reference

994

strcasecmp

Synopsis

int strcasecmp(const char *s1,
 const char *s2);

Description

strcasecmp compares the string pointed to by s1 to the string pointed to by s2 ignoring differences in case.

strcasecmp returns an integer greater than, equal to, or less than zero if the string pointed to by s1 is greater

than, equal to, or less than the string pointed to by s2.

Note

strcasecmp conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual Complete API reference

995

strcasestr

Synopsis

char *strcasestr(const char *s1,
 const char *s2);

Description

strcasestr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2 without regard to character case.

strcasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strcasestr returns s1.

Note

strcasestr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

996

strcat

Synopsis

char *strcat(char *s1,
 const char *s2);

Description

strcat appends a copy of the string pointed to by s2 (including the terminating null character) to the end of the

string pointed to by s1. The initial character of s2 overwrites the null character at the end of s1. The behavior of

strcat is undefined if copying takes place between objects that overlap.

strcat returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

997

strchr

Synopsis

char *strchr(const char *s,
 int c);

Description

strchr locates the first occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual Complete API reference

998

strcmp

Synopsis

int strcmp(const char *s1,
 const char *s2);

Description

strcmp compares the string pointed to by s1 to the string pointed to by s2. strcmp returns an integer greater

than, equal to, or less than zero if the string pointed to by s1 is greater than, equal to, or less than the string

pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

999

strcpy

Synopsis

char *strcpy(char *s1,
 const char *s2);

Description

strcpy copies the string pointed to by s2 (including the terminating null character) into the array pointed to by

s1. The behavior of strcpy is undefined if copying takes place between objects that overlap.

strcpy returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1000

strcspn

Synopsis

size_t strcspn(const char *s1,
 const char *s2);

Description

strcspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters not from the string pointed to by s2.

strcspn returns the length of the segment.

CrossWorks for ARM Reference Manual Complete API reference

1001

strdup

Synopsis

char *strdup(const char *s1);

Description

strdup duplicates the string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating null, to that memory strdup returns a pointer to the new string or a null

pointer if the new string cannot be created. The returned pointer can be passed to free.

Note

strdup conforms to POSIX.1-2008 and SC22 TR 24731-2.

CrossWorks for ARM Reference Manual Complete API reference

1002

strerror

Synopsis

char *strerror(int num);

Description

strerror maps the number in num to a message string. Typically, the values for num come from errno, but

strerror can map any value of type int to a message.

strerror returns a pointer to the message string. The program must not modify the returned message string. The

message may be overwritten by a subsequent call to strerror.

CrossWorks for ARM Reference Manual Complete API reference

1003

strlcat

Synopsis

size_t strlcat(char *s1,
 const char *s2,
 size_t n);

Description

strlcat appends no more than nstrlen(dst)1 characters pointed to by s2 into the array pointed to by s1 and

always terminates the result with a null character if n is greater than zero. Both the strings s1 and s2 must be

terminated with a null character on entry to strlcat and a byte for the terminating null should be included in n.

The behavior of strlcat is undefined if copying takes place between objects that overlap.

strlcat returns the number of characters it tried to copy, which is the sum of the lengths of the strings s1 and s2

or n, whichever is smaller.

Note

strlcat is commonly found in OpenBSD libraries.

CrossWorks for ARM Reference Manual Complete API reference

1004

strlcpy

Synopsis

size_t strlcpy(char *s1,
 const char *s2,
 size_t n);

Description

strlcpy copies up to n1 characters from the string pointed to by s2 into the array pointed to by s1 and always

terminates the result with a null character. The behavior of strlcpy is undefined if copying takes place between

objects that overlap.

strlcpy returns the number of characters it tried to copy, which is the length of the string s2 or n, whichever is

smaller.

Note

strlcpy is commonly found in OpenBSD libraries and contrasts with strncpy in that the resulting string is always

terminated with a null character.

CrossWorks for ARM Reference Manual Complete API reference

1005

strlen

Synopsis

size_t strlen(const char *s);

Description

strlen returns the length of the string pointed to by s, that is the number of characters that precede the

terminating null character.

CrossWorks for ARM Reference Manual Complete API reference

1006

strncasecmp

Synopsis

int strncasecmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncasecmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2

ignoring differences in case. Characters that follow a null character are not compared.

strncasecmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

Note

strncasecmp conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual Complete API reference

1007

strncasestr

Synopsis

char *strncasestr(const char *s1,
 const char *s2,
 size_t n);

Description

strncasestr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the

sequence of characters (excluding the terminating null character) in the string pointed to by s2 without regard

to character case.

strncasestr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a

string with zero length, strncasestr returns s1.

Note

strncasestr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1008

strncat

Synopsis

char *strncat(char *s1,
 const char *s2,
 size_t n);

Description

strncat appends not more than n characters from the array pointed to by s2 to the end of the string pointed to

by s1. A null character in s1 and characters that follow it are not appended. The initial character of s2 overwrites

the null character at the end of s1. A terminating null character is always appended to the result. The behavior of

strncat is undefined if copying takes place between objects that overlap.

strncat returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1009

strnchr

Synopsis

char *strnchr(const char *str,
 size_t n,
 int ch);

Description

strnchr searches not more than n characters to locate the first occurrence of c (converted to a char) in the string

pointed to by s. The terminating null character is considered to be part of the string.

strnchr returns a pointer to the located character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual Complete API reference

1010

strncmp

Synopsis

int strncmp(const char *s1,
 const char *s2,
 size_t n);

Description

strncmp compares not more than n characters from the array pointed to by s1 to the array pointed to by s2.

Characters that follow a null character are not compared.

strncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array pointed

to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

1011

strncpy

Synopsis

char *strncpy(char *s1,
 const char *s2,
 size_t n);

Description

strncpy copies not more than n characters from the array pointed to by s2 to the array pointed to by s1.

Characters that follow a null character in s2 are not copied. The behavior of strncpy is undefined if copying takes

place between objects that overlap. If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n characters in all have been written.

strncpy returns the value of s1.

Note

No null character is implicitly appended to the end of s1, so s1 will only be terminated by a null character if the

length of the string pointed to by s2 is less than n.

CrossWorks for ARM Reference Manual Complete API reference

1012

strndup

Synopsis

char *strndup(const char *s1,
 size_t n);

Description

strndup duplicates at most n characters from the the string pointed to by s1 by using malloc to allocate memory

for a copy of s1.

If the length of string pointed to by s1 is greater than n characters, only n characters will be duplicated. If n is

greater than the length of string pointed to by s1, all characters in the string are copied into the allocated array

including the terminating null character.

strndup returns a pointer to the new string or a null pointer if the new string cannot be created. The returned

pointer can be passed to free.

Note

strndup conforms to POSIX.1-2008 and SC22 TR 24731-2.

CrossWorks for ARM Reference Manual Complete API reference

1013

strnlen

Synopsis

size_t strnlen(const char *s,
 size_t n);

Description

strnlen returns the length of the string pointed to by s, up to a maximum of n characters. strnlen only examines

the first n characters of the string s.

Note

strnlen conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual Complete API reference

1014

strnstr

Synopsis

char *strnstr(const char *s1,
 const char *s2,
 size_t n);

Description

strnstr searches at most n characters to locate the first occurrence in the string pointed to by s1 of the sequence

of characters (excluding the terminating null character) in the string pointed to by s2.

strnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, strnstr returns s1.

Note

strnstr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1015

strpbrk

Synopsis

char *strpbrk(const char *s1,
 const char *s2);

Description

strpbrk locates the first occurrence in the string pointed to by s1 of any character from the string pointed to by

s2.

strpbrk returns a pointer to the character, or a null pointer if no character from s2 occurs in s1.

CrossWorks for ARM Reference Manual Complete API reference

1016

strrchr

Synopsis

char *strrchr(const char *s,
 int c);

Description

strrchr locates the last occurrence of c (converted to a char) in the string pointed to by s. The terminating null

character is considered to be part of the string.

strrchr returns a pointer to the character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual Complete API reference

1017

strsep

Synopsis

char *strsep(char **stringp,
 const char *delim);

Description

strsep locates, in the string referenced by *stringp, the first occurrence of any character in the string delim (or

the terminating null character) and replaces it with a null character. The location of the next character after the

delimiter character (or NULL, if the end of the string was reached) is stored in *stringp. The original value of

*stringp is returned.

An empty field (that is, a character in the string delim occurs as the first character of *stringp can be detected by

comparing the location referenced by the returned pointer to the null character.

If *stringp is initially null, strsep returns null.

Note

strsep is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1018

strspn

Synopsis

size_t strspn(const char *s1,
 const char *s2);

Description

strspn computes the length of the maximum initial segment of the string pointed to by s1 which consists

entirely of characters from the string pointed to by s2.

strspn returns the length of the segment.

CrossWorks for ARM Reference Manual Complete API reference

1019

strstr

Synopsis

char *strstr(const char *s1,
 const char *s2);

Description

strstr locates the first occurrence in the string pointed to by s1 of the sequence of characters (excluding the

terminating null character) in the string pointed to by s2.

strstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string with

zero length, strstr returns s1.

CrossWorks for ARM Reference Manual Complete API reference

1020

strtok

Synopsis

char *strtok(char *s1,
 const char *s2);

Description

strtok A sequence of calls to strtok breaks the string pointed to by s1 into a sequence of tokens, each of which

is delimited by a character from the string pointed to by s2. The first call in the sequence has a non-null first

argument; subsequent calls in the sequence have a null first argument. The separator string pointed to by s2

may be different from call to call.

The first call in the sequence searches the string pointed to by s1 for the first character that is not contained in

the current separator string pointed to by s2. If no such character is found, then there are no tokens in the string

pointed to by s1 and strtok returns a null pointer. If such a character is found, it is the start of the first token.

strtok then searches from there for a character that is contained in the current separator string. If no such

character is found, the current token extends to the end of the string pointed to by s1, and subsequent searches

for a token will return a null pointer. If such a character is found, it is overwritten by a null character, which

terminates the current token. strtok saves a pointer to the following character, from which the next search for a

token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

strtok maintains static state and is therefore not reentrant and not thread safe. See strtok_r for a thread-safe and

reentrant variant.

See Also

strsep, strtok_r.

CrossWorks for ARM Reference Manual Complete API reference

1021

strtok_r

Synopsis

char *strtok_r(char *s1,
 const char *s2,
 char **s3);

Description

strtok_r is a reentrant version of the function strtok where the state is maintained in the object of type char *

pointed to by s3.

Note

strtok_r conforms to POSIX.1-2008 and is commonly found in Linux and BSD C libraries.

See Also

strtok.

CrossWorks for ARM Reference Manual Complete API reference

1022

<time.h>

API Summary

Types

clock_t Clock type

time_t Time type

tm Time structure

Functions

asctime Convert a struct tm to a string

asctime_r Convert a struct tm to a string

ctime Convert a time_t to a string

ctime_r Convert a time_t to a string

difftime Calculates the difference between two times

gmtime Convert a time_t to a struct tm

gmtime_r Convert a time_t to a struct tm

localtime Convert a time_t to a struct tm

localtime_r Convert a time_t to a struct tm

mktime Convert a struct tm to time_t

strftime Format a struct tm to a string

CrossWorks for ARM Reference Manual Complete API reference

1023

asctime

Synopsis

char *asctime(const tm *tp);

Description

asctime converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973. The

returned string is held in a static buffer. asctime is not re-entrant.

CrossWorks for ARM Reference Manual Complete API reference

1024

asctime_r

Synopsis

char *asctime_r(const tm *tp,
 char *buf);

Description

asctime_r converts the *tp struct to a null terminated string of the form Sun Sep 16 01:03:52 1973 in buf and

returns buf. The buf must point to an array at least 26 bytes in length.

CrossWorks for ARM Reference Manual Complete API reference

1025

clock_t

Synopsis

typedef long clock_t;

Description

clock_t is the type returned by the clock function.

CrossWorks for ARM Reference Manual Complete API reference

1026

ctime

Synopsis

char *ctime(const time_t *tp);

Description

ctime converts the *tp to a null terminated string. The returned string is held in a static buffer, this function is

not re-entrant.

CrossWorks for ARM Reference Manual Complete API reference

1027

ctime_r

Synopsis

char *ctime_r(const time_t *tp,
 char *buf);

Description

ctime_r converts the *tp to a null terminated string in buf and returns buf. The buf must point to an array at

least 26 bytes in length.

CrossWorks for ARM Reference Manual Complete API reference

1028

difftime

Synopsis

double difftime(time_t time2,
 time_t time1);

Description

difftime returns time1 - time0 as a double precision number.

CrossWorks for ARM Reference Manual Complete API reference

1029

gmtime

Synopsis

 gmtime(const time_t *tp);

Description

gmtime converts the *tp time format to a struct tm time format. The returned value points to a static object -

this function is not re-entrant.

CrossWorks for ARM Reference Manual Complete API reference

1030

gmtime_r

Synopsis

 gmtime_r(const time_t *tp,
 tm *result);

Description

gmtime_r converts the *tp time format to a struct tm time format in *result and returns result.

CrossWorks for ARM Reference Manual Complete API reference

1031

localtime

Synopsis

 localtime(const time_t *tp);

Description

localtime converts the *tp time format to a struct tm local time format. The returned value points to a static

object - this function is not re-entrant.

CrossWorks for ARM Reference Manual Complete API reference

1032

localtime_r

Synopsis

 localtime_r(const time_t *tp,
 tm *result);

Description

localtime_r converts the *tp time format to a struct tm local time format in *result and returns result.

CrossWorks for ARM Reference Manual Complete API reference

1033

mktime

Synopsis

time_t mktime(tm *tp);

Description

mktime validates (and updates) the *tp struct to ensure that the tm_sec, tm_min, tm_hour, tm_mon fields

are within the supported integer ranges and the tm_mday, tm_mon and tm_year fields are consistent. The

validated *tp struct is converted to the number of seconds since UTC 1 January 1970 and returned.

CrossWorks for ARM Reference Manual Complete API reference

1034

strftime

Synopsis

size_t strftime(char *s,
 size_t smax,
 const char *fmt,
 const tm *tp);

Description

strftime formats the *tp struct to a null terminated string of maximum size smax-1 into the array at *s based

on the fmt format string. The format string consists of conversion specifications and ordinary characters.

Conversion specifications start with a % character followed by an optional # character. The following conversion

specifications are supported:

Specification Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%#c Date and time formatted as "%A, %B %#d, %Y, %H:%M:
%S" (Microsoft extension)

%C Century number

%d Day of month as a decimal number [01,31]

%#d Day of month without leading zero [1,31]

%D Date in the form %m/%d/%y (POSIX.1-2008 extension)

%e Day of month [1,31], single digit preceded by space

%F Date in the format %Y-%m-%d

%h Abbreviated month name as %b

%H Hour in 24-hour format [00,23]

%#H Hour in 24-hour format without leading zeros [0,23]

%I Hour in 12-hour format [01,12]

%#I Hour in 12-hour format without leading zeros [1,12]

%j Day of year as a decimal number [001,366]

%#j Day of year as a decimal number without leading zeros
[1,366]

%k Hour in 24-hour clock format [0,23] (POSIX.1-2008
extension)

CrossWorks for ARM Reference Manual Complete API reference

1035

%l Hour in 12-hour clock format [0,12] (POSIX.1-2008
extension)

%m Month as a decimal number [01,12]

%#m Month as a decimal number without leading zeros
[1,12]

%M Minute as a decimal number [00,59]

%#M Minute as a decimal number without leading zeros
[0,59]

%n Insert newline character (POSIX.1-2008 extension)

%p Locale's a.m or p.m indicator for 12-hour clock

%r Time as %I:%M:%s %p (POSIX.1-2008 extension)

%R Time as %H:%M (POSIX.1-2008 extension)

%S Second as a decimal number [00,59]

%t Insert tab character (POSIX.1-2008 extension)

%T Time as %H:%M:%S

%#S Second as a decimal number without leading zeros
[0,59]

%U Week of year as a decimal number [00,53], Sunday is
first day of the week

%#U Week of year as a decimal number without leading
zeros [0,53], Sunday is first day of the week

%w Weekday as a decimal number [0,6], Sunday is 0

%W Week number as a decimal number [00,53], Monday is
first day of the week

%#W Week number as a decimal number without leading
zeros [0,53], Monday is first day of the week

%x Locale's date representation

%#x Locale's long date representation

%X Locale's time representation

%y Year without century, as a decimal number [00,99]

%#y Year without century, as a decimal number without
leading zeros [0,99]

%Y Year with century, as decimal number

%z,%Z Timezone name or abbreviation

%% %

CrossWorks for ARM Reference Manual Complete API reference

1036

time_t

Synopsis

typedef long time_t;

Description

time_t is a long type that represents the time in number of seconds since UTC 1 January 1970, negative values

indicate time before UTC 1 January 1970.

CrossWorks for ARM Reference Manual Complete API reference

1037

tm

Synopsis

typedef struct {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
} tm;

Description

tm structure has the following fields.

Member Description

tm_sec seconds after the minute - [0,59]

tm_min minutes after the hour - [0,59]

tm_hour hours since midnight - [0,23]

tm_mday day of the month - [1,31]

tm_mon months since January - [0,11]

tm_year years since 1900

tm_wday days since Sunday - [0,6]

tm_yday days since January 1 - [0,365]

tm_isdst daylight savings time flag

CrossWorks for ARM Reference Manual Complete API reference

1038

<wchar.h>

API Summary

Character minimum and maximum values

WCHAR_MAX Maximum value of a wide character

WCHAR_MIN Minimum value of a wide character

Constants

WEOF End of file indication

Types

wchar_t Wide character type

wint_t Wide integer type

Copying functions

wcscat Concatenate strings

wcscpy Copy string

wcsncat Concatenate strings up to maximum length

wcsncpy Copy string up to a maximum length

wmemccpy Copy memory with specified terminator (POSIX
extension)

wmemcpy Copy memory

wmemmove Safely copy overlapping memory

wmempcpy Copy memory (GNU extension)

Comparison functions

wcscmp Compare strings

wcsncmp Compare strings up to a maximum length

wmemcmp Compare memory

Search functions

wcschr Find character within string

wcscspn Compute size of string not prefixed by a set of
characters

wcsnchr Find character in a length-limited string

wcsnlen Calculate length of length-limited string

wcsnstr Find first occurrence of a string within length-limited
string

wcspbrk Find first occurrence of characters within string

wcsrchr Find last occurrence of character within string

CrossWorks for ARM Reference Manual Complete API reference

1039

wcsspn Compute size of string prefixed by a set of characters

wcsstr Find first occurrence of a string within string

wcstok Break string into tokens

wcstok_r Break string into tokens (reentrant version)

wmemchr Search memory for a wide character

wstrsep Break string into tokens

Miscellaneous functions

wcsdup Duplicate string

wcslen Calculate length of string

wmemset Set memory to wide character

Multi-byte/wide string conversion functions

mbrtowc Convert multi-byte character to wide character

mbrtowc_l Convert multi-byte character to wide character

msbinit Query conversion state

wcrtomb Convert wide character to multi-byte character
(restartable)

wcrtomb_l Convert wide character to multi-byte character
(restartable)

wctob Convert wide character to single-byte character

wctob_l Convert wide character to single-byte character

Multi-byte to wide character conversions

mbrlen Determine number of bytes in a multi-byte character

mbrlen_l Determine number of bytes in a multi-byte character

mbsrtowcs Convert multi-byte string to wide character string

mbsrtowcs_l Convert multi-byte string to wide character string

Single-byte to wide character conversions

btowc Convert single-byte character to wide character

btowc_l Convert single-byte character to wide character

CrossWorks for ARM Reference Manual Complete API reference

1040

WCHAR_MAX

Synopsis

#define WCHAR_MAX ...

Description

WCHAR_MAX is the maximum value for an object of type wchar_t. Although capable of storing larger values,

the maximum value implemented by the conversion functions in the library is the value 0x10FFFF defined by ISO

10646.

CrossWorks for ARM Reference Manual Complete API reference

1041

WCHAR_MIN

Synopsis

#define WCHAR_MIN ...

Description

WCHAR_MIN is the minimum value for an object of type wchar_t.

CrossWorks for ARM Reference Manual Complete API reference

1042

WEOF

Synopsis

#define WEOF ((wint_t)~0U)

Description

WEOF expands to a constant value that does not correspond to any character in the wide character set. It is

typically used to indicate an end of file condition.

CrossWorks for ARM Reference Manual Complete API reference

1043

btowc

Synopsis

wint_t btowc(int c);

Description

btowc function determines whether c constitutes a valid single-byte character. If c is a valid single-byte

character, btowc returns the wide character representation of that character

btowc returns WEOF if c has the value EOF or if (unsigned char)c does not constitute a valid single-byte

character in the initial shift state.

CrossWorks for ARM Reference Manual Complete API reference

1044

btowc_l

Synopsis

wint_t btowc_l(int c,
 locale_t loc);

Description

btowc_l function determines whether c constitutes a valid single-byte character in the locale loc. If c is a valid

single-byte character, btowc_l returns the wide character representation of that character

btowc_l returns WEOF if c has the value EOF or if (unsigned char)c does not constitute a valid single-byte

character in the initial shift state.

CrossWorks for ARM Reference Manual Complete API reference

1045

mbrlen

Synopsis

size_t mbrlen(const char *s,
 size_t n,
 mbstate_t *ps);

Note

mbrlen function is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

CrossWorks for ARM Reference Manual Complete API reference

1046

mbrlen_l

Synopsis

size_t mbrlen_l(const char *s,
 size_t n,
 mbstate_t *ps,
 locale_t loc);

Note

mbrlen_l function is equivalent to the call:

mbrtowc_l(NULL, s, n, ps != NULL ? ps : &internal, loc);

where internal is the mbstate_t object for the mbrlen function, except that the expression designated by ps is

evaluated only once.

CrossWorks for ARM Reference Manual Complete API reference

1047

mbrtowc

Synopsis

size_t mbrtowc(wchar_t *pwc,
 const char *s,
 size_t n,
 mbstate_t *ps);

Description

mbrtowc converts a single multi-byte character to a wide character in the current locale.

If s is a null pointer, mbrtowc is equivalent to mbrtowc(NULL, "", 1, ps), ignoring pwc and n.

If s is not null and the object that s points to is a wide-character null character, mbrtowc returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc

returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc returns 2. If

the object that points to does not form a partial multi-byte character, mbrtowc returns 1.

See Also

mbtowc, mbrtowc_l

CrossWorks for ARM Reference Manual Complete API reference

1048

mbrtowc_l

Synopsis

size_t mbrtowc_l(wchar_t *pwc,
 const char *s,
 size_t n,
 mbstate_t *ps,
 locale_t loc);

Description

mbrtowc_l converts a single multi-byte character to a wide character in the locale loc.

If s is a null pointer, mbrtowc_l is equivalent to mbrtowc(NULL, "", 1, ps), ignoring pwc and n.

If s is not null and the object that s points to is a wide-character null character, mbrtowc_l returns 0.

If s is not null and the object that points to forms a valid multi-byte character with a most n bytes, mbrtowc_l

returns the length in bytes of the multi-byte character and stores that wide character to the object pointed to by

pwc (if pwc is not null).

If the object that points to forms an incomplete, but possibly valid, multi-byte character, mbrtowc_l returns 2. If

the object that points to does not form a partial multi-byte character, mbrtowc_l returns 1.

See Also

mbrtowc, mbtowc_l

CrossWorks for ARM Reference Manual Complete API reference

1049

mbsrtowcs

Synopsis

size_t mbsrtowcs(wchar_t *dst,
 const char **src,
 size_t len,
 mbstate_t *ps);

Description

mbsrtowcs converts a sequence of multi-byte characters that begins in the conversion state described by the

object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide

characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-

byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion

stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null

pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_l, mbrtowc

CrossWorks for ARM Reference Manual Complete API reference

1050

mbsrtowcs_l

Synopsis

size_t mbsrtowcs_l(wchar_t *dst,
 const char **src,
 size_t len,
 mbstate_t *ps,
 locale_t loc);

Description

mbsrtowcs_l converts a sequence of multi-byte characters that begins in the conversion state described by

the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding wide

characters If dst is not a null pointer, the converted characters are stored into the array pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not form a valid multi-

byte character, or (if dst is not a null pointer) when len wide characters have been stored into the array pointed

to by dst. Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if conversion

stopped due to reaching a terminating null character) or the address just past the last multi-byte character

converted (if any). If conversion stopped due to reaching a terminating null character and if dst is not a null

pointer, the resulting state described is the initial conversion state.

See Also

mbsrtowcs_l, mbrtowc

CrossWorks for ARM Reference Manual Complete API reference

1051

msbinit

Synopsis

int msbinit(const mbstate_t *ps);

Description

msbinit function returns nonzero if ps is a null pointer or if the pointed-to object describes an initial conversion

state; otherwise, msbinit returns zero.

CrossWorks for ARM Reference Manual Complete API reference

1052

wchar_t

Synopsis

typedef __RAL_WCHAR_T wchar_t;

Description

wchar_t holds a single wide character.

Depending on implementation you can control whether wchar_t is represented by a short 16-bit type or the

standard 32-bit type.

CrossWorks for ARM Reference Manual Complete API reference

1053

wcrtomb

Synopsis

size_t wcrtomb(char *s,
 wchar_t wc,
 mbstate_t *ps);

If s is a null pointer, wcrtomb function is equivalent to the call wcrtomb(buf, L'\0', ps) where buf is an

internal buffer.

If s is not a null pointer, wcrtomb determines the number of bytes needed to represent the multibyte character

that corresponds to the wide character given by wc, and stores the multibyte character representation in

the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb returns the number of bytes stored in the array object. When wc is not a valid wide character, an

encoding error occurs: wcrtomb stores the value of the macro EILSEQ in errno and returns (size_t)(-1); the

conversion state is unspecified.

CrossWorks for ARM Reference Manual Complete API reference

1054

wcrtomb_l

Synopsis

size_t wcrtomb_l(char *s,
 wchar_t wc,
 mbstate_t *ps,
 locale_t loc);

If s is a null pointer, wcrtomb_l function is equivalent to the call wcrtomb_l(buf, L'\0', ps, loc)

where buf is an internal buffer.

If s is not a null pointer, wcrtomb_l determines the number of bytes needed to represent the multibyte

character that corresponds to the wide character given by wc, and stores the multibyte character representation

in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null wide

character, a null byte is stored; the resulting state described is the initial conversion state.

wcrtomb_l returns the number of bytes stored in the array object. When wc is not a valid wide character, an

encoding error occurs: wcrtomb_l stores the value of the macro EILSEQ in errno and returns (size_t)(-1);

the conversion state is unspecified.

CrossWorks for ARM Reference Manual Complete API reference

1055

wcscat

Synopsis

wchar_t *wcscat(wchar_t *s1,
 const wchar_t *s2);

Description

wcscat appends a copy of the wide string pointed to by s2 (including the terminating null wide character) to the

end of the wide string pointed to by s1. The initial character of s2 overwrites the null wide character at the end

of s1. The behavior of wcscat is undefined if copying takes place between objects that overlap.

wcscat returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1056

wcschr

Synopsis

wchar_t *wcschr(const wchar_t *s,
 wchar_t c);

Description

wcschr locates the first occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcschr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual Complete API reference

1057

wcscmp

Synopsis

int wcscmp(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscmp compares the wide string pointed to by s1 to the wide string pointed to by s2. wcscmp returns an

integer greater than, equal to, or less than zero if the wide string pointed to by s1 is greater than, equal to, or less

than the wide string pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

1058

wcscpy

Synopsis

wchar_t *wcscpy(wchar_t *s1,
 const wchar_t *s2);

Description

wcscpy copies the wide string pointed to by s2 (including the terminating null wide character) into the array

pointed to by s1. The behavior of wcscpy is undefined if copying takes place between objects that overlap.

wcscpy returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1059

wcscspn

Synopsis

size_t wcscspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcscspn computes the length of the maximum initial segment of the wide string pointed to by s1 which

consists entirely of wide characters not from the wide string pointed to by s2.

wcscspn returns the length of the segment.

CrossWorks for ARM Reference Manual Complete API reference

1060

wcsdup

Synopsis

wchar_t *wcsdup(const wchar_t *s1);

Description

wcsdup duplicates the wide string pointed to by s1 by using malloc to allocate memory for a copy of s and then

copying s, including the terminating wide null character, to that memory. The returned pointer can be passed to

free. wcsdup returns a pointer to the new wide string or a null pointer if the new string cannot be created.

Note

wcsdup is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1061

wcslen

Synopsis

size_t wcslen(const wchar_t *s);

Description

wcslen returns the length of the wide string pointed to by s, that is the number of wide characters that precede

the terminating null wide character.

CrossWorks for ARM Reference Manual Complete API reference

1062

wcsncat

Synopsis

wchar_t *wcsncat(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncat appends not more than n wude characters from the array pointed to by s2 to the end of the wide string

pointed to by s1. A null wide character in s1 and wide characters that follow it are not appended. The initial

wide character of s2 overwrites the null wide character at the end of s1. A terminating wide null character is

always appended to the result. The behavior of wcsncat is undefined if copying takes place between objects

that overlap.

wcsncat returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1063

wcsnchr

Synopsis

wchar_t *wcsnchr(const wchar_t *str,
 size_t n,
 wchar_t ch);

Description

wcsnchr searches not more than n wide characters to locate the first occurrence of c in the wide string pointed

to by s. The terminating wide null character is considered to be part of the wide string.

wcsnchr returns a pointer to the located wide character, or a null pointer if c does not occur in the string.

CrossWorks for ARM Reference Manual Complete API reference

1064

wcsncmp

Synopsis

int wcsncmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncmp compares not more than n wide characters from the array pointed to by s1 to the array pointed to by

s2. Characters that follow a null wide character are not compared.

wcsncmp returns an integer greater than, equal to, or less than zero, if the possibly null-terminated array

pointed to by s1 is greater than, equal to, or less than the possibly null-terminated array pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

1065

wcsncpy

Synopsis

wchar_t *wcsncpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsncpy copies not more than n wide characters from the array pointed to by s2 to the array pointed to by s1.

Wide characters that follow a null wide character in s2 are not copied. The behavior of wcsncpy is undefined

if copying takes place between objects that overlap. If the array pointed to by s2 is a wide string that is shorter

than n wide characters, null wide characters are appended to the copy in the array pointed to by s1, until n

characters in all have been written.

wcsncpy returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1066

wcsnlen

Synopsis

size_t wcsnlen(const wchar_t *s,
 size_t n);

Description

this returns the length of the wide string pointed to by s, up to a maximum of n wide characters. wcsnlen only

examines the first n wide characters of the string s.

Note

wcsnlen is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1067

wcsnstr

Synopsis

wchar_t *wcsnstr(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wcsnstr searches at most n wide characters to locate the first occurrence in the wide string pointed to by s1 of

the sequence of wide characters (excluding the terminating null wide character) in the wide string pointed to by

s2.

wcsnstr returns a pointer to the located string, or a null pointer if the string is not found. If s2 points to a string

with zero length, wcsnstr returns s1.

Note

wcsnstr is an extension commonly found in Linux and BSD C libraries.

CrossWorks for ARM Reference Manual Complete API reference

1068

wcspbrk

Synopsis

wchar_t *wcspbrk(const wchar_t *s1,
 const wchar_t *s2);

Description

wcspbrk locates the first occurrence in the wide string pointed to by s1 of any wide character from the wide

string pointed to by s2.

wcspbrk returns a pointer to the wide character, or a null pointer if no wide character from s2 occurs in s1.

CrossWorks for ARM Reference Manual Complete API reference

1069

wcsrchr

Synopsis

wchar_t *wcsrchr(const wchar_t *s,
 wchar_t c);

Description

wcsrchr locates the last occurrence of c in the wide string pointed to by s. The terminating wide null character is

considered to be part of the string.

wcsrchr returns a pointer to the wide character, or a null pointer if c does not occur in the wide string.

CrossWorks for ARM Reference Manual Complete API reference

1070

wcsspn

Synopsis

size_t wcsspn(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsspn computes the length of the maximum initial segment of the wide string pointed to by s1 which consists

entirely of wide characters from the wide string pointed to by s2.

wcsspn returns the length of the segment.

CrossWorks for ARM Reference Manual Complete API reference

1071

wcsstr

Synopsis

wchar_t *wcsstr(const wchar_t *s1,
 const wchar_t *s2);

Description

wcsstr locates the first occurrence in the wide string pointed to by s1 of the sequence of wide characters

(excluding the terminating null wide character) in the wide string pointed to by s2.

wcsstr returns a pointer to the located wide string, or a null pointer if the wide string is not found. If s2 points to

a wide string with zero length, wcsstr returns s1.

CrossWorks for ARM Reference Manual Complete API reference

1072

wcstok

Synopsis

wchar_t *wcstok(wchar_t *s1,
 const wchar_t *s2,
 wchar_t **ptr);

Description

wcstok A sequence of calls to wcstok breaks the wide string pointed to by s1 into a sequence of tokens, each of

which is delimited by a wide character from the wide string pointed to by s2. The first call in the sequence has a

non-null first argument; subsequent calls in the sequence have a null first argument. The separator wide string

pointed to by s2 may be different from call to call.

The first call in the sequence searches the wide string pointed to by s1 for the first wide character that is not

contained in the current separator wide string pointed to by s2. If no such wide character is found, then there are

no tokens in the wide string pointed to by s1 and wcstok returns a null pointer. If such a wide character is found,

it is the start of the first token.

wcstok then searches from there for a wide character that is contained in the current wide separator string. If

no such wide character is found, the current token extends to the end of the wide string pointed to by s1, and

subsequent searches for a token will return a null pointer. If such a wude character is found, it is overwritten by a

wide null character, which terminates the current token. wcstok saves a pointer to the following wide character,

from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the saved

pointer and behaves as described above.

Note

wcstok maintains static state and is therefore not reentrant and not thread safe. See wcstok_r for a thread-safe

and reentrant variant.

CrossWorks for ARM Reference Manual Complete API reference

1073

wcstok_r

Synopsis

wchar_t *wcstok_r(wchar_t *s1,
 const wchar_t *s2,
 wchar_t **s3);

Description

wcstok_r is a reentrant version of the function wcstok where the state is maintained in the object of type

wchar_t * pointed to by s3.

Note

wcstok_r is an extension commonly found in Linux and BSD C libraries.

See Also

wcstok.

CrossWorks for ARM Reference Manual Complete API reference

1074

wctob

Synopsis

int wctob(wint_t c);

Description

wctob determines whether c corresponds to a member of the extended character set whose multi-byte

character representation is a single byte when in the initial shift state in the current locale.

Description

this returns EOF if c does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

CrossWorks for ARM Reference Manual Complete API reference

1075

wctob_l

Synopsis

int wctob_l(wint_t c,
 locale_t loc);

Description

wctob_l determines whether c corresponds to a member of the extended character set whose multi-byte

character representation is a single byte when in the initial shift state in locale loc.

Description

wctob_l returns EOF if c does not correspond to a multi-byte character with length one in the initial shift state.

Otherwise, it returns the single-byte representation of that character as an unsigned char converted to an int.

CrossWorks for ARM Reference Manual Complete API reference

1076

wint_t

Synopsis

typedef long wint_t;

Description

wint_t is an integer type that is unchanged by default argument promotions that can hold any value

corresponding to members of the extended character set, as well as at least one value that does not correspond

to any member of the extended character set (WEOF).

CrossWorks for ARM Reference Manual Complete API reference

1077

wmemccpy

Synopsis

wchar_t *wmemccpy(wchar_t *s1,
 const wchar_t *s2,
 wchar_t c,
 size_t n);

Description

wmemccpy copies at most n wide characters from the object pointed to by s2 into the object pointed to by s1.

The copying stops as soon as n wide characters are copied or the wide character c is copied into the destination

object pointed to by s1. The behavior of wmemccpy is undefined if copying takes place between objects that

overlap.

wmemccpy returns a pointer to the wide character immediately following c in s1, or NULL if c was not found in

the first n wide characters of s2.

Note

wmemccpy conforms to POSIX.1-2008.

CrossWorks for ARM Reference Manual Complete API reference

1078

wmemchr

Synopsis

wchar_t *wmemchr(const wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemchr locates the first occurrence of c in the initial n characters of the object pointed to by s. Unlike wcschr,

wmemchr does not terminate a search when a null wide character is found in the object pointed to by s.

wmemchr returns a pointer to the located wide character, or a null pointer if c does not occur in the object.

CrossWorks for ARM Reference Manual Complete API reference

1079

wmemcmp

Synopsis

int wmemcmp(const wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcmp compares the first n wide characters of the object pointed to by s1 to the first n wide characters of

the object pointed to by s2. wmemcmp returns an integer greater than, equal to, or less than zero as the object

pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

CrossWorks for ARM Reference Manual Complete API reference

1080

wmemcpy

Synopsis

wchar_t *wmemcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmemcpy is undefined if copying takes place between objects that overlap.

wmemcpy returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1081

wmemmove

Synopsis

wchar_t *wmemmove(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmemmove copies n wide characters from the object pointed to by s2 into the object pointed to by s1 ensuring

that if s1 and s2 overlap, the copy works correctly. Copying takes place as if the n wide characters from the

object pointed to by s2 are first copied into a temporary array of n wide characters that does not overlap the

objects pointed to by s1 and s2, and then the n wide characters from the temporary array are copied into the

object pointed to by s1.

wmemmove returns the value of s1.

CrossWorks for ARM Reference Manual Complete API reference

1082

wmempcpy

Synopsis

wchar_t *wmempcpy(wchar_t *s1,
 const wchar_t *s2,
 size_t n);

Description

wmempcpy copies n wide characters from the object pointed to by s2 into the object pointed to by s1. The

behavior of wmempcpy is undefined if copying takes place between objects that overlap.

wmempcpy returns it returns a pointer to the wide character following the last written wide character.

Note

This is an extension found in GNU libc.

CrossWorks for ARM Reference Manual Complete API reference

1083

wmemset

Synopsis

wchar_t *wmemset(wchar_t *s,
 wchar_t c,
 size_t n);

Description

wmemset copies the value of c into each of the first n wide characters of the object pointed to by s.

wmemset returns the value of s.

CrossWorks for ARM Reference Manual Complete API reference

1084

wstrsep

Synopsis

wchar_t *wstrsep(wchar_t **stringp,
 const wchar_t *delim);

Description

wstrsep locates, in the wide string referenced by *stringp, the first occurrence of any wide character in the wide

string delim (or the terminating wide null character) and replaces it with a wide null character. The location of

the next character after the delimiter wide character (or NULL, if the end of the string was reached) is stored in

*stringp. The original value of *stringp is returned.

An empty field (that is, a wide character in the string delim occurs as the first wide character of *stringp can be

detected by comparing the location referenced by the returned pointer to a wide null character.

If *stringp is initially null, wstrsep returns null.

Note

wstrsep is not an ISO C function, but appears in BSD4.4 and Linux.

CrossWorks for ARM Reference Manual Complete API reference

1085

<wctype.h>

API Summary

Classification functions

iswalnum Is character alphanumeric?

iswalpha Is character alphabetic?

iswblank Is character blank?

iswcntrl Is character a control?

iswctype Determine character type

iswdigit Is character a decimal digit?

iswgraph Is character a control?

iswlower Is character a lowercase letter?

iswprint Is character printable?

iswpunct Is character punctuation?

iswspace Is character a whitespace character?

iswupper Is character an uppercase letter?

iswxdigit Is character a hexadecimal digit?

wctype Construct character class

Conversion functions

towctrans Translate character

towlower Convert uppercase character to lowercase

towupper Convert lowercase character to uppercase

wctrans Construct character mapping

Classification functions (extended)

iswalnum_l Is character alphanumeric?

iswalpha_l Is character alphabetic?

iswblank_l Is character blank?

iswcntrl_l Is character a control?

iswctype_l Determine character type

iswdigit_l Is character a decimal digit?

iswgraph_l Is character a control?

iswlower_l Is character a lowercase letter?

iswprint_l Is character printable?

iswpunct_l Is character punctuation?

CrossWorks for ARM Reference Manual Complete API reference

1086

iswspace_l Is character a whitespace character?

iswupper_l Is character an uppercase letter?

iswxdigit_l Is character a hexadecimal digit?

Conversion functions (extended)

towctrans_l Translate character

towlower_l Convert uppercase character to lowercase

towupper_l Convert lowercase character to uppercase

wctrans_l Construct character mapping

CrossWorks for ARM Reference Manual Complete API reference

1087

iswalnum

Synopsis

int iswalnum(wint_t c);

Description

iswalnum tests for any wide character for which iswalpha or iswdigit is true.

CrossWorks for ARM Reference Manual Complete API reference

1088

iswalnum_l

Synopsis

int iswalnum_l(wint_t c,
 locale_t loc);

Description

iswalnum_l tests for any wide character for which iswalpha_l or iswdigit_l is true in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1089

iswalpha

Synopsis

int iswalpha(wint_t c);

Description

iswalpha returns true if the wide character c is alphabetic. Any character for which iswupper or iswlower returns

true is considered alphabetic in addition to any of the locale-specific set of alphabetic characters for which none

of iswcntrl, iswdigit, iswpunct, or iswspace is true.

In the C locale, iswalpha returns nonzero (true) if and only if iswupper or iswlower return true for the value of

the argument c.

CrossWorks for ARM Reference Manual Complete API reference

1090

iswalpha_l

Synopsis

int iswalpha_l(wint_t c,
 locale_t loc);

Description

iswalpha_l returns true if the wide character c is alphabetic in the locale loc. Any character for which iswupper_l

or iswlower_l returns true is considered alphabetic in addition to any of the locale-specific set of alphabetic

characters for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

CrossWorks for ARM Reference Manual Complete API reference

1091

iswblank

Synopsis

int iswblank(wint_t c);

Description

iswblank tests for any wide character that is a standard blank wide character or is one of a locale-specific set of

wide characters for which iswspace is true and that is used to separate words within a line of text. The standard

blank wide are space and horizontal tab.

In the C locale, iswblank returns true only for the standard blank characters.

CrossWorks for ARM Reference Manual Complete API reference

1092

iswblank_l

Synopsis

int iswblank_l(wint_t c,
 locale_t loc);

Description

iswblank_l tests for any wide character that is a standard blank wide character in the locale loc or is one of a

locale-specific set of wide characters for which iswspace_l is true and that is used to separate words within a line

of text. The standard blank wide are space and horizontal tab.

CrossWorks for ARM Reference Manual Complete API reference

1093

iswcntrl

Synopsis

int iswcntrl(wint_t c);

Description

iswcntrl tests for any wide character that is a control character.

CrossWorks for ARM Reference Manual Complete API reference

1094

iswcntrl_l

Synopsis

int iswcntrl_l(wint_t c,
 locale_t loc);

Description

iswcntrl_l tests for any wide character that is a control character in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1095

iswctype

Synopsis

int iswctype(wint_t c,
 wctype_t t);

Description

iswctype determines whether the wide character c has the property described by t in the current locale.

CrossWorks for ARM Reference Manual Complete API reference

1096

iswctype_l

Synopsis

int iswctype_l(wint_t c,
 wctype_t t,
 locale_t loc);

Description

iswctype_l determines whether the wide character c has the property described by t in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1097

iswdigit

Synopsis

int iswdigit(wint_t c);

Description

iswdigit tests for any wide character that corresponds to a decimal-digit character.

CrossWorks for ARM Reference Manual Complete API reference

1098

iswdigit_l

Synopsis

int iswdigit_l(wint_t c,
 locale_t loc);

Description

iswdigit_l tests for any wide character that corresponds to a decimal-digit character in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1099

iswgraph

Synopsis

int iswgraph(wint_t c);

Description

iswgraph tests for any wide character for which iswprint is true and iswspace is false.

CrossWorks for ARM Reference Manual Complete API reference

1100

iswgraph_l

Synopsis

int iswgraph_l(wint_t c,
 locale_t loc);

Description

iswgraph_l tests for any wide character for which iswprint is true and iswspace is false in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1101

iswlower

Synopsis

int iswlower(wint_t c);

Description

iswlower tests for any wide character that corresponds to a lowercase letter or is one of a locale-specific set of

wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true.

CrossWorks for ARM Reference Manual Complete API reference

1102

iswlower_l

Synopsis

int iswlower_l(wint_t c,
 locale_t loc);

Description

iswlower_l tests for any wide character that corresponds to a lowercase letter in the locale loc or is one of a

locale-specific set of wide characters for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

CrossWorks for ARM Reference Manual Complete API reference

1103

iswprint

Synopsis

int iswprint(wint_t c);

Description

iswprint returns nonzero (true) if and only if the value of the argument c is any printing character.

CrossWorks for ARM Reference Manual Complete API reference

1104

iswprint_l

Synopsis

int iswprint_l(wint_t c,
 locale_t loc);

Description

iswprint_l returns nonzero (true) if and only if the value of the argument c is any printing character in the locale

loc.

CrossWorks for ARM Reference Manual Complete API reference

1105

iswpunct

Synopsis

int iswpunct(wint_t c);

Description

iswpunct tests for any printing wide character that is one of a locale-specific set of punctuation wide characters

for which neither iswspace nor iswalnum is true.

CrossWorks for ARM Reference Manual Complete API reference

1106

iswpunct_l

Synopsis

int iswpunct_l(wint_t c,
 locale_t loc);

Description

iswpunct_l tests for any printing wide character that is one of a locale-specific set of punctuation wide

characters in locale loc for which neither iswspace_l nor iswalnum_l is true.

CrossWorks for ARM Reference Manual Complete API reference

1107

iswspace

Synopsis

int iswspace(wint_t c);

Description

iswspace tests for any wide character that corresponds to a locale-specific set of white-space wide characters for

which none of iswalnum, iswgraph, or iswpunct is true.

CrossWorks for ARM Reference Manual Complete API reference

1108

iswspace_l

Synopsis

int iswspace_l(wint_t c,
 locale_t loc);

Description

iswspace_l tests for any wide character that corresponds to a locale-specific set of white-space wide characters

in the locale loc for which none of iswalnum, iswgraph_l, or iswpunct_l is true.

CrossWorks for ARM Reference Manual Complete API reference

1109

iswupper

Synopsis

int iswupper(wint_t c);

Description

iswupper tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set of

wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is true.

CrossWorks for ARM Reference Manual Complete API reference

1110

iswupper_l

Synopsis

int iswupper_l(wint_t c,
 locale_t loc);

Description

iswupper_l tests for any wide character that corresponds to an uppercase letter or is one of a locale-specific set

of wide characters in the locale loc for which none of iswcntrl_l, iswdigit_l, iswpunct_l, or iswspace_l is true.

CrossWorks for ARM Reference Manual Complete API reference

1111

iswxdigit

Synopsis

int iswxdigit(wint_t c);

Description

iswxdigit tests for any wide character that corresponds to a hexadecimal digit.

CrossWorks for ARM Reference Manual Complete API reference

1112

iswxdigit_l

Synopsis

int iswxdigit_l(wint_t c,
 locale_t loc);

Description

iswxdigit_l tests for any wide character that corresponds to a hexadecimal digit in the locale loc.

CrossWorks for ARM Reference Manual Complete API reference

1113

towctrans

Synopsis

wint_t towctrans(wint_t c,
 wctrans_t t);

Description

towctrans maps the wide character c using the mapping described by t in the current locale.

CrossWorks for ARM Reference Manual Complete API reference

1114

towctrans_l

Synopsis

wint_t towctrans_l(wint_t c,
 wctrans_t t,
 locale_t loc);

Description

towctrans_l maps the wide character c using the mapping described by t in the current locale.

CrossWorks for ARM Reference Manual Complete API reference

1115

towlower

Synopsis

wint_t towlower(wint_t c);

Description

towlower converts an uppercase letter to a corresponding lowercase letter.

If the argument c is a wide character for which iswupper is true and there are one or more corresponding wide

characters, in the current locale, for which iswlower is true, towlower returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

1116

towlower_l

Synopsis

wint_t towlower_l(wint_t c,
 locale_t loc);

Description

towlower_l converts an uppercase letter to a corresponding lowercase letter in locale loc.

If the argument c is a wide character for which iswupper_l is true and there are one or more corresponding wide

characters, in the locale loc, for which iswlower_l is true, towlower_l returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

1117

towupper

Synopsis

wint_t towupper(wint_t c);

Description

towupper converts a lowercase letter to a corresponding uppercase letter.

If the argument c is a wide character for which iswlower is true and there are one or more corresponding wide

characters, in the current current locale, for which iswupper is true, towupper returns one (and always the same

one for any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

1118

towupper_l

Synopsis

wint_t towupper_l(wint_t c,
 locale_t loc);

Description

towupper_l converts a lowercase letter to a corresponding uppercase letter in locale loc.

If the argument c is a wide character for which iswlower_l is true and there are one or more corresponding wide

characters, in the locale loc, for which iswupper_l is true, towupper_l returns one (and always the same one for

any given locale) of the corresponding wide characters; otherwise, c is returned unchanged.

CrossWorks for ARM Reference Manual Complete API reference

1119

wctrans

Synopsis

wctrans_t wctrans(const char *property);

Description

wctrans constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property.

If property identifies a valid mapping of wide characters in the current locale, wctrans returns a nonzero value

that is valid as the second argument to towctrans; otherwise, it returns zero.

Note

The only mappings supported are "tolower" and "toupper".

CrossWorks for ARM Reference Manual Complete API reference

1120

wctrans_l

Synopsis

wctrans_t wctrans_l(const char *property,
 locale_t loc);

Description

wctrans_l constructs a value of type wctrans_t that describes a mapping between wide characters identified by

the string argument property in locale loc.

If property identifies a valid mapping of wide characters in the locale loc, wctrans_l returns a nonzero value that

is valid as the second argument to towctrans_l; otherwise, it returns zero.

Note

The only mappings supported are "tolower" and "toupper".

CrossWorks for ARM Reference Manual Complete API reference

1121

wctype

Synopsis

wctype_t wctype(const char *property);

Description

wctype constructs a value of type wctype_t that describes a class of wide characters identified by the string

argument property.

If property identifies a valid class of wide characters in the current locale, wctype returns a nonzero value that is

valid as the second argument to iswctype; otherwise, it returns zero.

Note

The only mappings supported are "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",

"print", "punct", "space", "upper", and "xdigit".

CrossWorks for ARM Reference Manual Complete API reference

1122

<xlocale.h>

API Summary

Functions

duplocale Duplicate current locale data

freelocale Free a locale

localeconv_l Get locale data

newlocale Create a new locale

CrossWorks for ARM Reference Manual Complete API reference

1123

duplocale

Synopsis

locale_t duplocale(locale_t loc);

Description

duplocale duplicates the locale object referenced by loc.

If there is insufficient memory to duplicate loc, duplocale returns NULL and sets errno to ENOMEM as required

by POSIX.1-2008.

Duplicated locales must be freed with freelocale.

This is different behavior from the GNU glibc implementation which makes no mention of setting errno on

failure.

Note

This extension is derived from BSD, POSIX.1, and glibc.

CrossWorks for ARM Reference Manual Complete API reference

1124

freelocale

Synopsis

int freelocale(locale_t loc);

Description

freelocale frees the storage associated with loc.

freelocale zero on success, 1 on error.

CrossWorks for ARM Reference Manual Complete API reference

1125

localeconv_l

Synopsis

 localeconv_l(locale_t loc);

Description

localeconv_l returns a pointer to a structure of type lconv with the corresponding values for the locale loc filled

in.

CrossWorks for ARM Reference Manual Complete API reference

1126

newlocale

Synopsis

locale_t newlocale(int category_mask,
 const char *locale,
 locale_t base);

Description

newlocale creates a new locale object or modifies an existing one. If the base argument is NULL, a new locale

object is created.

category_mask specifies the locale categories to be set or modified. Values for category_mask are constructed

by a bitwise-inclusive OR of the symbolic constants LC_CTYPE_MASK, LC_NUMERIC_MASK, LC_TIME_MASK,

LC_COLLATE_MASK, LC_MONETARY_MASK, and LC_MESSAGES_MASK.

For each category with the corresponding bit set in category_mask, the data from the locale named by locale

is used. In the case of modifying an existing locale object, the data from the locale named by locale replaces the

existing data within the locale object. If a completely new locale object is created, the data for all sections not

requested by category_mask are taken from the default locale.

The locales C and POSIX are equivalent and defined for all settings of category_mask:

If locale is NULL, then the C locale is used. If locale is an empty string, newlocale will use the default locale.

If base is NULL, the current locale is used. If base is LC_GLOBAL_LOCALE, the global locale is used.

If mask is LC_ALL_MASK, base is ignored.

Note

POSIX.1-2008 does not specify whether the locale object pointed to by base is modified or whether it is freed

and a new locale object created.

Implementation

The category mask LC_MESSAGES_MASK is not implemented as POSIX messages are not implemented.

CrossWorks for ARM Reference Manual C++ Library User Guide

1127

C++ Library User Guide
CrossWorks provides a limited C++ library suitable for use in an embedded application.

Standard library

The following C++ standard header files are provided in $(StudioDir)/include:

File Description

<cassert> C++ wrapper on assert.h.

<cctype> C++ wrapper on ctype.h.

<cerrno> C++ wrapper on errno.h.

<cfloat> C++ wrapper on float.h.

<ciso646> C++ wrapper on iso646.h.

<climits> C++ wrapper on limits.h.

<clocale> C++ wrapper on locale.h.

<cmath> C++ wrapper on math.h.

<csetjmp> C++ wrapper on setjmp.h.

<cstdarg> C++ wrapper on stdarg.h.

<cstddef> C++ wrapper on stddef.h.

<cstdint> C++ wrapper on stdint.h.

<cstdio> C++ wrapper on stdio.h.

<cstdlib> C++ wrapper on stdlib.h.

CrossWorks for ARM Reference Manual C++ Library User Guide

1128

<cstring> C++ wrapper on string.h.

<ctime> C++ wrapper on time.h.

<cwchar> C++ wrapper on wchar.h.

<cwctype> C++ wrapper on wctype.h.

<exception> Definitions for exceptions.

<new> Types and definitions for placement new and delete.

<typeinfo> Definitions for RTTI.

CrossWorks for ARM Reference Manual C++ Library User Guide

1129

Standard template library
The C++ STL functionality of STLPort is provided as a separate library package use Tools > Package Manager to

install this package.

CrossWorks for ARM Reference Manual C++ Library User Guide

1130

Subset API reference
This section contains a subset reference to the CrossWorks C++ library.

CrossWorks for ARM Reference Manual C++ Library User Guide

1131

<new> - memory allocation
The header file <new> defines functions for memory allocation.

Functions

set_new_handler Establish a function which is called when memory
allocation fails.

Operators

operator delete Heap storage deallocators operator.

operator new Heap storage allocators operator.

CrossWorks for ARM Reference Manual C++ Library User Guide

1132

operator delete

Synopsis

void operator delete(void *ptr) throw();

void operator delete[](void *ptr) throw();

Description

operator delete deallocates space of an object.

operator delete will do nothing if ptr is null. If ptr is not null then it should have been returned from a call to

operator new.

operator delete[] has the same behaviour as operator delete but is used for array deallocation.

Portability

Standard C++.

CrossWorks for ARM Reference Manual C++ Library User Guide

1133

operator new

Synopsis

void *operator new(size_t size) throw();

void *operator new[](size_t size) throw();

Description

operator new allocates space for an object whose size is specified by size and whose value is indeterminate.

operator new returns a null pointer if the space for the object cannot be allocated from free memory; if space for

the object can be allocated, operator new returns a pointer to the start of the allocated space.

operator new[] has the same behaviour as operator new but is used for array allocation.

Portability

The implementation is not standard. The standard C++ implementation should throw an exception if memory

allocation fails.

CrossWorks for ARM Reference Manual C++ Library User Guide

1134

set_new_handler

Synopsis

typedef void (*new_handler)();

new_handler set_new_handler(new_handler) throw();

Description

set_new_handler establishes a new_handler function.

set_new_handler establishes a new_handler function that is called when operator new fails to allocate the

requested memory. If the new_handler function returns then operator new will attempt to allocate the memory

again. The new_handler function can throw an exception to implement standard C++ behaviour for memory

allocation failure.

Portability

Standard C++.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1135

LIBMEM User Guide
The aim of LIBMEM is to provide a common programming interface for a wide range of different memory types.

LIBMEM consists of a mechanism for installing drivers for the different memories and a set of common memory

access and control functions that locate the driver for a particular memory range and call the appropriate

memory driver functions for the operation.

The LIBMEM library also includes a set of memory drivers for common memory devices.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1136

Using the LIBMEM library
Probably the best way to demonstrate LIBMEM is to see it in use. The following example demonstrates copying a

block of data into FLASH using a LIBMEM common flash interface (CFI) driver.

int libmem_example_1(void)
{
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 uint8_t *write_dest = flash1_start + 16;
 const uint8_t write_data[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 int res;

 // Register the FLASH LIBMEM driver
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Unlock the destination memory area.
 res = libmem_unlock(write_dest, sizeof(write_data));
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Erase the destination memory area.
 res = libmem_erase(write_dest, sizeof(write_data), 0, 0);
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Copy write_data to the destination memory area.
 res = libmem_write(write_dest, write_data, sizeof(write_data));
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 // Complete any outstanding transactions and put FLASH memory back into read mode.
 res = libmem_flush();
 if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

 return 1;
}

The following section describes each of the LIBMEM calls in the preceding example in detail.

Before any memory operations can be carried out the LIBMEM drivers that you are going to use must be

registered. The following code registers a LIBMEM CFI driver for a FLASH device located at the memory location

pointed to by flash1_start.

// Register the FLASH LIBMEM driver
res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,

CrossWorks for ARM Reference Manual LIBMEM User Guide

1137

 flash1_max_geometry_regions,
 &flash1_info);
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

This call attempts to detect the type of FLASH and register the correct LIBMEM CFI driver based on the CFI

information read out from the FLASH device. Note that using this function will link in all LIBMEM CFI drivers so

in your own application you may wish to save memory by using libmem_cfi_get_info to get out the FLASH

geometry information and registering a specific CFI driver. You may also save further memory and time by not

calling libmem_cfi_get_info and specifying the FLASH geometry yourself.

For each driver you register you must allocate libmem_driver_handle_t structure to act as a handle for the

driver. Will the full version of LIBMEM you can register as many drivers as you wish, if you are using the light

version of LIBMEM you can only register one driver.

Once you have registered your drivers you can use the general LIBMEM memory functions to access and control

your memory. The starting address passed to these functions is used to decide which driver to use for the

memory operation, operations cannot span multiple drivers.

The next operation the example code carries out it to unlock the FLASH in preparation for the erase and write

operations. Unlocking is not necessary on all memory devices and this operation is not implemented in all

LIBMEM drivers.

// Unlock the destination memory area.
res = libmem_unlock(write_dest, sizeof(write_data));
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Once the memory has been unlocked the FLASH memory is erased. Once again erasing is not necessary on all

memory devices and this operation may not be implemented in all LIBMEM drivers.

// Erase the destination memory area.
res = libmem_erase(write_dest, sizeof(write_data), 0, 0);
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Parameters three and four of libmem_erase are not used in this example, however they provide a mechanism

to allow the caller to determine how much memory was actually erased by the erase operation as it may well be

more than requested.

Once the FLASH memory has been erased the FLASH can be programmed using the libmem_write function.

// Copy write_data to the destination memory area.
res = libmem_write(write_dest, write_data, sizeof(write_data));
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

The final step is to call libmem_flush. Once again flushing is not necessary on all memory devices, but some

LIBMEM drivers do not necessarily carry out operations immediately or they may leave the memory in an

unreadable state for performance reasons and calling libmem_flush is required to flush outstanding operations

and return the device to read mode.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1138

// Complete any outstanding transactions and put FLASH memory back into read mode.
res = libmem_flush();
if (res != LIBMEM_STATUS_SUCCESS)
 return 0;

Typically you would now access the FLASH memory as you would any other memory and read it directly,

LIBMEM does however provide the libmem_read function for accessing memory that is not directly accessibly

by the CPU.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1139

Light version of LIBMEM
LIBMEM is built in two configurations, the full version and the light version. The only difference between the

full and the light versions of LIBMEM is that the light version only supports one installed LIBMEM driver and

is compiled with optimization for code size rather than performance. The light version of LIBMEM is therefore

useful for situations where code memory is at a premium.

To use the light version of LIBMEM you should link in the light version of the library and also have the

preprocessor definition LIBMEM_LIGHT defined when including libmem.h.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1140

Writing LIBMEM drivers
LIBMEM includes a set of memory drivers for common memory devices which means in most cases you probably

won't need to write a LIBMEM driver. If however you wish to use LIBMEM to drive other unsupported memory

devices you will need to write your own LIBMEM driver.

It is fairly straightforward to implement a LIBMEM driver, the following example demonstrates the

implementation of a minimal LIBMEM driver:

#include <libmem.h>

static int
libmem_write_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 // TODO: Implement memory write operation.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_fill_impl(libmem_driver_handle_t *h, uint8_t *dest, uint8_t c, size_t size)
{
 // TODO: Implement memory fill operation.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_erase_impl(libmem_driver_handle_t *h, uint8_t *start, size_t size,
 uint8_t **erase_start, size_t *erase_size)
{
 // TODO: Implement memory erase operation.
 if (erase_start)
 {
 // TODO: Set erase_start to point to the start of the memory block that
 // has been erased. For now we'll just return the requested start in
 // order to keep the caller happy.
 *erase_start = start;
 }
 if (erase_size)
 {
 // TODO: Set erase_size to the size of the memory block that has been
 // erased. For now we'll just return the requested size in order to
 // keep the caller happy.
 *erase_size = size;
 }
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_lock_impl(libmem_driver_handle_t *h, uint8_t *dest, size_t size)
{
 // TODO: Implement memory lock operation
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_unlock_impl(libmem_driver_handle_t *h, uint8_t *dest, size_t size)
{
 // TODO: Implement memory unlock operation.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1141

 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_flush_impl(libmem_driver_handle_t *h)
{
 // TODO: Implement memory flush operation.
 return LIBMEM_STATUS_SUCCESS;
}

static const libmem_driver_functions_t driver_functions =
{
 libmem_write_impl,
 libmem_fill_impl,
 libmem_erase_impl,
 libmem_lock_impl,
 libmem_unlock_impl,
 libmem_flush_impl
};

int
libmem_register_example_driver_1(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, 0, 0, &driver_functions, 0);
 return LIBMEM_STATUS_SUCCESS;
}

For some types of memory it is necessary to carry out operations on a per-sector basis, in this case it can be

useful to register a geometry with the driver and use the geometry helper functions. For example the following

code demonstrates how you might implement a driver that can only erase the entire memory or individual

sectors.

static int
driver_erase_sector(libmem_driver_handle_t *h, libmem_sector_info_t *si)
{
 // TODO: Implement sector erase for sector starting at si->start
 return LIBMEM_STATUS_SUCCESS;
}

static int
driver_erase_chip(libmem_driver_handle_t *h)
{
 // TODO: Implement chip erase
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_erase_impl(libmem_driver_handle_t *h, uint8_t *start, size_t size,
 uint8_t **erase_start, size_t *erase_size)
{
 int res;
 if (LIBMEM_RANGE_WITHIN_RANGE(h->start, h->start + h->size - 1, start, start + size - 1))
 {
 res = driver_erase_chip(h);
 if (erase_start)
 *erase_start = h->start;
 if (erase_size)
 *erase_size = h->size;
 }
 else

CrossWorks for ARM Reference Manual LIBMEM User Guide

1142

 res = libmem_foreach_sector_in_range(h, start, size, driver_erase_sector, erase_start, erase_size);
 return res;
}

static const libmem_geometry_t geometry[] =
{
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 } // NULL terminator
};

int
libmem_register_example_driver_2(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, geometry, 0, &driver_functions, 0);
 return LIBMEM_STATUS_SUCCESS;
}

There are two sets of driver entry point functions, the standard set that include functions common to most

LIBMEM drivers which have been described above and the extended set which provide extra functionality

for less common types of driver. The following example demonstrates how you would also register a set of

extended LIBMEM driver functions in your driver:

static int
libmem_inrange_impl(libmem_driver_handle_t *h, const uint8_t *dest)
{
 // TODO: Implement inrange function (return non-zero if dest is within range
 // handled by driver).
 return 0;
}

static int
libmem_read_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 // TODO: Implement memory read operation
 return LIBMEM_STATUS_SUCCESS;
}

static uint32_t
libmem_crc32_impl(libmem_driver_handle_t *h, const uint8_t *start, size_t size, uint32_t crc)
{
 // TODO: Implement CRC-32 operation.
 return crc;
}

static const libmem_ext_driver_functions_t ext_driver_functions =
{
 libmem_inrange_impl,
 libmem_read_impl,
 libmem_crc32_impl
};

int
libmem_register_example_driver_3(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, geometry, 0, &driver_functions, &ext_driver_functions);
 return LIBMEM_STATUS_SUCCESS;
}

CrossWorks for ARM Reference Manual LIBMEM User Guide

1143

Some types of memory require you to carry out paged writes. The paged write driver helper functions have been

provided to simplify the writing of drivers of this type.

To use these functions, you need to call libmem_driver_paged_write_init supplying a paged write control

block, a page buffer, the page size, a pointer to a function that will carry out the actual page write operation

and the byte alignment of the source data required by the page write function. You can then use the

libmem_driver_paged_write, libmem_driver_paged_write_fill and libmem_driver_paged_write_flush

functions to implement your driver's write, fill and flush functions.

For example, the following code demonstrates how you might implement a driver for a device with a page size

of 256 bytes:

static uint8_t page_buffer[256];
static libmem_driver_paged_write_ctrlblk_t paged_write_ctrlblk;

static int
flash_write_page(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src)
{
 // TODO: Implement function that writes a page of data from src to page
 // starting at dest.
 return LIBMEM_STATUS_SUCCESS;
}

static int
libmem_write_impl(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size)
{
 return libmem_driver_paged_write(h, dest, src, size, &paged_write_ctrlblk);
}

static int
libmem_fill_impl(libmem_driver_handle_t *h, uint8_t *dest, uint8_t c, size_t size)
{
 return libmem_driver_paged_write_fill(h, dest, c, size, &paged_write_ctrlblk);
}

static int
libmem_flush_impl(libmem_driver_handle_t *h)
{
 return libmem_driver_paged_write_flush(h, &paged_write_ctrlblk);
}

int
libmem_register_example_driver_4(libmem_driver_handle_t *h, uint8_t *start, size_t size)
{
 libmem_register_driver(h, start, size, 0, 0, &driver_functions, 0);
 libmem_driver_paged_write_init(&paged_write_ctrlblk,
 page_buffer, sizeof(page_buffer),
 flash_write_page, 4,
 0);
 return LIBMEM_STATUS_SUCCESS;
}

CrossWorks for ARM Reference Manual LIBMEM User Guide

1144

LIBMEM loader library
The aim of the LIBMEM loader library is to be an add on to the LIBMEM library that simplifies the writing of loader

applications.

To write a loader application all you need to do is register the LIBMEM drivers you require and then call the

appropriate loader start function for the communication mechanism you wish to use.

For example, the following code is an example of a LIBMEM loader, it registers one LIBMEM FLASH driver, if the

driver is successfully registered it starts up the loader by calling libmem_rpc_loader_start. Finally it tells the host

that the loader has finished by calling libmem_rpc_loader_exit.

static unsigned char buffer[256];

int main(void)
{
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;

 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
}

Essentially, a LIBMEM loader is just a standard RAM-based application that registers the LIBMEM drivers required

by the loader and then calls the appropriate loader start function for the communication mechanism being

used.

A significant difference between LIBMEM loader applications and regular applications is that once the loader

start function is called it is no longer possible to debug the application using the debugger. Therefore if you

need to debug your loader application using the debugger you can do it by simply adding calls to the functions

you wish to debug in place of the loader start call.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1145

Complete API reference
This section contains a complete reference to the LIBMEM API.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1146

<libmem.h>

API Summary

Utility macros

LIBMEM_ADDRESS_IN_RANGE Determine whether an address is within an address
range

LIBMEM_ADDRESS_IS_ALIGNED Determine whether an address is aligned to a specified
width

LIBMEM_ALIGNED_ADDRESS Return an address aligned to a specified width

LIBMEM_KB Convert kilobytes to bytes

LIBMEM_MB Convert megabytes to bytes

LIBMEM_RANGE_OCCLUDES_RANGE Determine whether an address range overlaps another
address range or vice versa

LIBMEM_RANGE_OVERLAPS_RANGE Determine whether an address range overlaps another
address range

LIBMEM_RANGE_WITHIN_RANGE Determine whether an address range is within another
address range

Return codes

LIBMEM_STATUS_CFI_ERROR Error reading CFI information return code

LIBMEM_STATUS_ERROR Non-specific error return code

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW No room for geometry information return code

LIBMEM_STATUS_INVALID_DEVICE Invalid or mismatched device return code

LIBMEM_STATUS_INVALID_PARAMETER Invalid parameter return code

LIBMEM_STATUS_INVALID_RANGE Invalid range return code

LIBMEM_STATUS_INVALID_WIDTH Invalid or unsupported device width return code

LIBMEM_STATUS_LOCKED Memory locked return code

LIBMEM_STATUS_NOT_IMPLEMENTED Not implemented return code

LIBMEM_STATUS_NO_DRIVER No driver for memory range return code

LIBMEM_STATUS_SUCCESS Successful operation return code

LIBMEM_STATUS_TIMEOUT Timeout error return code

Command set macros

LIBMEM_CFI_CMDSET_AMD_EXTENDED AMD standard command set

LIBMEM_CFI_CMDSET_AMD_STANDARD AMD standard command set

LIBMEM_CFI_CMDSET_INTEL_EXTENDED Intel extended command set

LIBMEM_CFI_CMDSET_INTEL_STANDARD Intel standard command set

CrossWorks for ARM Reference Manual LIBMEM User Guide

1147

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED Mitsubishi extended command set

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD Mitsubishi standard command set

LIBMEM_CFI_CMDSET_NONE Invalid CFI command set

LIBMEM_CFI_CMDSET_RESERVED Reserved command set

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE SST page write command set

LIBMEM_CFI_CMDSET_WINBOND_STANDARD Winbond standard command set

Macros

LIBMEM_VERSION_NUMBER LIBMEM interface version number

Configuration macros

LIBMEM_INLINE Inline definition

Driver helper macros

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITESOption to disable direct writes bypassing page buffer

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOADOption to disable paged write data pre-loading

Data types

_libmem_driver_functions_t Structure containing pointers to a LIBMEM driver's
functions

_libmem_driver_handle_t LIBMEM driver handle structure

_libmem_driver_paged_write_ctrlblk_t Paged write control block

_libmem_ext_driver_functions_t Structure containing pointers to a LIBMEM driver's
extended functions

_libmem_flash_info_t Structure containing information about a specific
FLASH chip

_libmem_geometry_t Structure describing a geometry region

_libmem_sector_info_t Structure describing a sector

Static data

libmem_busy_handler_fn Pointer to a function that should be called each time
LIBMEM iterates a busy loop

libmem_drivers Pointer to the first registered LIBMEM driver

libmem_get_ticks_fn Pointer to a function that returns the current timer tick
count

libmem_ticks_per_second How fast the tick increments

Function pointers

libmem_busy_handler_fn_t A pointer to a function to be called each time LIBMEM
iterates a busy loop

libmem_driver_crc32_fn_t A function pointer to a LIBMEM driver's crc32 extended
function

libmem_driver_erase_fn_t A function pointer to a LIBMEM driver's erase function

CrossWorks for ARM Reference Manual LIBMEM User Guide

1148

libmem_driver_fill_fn_t A function pointer to a LIBMEM driver's fill function

libmem_driver_flush_fn_t A function pointer to a LIBMEM driver's flush function

libmem_driver_inrange_fn_t A function pointer to a LIBMEM driver's inrange
extended function

libmem_driver_lock_fn_t A function pointer to a LIBMEM driver's lock function

libmem_driver_page_write_fn_t A function pointer to a function implementing a paged
write operation

libmem_driver_read_fn_t A function pointer to a LIBMEM driver's read extended
function

libmem_driver_unlock_fn_t A function pointer to a LIBMEM driver's unlock
function

libmem_driver_write_fn_t A function pointer to a LIBMEM driver's write function

libmem_foreach_driver_fn_t A function pointer to a function handling a
libmem_foreach_driver call

libmem_foreach_sector_fn_t A function pointer to a function
handling a libmem_foreach_sector or
libmem_foreach_sector_in_range call

libmem_get_ticks_fn_t A pointer to a function returning the current timer tick
count

Functions

libmem_cfi_get_info Return a FLASH memory device's common flash
interface (CFI) information

libmem_crc32 Compute CRC-32 checksum

libmem_crc32_direct Compute CRC-32 checksum of an address range

libmem_enable_timeouts Enable LIBMEM operation timeouts

libmem_erase Erase a block of memory using a LIBMEM driver

libmem_erase_all Erase all memory using LIBMEM drivers

libmem_fill Fill memory with a specific data value using a LIBMEM
driver

libmem_flush Flush any outstanding memory operations and return
memory to read mode if applicable

libmem_foreach_driver Iterate through all drivers

libmem_foreach_sector Iterate through all sectors of a driver

libmem_foreach_sector_in_range Iterate through subset of sectors of a driver

libmem_foreach_sector_in_range_ex A helper function for iterating through all sectors in a
specified geometry that are within a specific address
range

libmem_get_driver Look up driver for address

CrossWorks for ARM Reference Manual LIBMEM User Guide

1149

libmem_get_driver_sector_size A helper function that locates the driver for a specific
address and then returns the sector size for that
address using the driver's geometry

libmem_get_geometry_size A helper function that returns the size of the address
range described by a geometry description

libmem_get_number_of_regions A helper function that returns the number of geometry
regions described by a geometry description

libmem_get_number_of_sectors A helper function that returns the number of sectors
described by a geometry description

libmem_get_sector_info A helper function that returns the sector information
for an address within a specified geometry

libmem_get_sector_number A helper function that returns the sector number of an
address within a specified geometry

libmem_get_sector_size A helper function that returns the sector size for an
address within a specified geometry

libmem_get_ticks Helper function that returns the current timer tick
count

libmem_lock Lock a block of memory using a LIBMEM driver

libmem_lock_all Lock all memory using LIBMEM drivers

libmem_read Read a block of data using a LIBMEM driver

libmem_register_driver Register a LIBMEM driver instance

libmem_set_busy_handler Specify busy loop function

libmem_unlock Unlock a block of memory using a LIBMEM driver

libmem_unlock_all Unlock all memory using LIBMEM drivers

libmem_write Write a block of data using a LIBMEM driver

Driver helper functions

libmem_driver_paged_write A driver helper function that implements a paged
write operation

libmem_driver_paged_write_fill A driver helper function that implements a paged
write fill operation

libmem_driver_paged_write_flush A driver helper function that implements a paged
write flush operation

libmem_driver_paged_write_init A driver helper function that initializes the paged write
control bock

Generic FLASH drivers

libmem_register_cfi_0001_16_driver Register a 16-bit CFI command set 1 (Intel Extended)
LIBMEM driver

libmem_register_cfi_0001_8_driver Register an 8-bit CFI command set 1 (Intel Extended)
LIBMEM driver

CrossWorks for ARM Reference Manual LIBMEM User Guide

1150

libmem_register_cfi_0002_16_driver Register a 16-bit CFI command set 2 (AMD Standard)
LIBMEM driver

libmem_register_cfi_0002_8_driver Register an 8 bit CFI command set 2 (AMD Standard)
LIBMEM driver

libmem_register_cfi_0003_16_driver Register a 16-bit CFI command set 3 (Intel Standard)
LIBMEM driver

libmem_register_cfi_0003_8_driver Register an 8-bit CFI command set 3 (Intel Standard)
LIBMEM driver

libmem_register_cfi_amd_driver Register a multi-width CFI command set 2 (AMD)
LIBMEM driver

libmem_register_cfi_driver Register a FLASH driver based on detected CFI
information

libmem_register_cfi_intel_driver Register a combined multi-width CFI command set 1
and 3 (Intel) LIBMEM driver

FLASH drivers

libmem_register_am29f200b_driver Register a driver for an AMD Am29F200B FLASH chip

libmem_register_am29f200t_driver Register a driver for an AMD Am29F200T FLASH chip

libmem_register_am29f400bb_driver Register a driver for an AMD Am29F400BB FLASH chip

libmem_register_am29f400bt_driver Register a driver for an AMD Am29F400BT FLASH chip

libmem_register_am29fxxx_driver Register a driver for an AMD Am29Fxxx FLASH chip

libmem_register_am29lv010b_driver Register a driver for an AMD Am29LV010B FLASH chip

libmem_register_sst39xFx00A_16_driver Register a driver for a 16-bit SST39xFx00A FLASH chip

libmem_register_st_m28w320cb_driver Register a driver for an ST M28W320CB FLASH chip

libmem_register_st_m28w320ct_driver Register a driver for an ST M28W320CT FLASH chip

RAM drivers

libmem_register_ram_driver Register a simple driver that directly accesses RAM

CrossWorks for ARM Reference Manual LIBMEM User Guide

1151

LIBMEM_ADDRESS_IN_RANGE

Synopsis

#define LIBMEM_ADDRESS_IN_RANGE(address, startAddress, endAddress) ((address >= startAddress) && (address <= endAddress))

Description

LIBMEM_ADDRESS_IN_RANGE is used to determine whether an address is within an address range.

address The address to check.

startAddress The start address of the address range.

endAddress The end address of the address range.

LIBMEM_ADDRESS_IN_RANGE returns Non-zero if address is within address range.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1152

LIBMEM_ADDRESS_IS_ALIGNED

Synopsis

#define LIBMEM_ADDRESS_IS_ALIGNED(address, width) \
 ((((uint32_t)address) & ((width) - 1)) == 0)

Description

LIBMEM_ADDRESS_IS_ALIGNED is used to determine whether an address is aligned to a specified width.

address The address to check alignment of.

width The alignment width.

LIBMEM_ADDRESS_IS_ALIGNED returns Non-zero if address is aligned.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1153

LIBMEM_ALIGNED_ADDRESS

Synopsis

#define LIBMEM_ALIGNED_ADDRESS(address, width) \
 ((uint8_t *)(((uint32_t)address) & (~((width) - 1))))

Description

LIBMEM_ALIGNED_ADDRESS returns an address aligned to a specified width.

address The address to align.

width The alignment width.

LIBMEM_ALIGNED_ADDRESS returns The aligned address.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1154

LIBMEM_CFI_CMDSET_AMD_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_AMD_EXTENDED (0x0004)

Description

A definition representing the CFI command set number for the AMD extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1155

LIBMEM_CFI_CMDSET_AMD_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_AMD_STANDARD (0x0002)

Description

A definition representing the CFI command set number for the AMD standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1156

LIBMEM_CFI_CMDSET_INTEL_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_INTEL_EXTENDED (0x0001)

Description

A definition representing the CFI command set number for the Intel extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1157

LIBMEM_CFI_CMDSET_INTEL_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_INTEL_STANDARD (0x0003)

Description

A definition representing the CFI command set number for the Intel standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1158

LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED

Synopsis

#define LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED (0x0101)

Description

A definition representing the CFI command set number for the Mitsubishi extended command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1159

LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD (0x0100)

Description

A definition representing the CFI command set number for the Mitsubishi standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1160

LIBMEM_CFI_CMDSET_NONE

Synopsis

#define LIBMEM_CFI_CMDSET_NONE (0x0000)

Description

A definition representing an invalid CFI command set number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1161

LIBMEM_CFI_CMDSET_RESERVED

Synopsis

#define LIBMEM_CFI_CMDSET_RESERVED (0xFFFF)

Description

A definition representing the reserved CFI command set number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1162

LIBMEM_CFI_CMDSET_SST_PAGE_WRITE

Synopsis

#define LIBMEM_CFI_CMDSET_SST_PAGE_WRITE (0x0102)

Description

A definition representing the CFI command set number for the SST page write command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1163

LIBMEM_CFI_CMDSET_WINBOND_STANDARD

Synopsis

#define LIBMEM_CFI_CMDSET_WINBOND_STANDARD (0x0006)

Description

A definition representing the CFI command set number for the Winbond standard command set.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1164

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES

Synopsis

#define LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES (1 << 1)

Description

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES disables direct writes bypassing page

buffer.

This option can be passed to libmem_driver_paged_write_init to stop the libmem_driver_paged_write

function carrying out direct writes bypassing the page buffer when it is possible to do so. This should be used if

the source data for the write page function must be in RAM.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1165

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD

Synopsis

#define LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD (1 << 0)

Description

LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD disables paged write data pre-loading.

This option can be passed to libmem_driver_paged_write_init to disable pre-loads to the page buffer when

switching to a new page. The pre-load is required if you want the driver to support arbitrary writes without

corrupting existing data, however it may not be supported by all hardware.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1166

LIBMEM_INLINE

Synopsis

#define LIBMEM_INLINE inline

Description

This definition contains the inline keyword if function inlining should be used. This definition is empty for the

LIBMEM_LIGHT build.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1167

LIBMEM_KB

Synopsis

#define LIBMEM_KB(X) ((X)*1024)

Description

LIBMEM_KB converts kilobytes to bytes, e.g. LIBMEM_KB(10) = 10*1024.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1168

LIBMEM_MB

Synopsis

#define LIBMEM_MB(X) (LIBMEM_KB(X)*1024)

Description

LIBMEM_MB converts megabytes to bytes, e.g. LIBMEM_MB(10) = 10*1024*1024.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1169

LIBMEM_RANGE_OCCLUDES_RANGE

Synopsis

#define LIBMEM_RANGE_OCCLUDES_RANGE(r1StartAddress, r1EndAddress, r2StartAddress, r2EndAddress) (LIBMEM_RANGE_OVERLAPS_RANGE(r1StartAddress, r1EndAddress, r2StartAddress, r2EndAddress) || LIBMEM_RANGE_OVERLAPS_RANGE(r2StartAddress, r2EndAddress, r1StartAddress, r1EndAddress))

Description

LIBMEM_RANGE_OCCLUDES_RANGE is used to determine whether address range 1 overlaps address range 2 or

vice versa.

r1StartAddress The start address of address range 1.

r1EndAddress The end address of address range 1.

r2StartAddress The start address of address range 2.

r2EndAddress The end address of address range 2.

LIBMEM_RANGE_OCCLUDES_RANGE returns Non-zero if address range 1 overlaps address range 2 or address

range 2 overlaps address range 1.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1170

LIBMEM_RANGE_OVERLAPS_RANGE

Synopsis

#define LIBMEM_RANGE_OVERLAPS_RANGE(r1StartAddress, r1EndAddress, r2StartAddress, r2EndAddress) (LIBMEM_ADDRESS_IN_RANGE(r1StartAddress, r2StartAddress, r2EndAddress) || LIBMEM_ADDRESS_IN_RANGE(r1EndAddress, r2StartAddress, r2EndAddress))

Description

LIBMEM_RANGE_OVERLAPS_RANGE is used to determine whether address range 1 overlaps address range 2.

r1StartAddress The start address of address range 1.

r1EndAddress The end address of address range 1.

r2StartAddress The start address of address range 2.

r2EndAddress The end address of address range 2.

LIBMEM_RANGE_OVERLAPS_RANGE returns Non-zero if address range 1 overlaps address range 2.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1171

LIBMEM_RANGE_WITHIN_RANGE

Synopsis

#define LIBMEM_RANGE_WITHIN_RANGE(r1StartAddress, r1EndAddress, r2StartAddress, r2EndAddress) (LIBMEM_ADDRESS_IN_RANGE(r1StartAddress, r2StartAddress, r2EndAddress) && LIBMEM_ADDRESS_IN_RANGE(r1EndAddress, r2StartAddress, r2EndAddress))

Description

LIBMEM_RANGE_WITHIN_RANGE is used to determine whether address range 1 is within address range 2.

r1StartAddress The start address of address range 1.

r1EndAddress The end address of address range 1.

r2StartAddress The start address of address range 2.

r2EndAddress The end address of address range 2.

LIBMEM_RANGE_WITHIN_RANGE returns Non-zero if address range 1 is within address range 2.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1172

LIBMEM_STATUS_CFI_ERROR

Synopsis

#define LIBMEM_STATUS_CFI_ERROR (-6)

Description

Status result returned from LIBMEM functions indicating that an error has been detected reading out the CFI

information.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1173

LIBMEM_STATUS_ERROR

Synopsis

#define LIBMEM_STATUS_ERROR (0)

Description

Status result returned from LIBMEM functions indicating a non-specific error.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1174

LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW

Synopsis

#define LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW (-4)

Description

Status result returned from LIBMEM functions indicating that there is not enough room to store all the geometry

region information.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1175

LIBMEM_STATUS_INVALID_DEVICE

Synopsis

#define LIBMEM_STATUS_INVALID_DEVICE (-10)

Description

Status result returned from LIBMEM functions indicating that the driver has determined that the expected and

actual device IDs do not match.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1176

LIBMEM_STATUS_INVALID_PARAMETER

Synopsis

#define LIBMEM_STATUS_INVALID_PARAMETER (-8)

Description

Status result returned from LIBMEM functions indicating that an invalid parameter has been passed to the

function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1177

LIBMEM_STATUS_INVALID_RANGE

Synopsis

#define LIBMEM_STATUS_INVALID_RANGE (-7)

Description

Status result returned from LIBMEM functions indicating that an invalid address range has been passed to the

function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1178

LIBMEM_STATUS_INVALID_WIDTH

Synopsis

#define LIBMEM_STATUS_INVALID_WIDTH (-9)

Description

Status result returned from LIBMEM functions indicating that an invalid or unsupported device width has been

passed to the function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1179

LIBMEM_STATUS_LOCKED

Synopsis

#define LIBMEM_STATUS_LOCKED (-2)

Description

Status result returned from LIBMEM functions indicating that the operation could not be completed because the

memory is locked.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1180

LIBMEM_STATUS_NOT_IMPLEMENTED

Synopsis

#define LIBMEM_STATUS_NOT_IMPLEMENTED (-3)

Description

Status result returned from LIBMEM functions indicating that the operation being carried out has not been

implemented in the LIBMEM driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1181

LIBMEM_STATUS_NO_DRIVER

Synopsis

#define LIBMEM_STATUS_NO_DRIVER (-5)

Description

Status result returned from LIBMEM functions indicating that no driver has been installed for the region of

memory being used.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1182

LIBMEM_STATUS_SUCCESS

Synopsis

#define LIBMEM_STATUS_SUCCESS (1)

Description

Status result returned from LIBMEM functions indicating success.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1183

LIBMEM_STATUS_TIMEOUT

Synopsis

#define LIBMEM_STATUS_TIMEOUT (-1)

Description

Status result returned from LIBMEM functions indicating that the operation has timed out.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1184

LIBMEM_VERSION_NUMBER

Synopsis

#define LIBMEM_VERSION_NUMBER 4

Description

The LIBMEM interface version number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1185

_libmem_driver_functions_t

Synopsis

typedef struct {
 libmem_driver_write_fn_t write;
 libmem_driver_fill_fn_t fill;
 libmem_driver_erase_fn_t erase;
 libmem_driver_lock_fn_t lock;
 libmem_driver_unlock_fn_t unlock;
 libmem_driver_flush_fn_t flush;
} _libmem_driver_functions_t;

Description

_libmem_driver_functions_t is a structure containing pointers to a LIBMEM driver's functions.

Member Description

write A pointer to a LIBMEM driver's write function

fill A pointer to a LIBMEM driver's fill function

erase A pointer to a LIBMEM driver's erase function

lock A pointer to a LIBMEM driver's lock function

unlock A pointer to a LIBMEM driver's unlock function

flush A pointer to a LIBMEM driver's flush function

CrossWorks for ARM Reference Manual LIBMEM User Guide

1186

_libmem_driver_handle_t

Synopsis

typedef struct {
 libmem_driver_handle_t *next;
 const libmem_driver_functions_t *driver_functions;
 const libmem_ext_driver_functions_t *ext_driver_functions;
 uint8_t *start;
 size_t size;
 const libmem_geometry_t *geometry;
 const libmem_flash_info_t *flash_info;
 uint32_t driver_data;
 uint32_t user_data;
} _libmem_driver_handle_t;

Description

_libmem_driver_handle_t contains information on a particular driver's entry point functions, the address range

the driver is responsible for and optionally the geometry and device specific information of the memory.

Member Description

next The next LIBMEM driver in list of drivers

driver_functions A pointer to the structure describing the LIBMEM
driver's functions

ext_driver_functions A pointer to the structure describing the LIBMEM
driver's extended functions

start A pointer to the start of the address range handled by
the LIBMEM driver

size The size of address range handled by the LIBMEM
driver in bytes

geometry A pointer to a null-terminated geometry description
list

flash_info A pointer to the FLASH information structure

driver_data A data word available for storing driver information

user_data A data word available for storing user information

CrossWorks for ARM Reference Manual LIBMEM User Guide

1187

_libmem_driver_paged_write_ctrlblk_t

Synopsis

typedef struct {
 uint8_t *page_buffer;
 size_t page_size;
 uint32_t page_mask;
 libmem_driver_page_write_fn_t page_write_fn;
 uint32_t page_write_src_alignment;
 uint32_t options;
 uint8_t *current_page;
} _libmem_driver_paged_write_ctrlblk_t;

Description

_libmem_driver_paged_write_ctrlblk_t is a structure describing the paged write helper functions control bock.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1188

_libmem_ext_driver_functions_t

Synopsis

typedef struct {
 libmem_driver_inrange_fn_t inrange;
 libmem_driver_read_fn_t read;
 libmem_driver_crc32_fn_t crc32;
} _libmem_ext_driver_functions_t;

Description

_libmem_ext_driver_functions_t is a structure containing pointers to a LIBMEM driver's extended functions.

Member Description

inrange A pointer to a LIBMEM driver's inrange function

read A pointer to a LIBMEM driver's read function

crc32 A pointer to a LIBMEM driver's crc32 function

CrossWorks for ARM Reference Manual LIBMEM User Guide

1189

_libmem_flash_info_t

Synopsis

typedef struct {
 uint32_t write_timeout_ticks;
 uint32_t multi_write_timeout_ticks;
 uint32_t erase_sector_timeout_ticks;
 uint32_t erase_chip_timeout_ticks;
 uint32_t max_multi_program_bytes;
 uint16_t primary_cmdset;
 uint8_t width;
 uint8_t pairing;
} _libmem_flash_info_t;

Description

_libmem_flash_info_t is a structure containing information about a specific FLASH chip.

Member Description

write_timeout_ticks
The maximum number of ticks it should take for a
write operation to complete

multi_write_timeout_ticks The maximum number of ticks it should take for a
multi-byte write operation to complete

erase_sector_timeout_ticks The maximum number of ticks it should take for a
sector erase operation to complete

erase_chip_timeout_ticks The maximum number of ticks it should take for a chip
erase operation to complete

max_multi_program_bytes The maximum number of bytes that can be
programmed in a multi-program operation

primary_cmdset The FLASH chip's primary CFI command set

width The operating width of the FLASH chip in bytes

pairing Non-zero if using a paired FLASH configuration

CrossWorks for ARM Reference Manual LIBMEM User Guide

1190

_libmem_geometry_t

Synopsis

typedef struct {
 unsigned int count;
 size_t size;
} _libmem_geometry_t;

Description

_libmem_geometry_t describes a geometry region.

A geometry description can be made up of one or more geometry regions. A geometry region is a collection of

equal-size sectors.

Member Description

count
The number of equal-sized sectors in the geometry
region

size The size of the sector

CrossWorks for ARM Reference Manual LIBMEM User Guide

1191

_libmem_sector_info_t

Synopsis

typedef struct {
 int number;
 uint8_t *start;
 size_t size;
} _libmem_sector_info_t;

Description

_libmem_sector_info_t is a structure describing a sector.

Member Description

number
The sector number (sectors in a geometry are
numbered in order from zero)

start The start address of the sector

size The size of the sector

CrossWorks for ARM Reference Manual LIBMEM User Guide

1192

libmem_busy_handler_fn

Synopsis

libmem_busy_handler_fn_t libmem_busy_handler_fn;

Description

libmem_busy_handler_fn is a pointer to a function that should be called each time LIBMEM iterates a busy

loop.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1193

libmem_busy_handler_fn_t

Synopsis

typedef void (*libmem_busy_handler_fn_t)(void);

Description

libmem_busy_handler_fn_t is a pointer to a function to be called each time LIBMEM iterates a busy loop.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1194

libmem_cfi_get_info

Synopsis

int libmem_cfi_get_info(uint8_t *start,
 size_t *size,
 libmem_geometry_t *geometry,
 int max_geometry_regions,
 libmem_flash_info_t *flash_info);

Description

libmem_cfi_get_info returns a FLASH memory device's common flash interface (CFI) information.

start The start address of the FLASH memory.

size A pointer to the memory location to store the size (in bytes) of the FLASH memory.

geometry A pointer to the memory location to store the geometry description or NULL if not required.

max_geometry_regions The maximum number of geometry regions that can be stored at the memory pointed

to by geometry. The geometry description is NULL terminated so max_geometry_regions must be at least two

regions in size in order to store one geometry region and one terminator entry.

flash_info A pointer to the memory location to store the remaining FLASH information, or NULL if not required.

libmem_cfi_get_info returns The LIBMEM status result.

This function attempts to return the FLASH device's type, size, geometry and other FLASH information from only

a pointer to the first address the FLASH memory is located at. It uses the common flash memory interface (CFI) to

obtain this information and therefore only works on FLASH devices that fully support this interface.

Example:

uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_flash_info_t flash1_info;
const int flash1_max_geometry_regions = 4;
libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
size_t flash1_size;
int res;

res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_cfi_get_info : success\n");
else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1195

libmem_crc32

Synopsis

uint32_t libmem_crc32(const uint8_t *start,
 size_t size,
 uint32_t crc);

Description

libmem_crc32 computes the CRC-32 checksum of an address range using a LIBMEM driver.

start A pointer to the start of the address range.

size The size of the address range in bytes.

crc The initial CRC-32 value.

libmem_crc32 returns The computed CRC-32 value.

This function locates the LIBMEM driver for the address pointed to by start, then calls the LIBMEM driver's crc32

extended function if it has one and returns the result. If the driver hasn't implemented the crc32 extended

function then the libmem_crc32_direct function is called which accesses the memory directly. The intention

for this function is to allow you to use the LIBMEM library for memory that doesn't appear on the address bus by

providing a virtual address range for the device.

Example:

uint32_t crc = 0xFFFFFFFF;

crc = libmem_crc32((uint8_t *)0x10000000, 1024, crc);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1196

libmem_crc32_direct

Synopsis

uint32_t libmem_crc32_direct(const uint8_t *start,
 size_t size,
 uint32_t crc);

Description

libmem_crc32_direct computes the CRC-32 checksum of an address range.

start A pointer to the start of the address range.

size The size of the address range in bytes.

crc The initial CRC-32 value.

libmem_crc32_direct returns The computed CRC-32 value.

This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial

(0x04C11DB7). Note that this implementation doesn't reflect the input or the output and the result is not

inverted.

Example:

uint32_t crc = 0xFFFFFFFF;

crc = libmem_crc32_direct((uint8_t *)0x10000000, 1024, crc);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1197

libmem_driver_crc32_fn_t

Synopsis

typedef uint32_t (*libmem_driver_crc32_fn_t)
(libmem_driver_handle_t *h, const uint8_t *start, size_t size, uint32_t crc);

Description

libmem_driver_crc32_fn_t is a function pointer to a LIBMEM driver's crc32 extended function.

h A pointer to the handle of the LIBMEM driver.

start A pointer to the start of the address range.

size The size of the address range in bytes.

crc The initial CRC-32 value.

libmem_driver_crc32_fn_t returns The computed CRC-32 value.

The driver's crc function is an optional extended function. It has been provided to allow you to write a driver for

memory that is not memory mapped.

Typically memory read operations will be direct memory mapped operations however implementing a driver's

crc function allows you to carry out a crc32 operation on non-memory mapped memory through the LIBMEM

interface.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1198

libmem_driver_erase_fn_t

Synopsis

typedef int (*libmem_driver_erase_fn_t)
(libmem_driver_handle_t *h, uint8_t *start, size_t size, uint8_t ** erase_start, size_t *erase_size);

Description

libmem_driver_erase_fn_t is a function pointer to a LIBMEM driver's erase function.

h A pointer to the handle of the LIBMEM driver.

start A pointer to the initial memory address in memory range handled by driver to erase.

size The number of bytes to erase.

erase_start A pointer to a location in memory to store a pointer to the start of the memory range that has

actually been erased or NULL if not required.

erase_size A pointer to a location in memory to store the size in bytes of the memory range that has actually

been erased or NULL if not required.

libmem_driver_erase_fn_t returns The LIBMEM status result.

The driver's erase function should erase size bytes of the memory range handled by the LIBMEM driver pointed

to by start.

There is no specific module or chip erase driver entry point, it is up to the driver to decide how best to erase

the memory based on the supplied address range. If the application needs to know what memory was actually

erased it can use the erase_start and erase_size parameters.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS and if the erase_start or

erase_size parameters are supplied they should be assigned with the values of start and size.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1199

libmem_driver_fill_fn_t

Synopsis

typedef int (*libmem_driver_fill_fn_t)
(libmem_driver_handle_t *h, uint8_t *dest, uint8_t c, size_t size);

Description

libmem_driver_fill_fn_t is a function pointer to a LIBMEM driver's fill function.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the memory address in memory range handled by driver to write data to.

c The data byte to write.

size The number of bytes to write.

libmem_driver_fill_fn_t returns The LIBMEM status result.

The driver's fill function writes size bytes of value to the memory address handled by the LIBMEM driver

pointed to by dest.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1200

libmem_driver_flush_fn_t

Synopsis

typedef int (*libmem_driver_flush_fn_t)(libmem_driver_handle_t *h);

Description

libmem_driver_flush_fn_t is a function pointer to a LIBMEM driver's flush function.

h A pointer to the handle of the LIBMEM driver.

libmem_driver_flush_fn_t returns The LIBMEM status result.

The driver's flush function should complete any outstanding memory operations (if any) and return the memory

to read mode.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1201

libmem_driver_inrange_fn_t

Synopsis

typedef int (*libmem_driver_inrange_fn_t)(libmem_driver_handle_t *h, const uint8_t *dest);

Description

libmem_driver_inrange_fn_t is a function pointer to a LIBMEM driver's inrange extended function.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to then memory location being tested.

libmem_driver_inrange_fn_t returns The LIBMEM status result.

The driver's inrange function is an optional extended function. It has been provided to allow the driver to

indicate if it handles a more complex memory range than the single range described by the start and size

libmem_driver_handle_t fields, for example if the memory has been aliased over a number of memory ranges.

The function should return non-zero if the address pointed to by dest is handled by the driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1202

libmem_driver_lock_fn_t

Synopsis

typedef int (*libmem_driver_lock_fn_t)
(libmem_driver_handle_t *h, uint8_t *start, size_t size);

Description

libmem_driver_lock_fn_t is a function pointer to a LIBMEM driver's lock function.

h A pointer to the handle of the LIBMEM driver.

start A pointer to the initial memory address in memory range handled by driver to lock.

size The number of bytes to lock.

libmem_driver_lock_fn_t returns The LIBMEM status result.

The driver's lock function should lock size bytes of the memory range handled by the LIBMEM driver pointed to

by start.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1203

libmem_driver_page_write_fn_t

Synopsis

typedef int (*libmem_driver_page_write_fn_t)
(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src);

Description

libmem_driver_page_write_fn_t is a function pointer to a function implementing a paged write operation.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the start address of the page to write to.

src A pointer to the address to copy the page data from.

libmem_driver_page_write_fn_t returns The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_driver_paged_write or

libmem_driver_paged_write_fill functions will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1204

libmem_driver_paged_write

Synopsis

int libmem_driver_paged_write(libmem_driver_handle_t *h,
 uint8_t *dest,
 const uint8_t *src,
 size_t size,
 libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk);

Description

libmem_driver_paged_write is a driver helper function that implements a paged write operation.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the address to write the block of data.

src A pointer to the address to copy the block of data from.

size The size of the block of data to copy in bytes.

paged_write_ctrlblk A pointer to the paged write control block.

libmem_driver_paged_write returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1205

libmem_driver_paged_write_fill

Synopsis

int libmem_driver_paged_write_fill(libmem_driver_handle_t *h,
 uint8_t *dest,
 uint8_t c,
 size_t size,

 libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk);

Description

libmem_driver_paged_write_fill is a driver helper function that implements a paged write fill operation.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the address to write the block of data.

c The data value to fill the memory with.

size The number of bytes to write.

paged_write_ctrlblk A pointer to the paged write control block.

libmem_driver_paged_write_fill returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1206

libmem_driver_paged_write_flush

Synopsis

int libmem_driver_paged_write_flush(libmem_driver_handle_t *h,

 libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk);

Description

libmem_driver_paged_write_flush is a driver helper function that implements a paged write flush operation.

h A pointer to the handle of the LIBMEM driver.

paged_write_ctrlblk A pointer to the paged write control block.

libmem_driver_paged_write_flush returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1207

libmem_driver_paged_write_init

Synopsis

int libmem_driver_paged_write_init(libmem_driver_paged_write_ctrlblk_t *paged_write_ctrlblk,
 uint8_t *page_buffer,
 size_t page_size,
 libmem_driver_page_write_fn_t page_write_fn,
 uint32_t page_write_src_alignment,
 uint32_t options);

Description

libmem_driver_paged_write_init is a driver helper function that initializes the paged write control bock.

paged_write_ctrlblk A pointer to the paged write control block.

page_buffer A pointer to the page buffer to use for paged write operations.

page_size The page size, this value must be equal to the size of the buffer pointed to by page_buffer.

page_write_fn A pointer to a function that carries out the page write operation.

page_write_src_alignment The byte alignment of source data required by the page write function when

bypassing the page buffer. Set this to zero if the write function only supports writes directly from the page

buffer.

options Paged write configuration options.

libmem_driver_paged_write_init returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1208

libmem_driver_read_fn_t

Synopsis

typedef int (*libmem_driver_read_fn_t)
(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size);

Description

libmem_driver_read_fn_t is a function pointer to a LIBMEM driver's read extended function.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the initial memory address to write data to.

src A pointer to the initial memory address in the memory range handled by the driver to read data from.

size The number of bytes to write.

libmem_driver_read_fn_t returns The LIBMEM status result.

The driver's read function is an optional extended function. It has been provided to allow you to write a driver

for memory that is not memory mapped.

Typically memory read operations will be direct memory mapped operations however implementing a driver's

read function allows you to access non-memory mapped memory through the LIBMEM interface.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1209

libmem_driver_unlock_fn_t

Synopsis

typedef int (*libmem_driver_unlock_fn_t)
(libmem_driver_handle_t *h, uint8_t *start, size_t size);

Description

libmem_driver_unlock_fn_t is a function pointer to a LIBMEM driver's unlock function.

h A pointer to the handle of the LIBMEM driver.

start A pointer to the initial memory address in memory range handled by driver to unlock.

size The number of bytes to unlock.

libmem_driver_unlock_fn_t returns The LIBMEM status result.

The driver's unlock function should unlock size bytes of the memory range handled by the LIBMEM driver

pointed to by start.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1210

libmem_driver_write_fn_t

Synopsis

typedef int (*libmem_driver_write_fn_t)
(libmem_driver_handle_t *h, uint8_t *dest, const uint8_t *src, size_t size);

Description

libmem_driver_write_fn_t is a function pointer to a LIBMEM driver's write function.

h A pointer to the handle of the LIBMEM driver.

dest A pointer to the memory address in memory range handled by driver to write data to.

src A pointer to the memory address to read data from.

size The number of bytes to write.

libmem_driver_write_fn_t returns The LIBMEM status result.

The driver's write function copies data from the memory address pointed to by src to the memory address

handled by the LIBMEM driver pointed to by dest.

If this operation is not required the function should return LIBMEM_STATUS_SUCCESS.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1211

libmem_drivers

Synopsis

libmem_driver_handle_t *libmem_drivers;

Description

libmem_drivers is a pointer to the first registered LIBMEM driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1212

libmem_enable_timeouts

Synopsis

void libmem_enable_timeouts(libmem_get_ticks_fn_t get_ticks_fn,
 uint32_t ticks_per_second);

Description

libmem_enable_timeouts enables LIBMEM operation timeouts.

get_ticks_fn A pointer to a function that returns an incrementing tick count.

ticks_per_second The amount the value returned by the get_ticks_fn increments per second.

In order for operations to timeout the LIBMEM library needs a function that can supply a timer tick count and

also needs to know the frequency the timer increments.

This function should be called prior to registering LIBMEM drivers as the ticks_per_second parameter can be

used to pre-compute timeout periods when the driver is registered.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1213

libmem_erase

Synopsis

int libmem_erase(uint8_t *start,
 size_t size,
 uint8_t **erase_start,
 size_t *erase_size);

Description

libmem_erase erases a block of memory using a LIBMEM driver.

start A pointer to the start address of the memory range to erase.

size The size of the memory range to erase in bytes.

erase_start A pointer to a location in memory to store a pointer to the start of the memory range that has

actually been erased or NULL if not required.

erase_size A pointer to a location in memory to store the size in bytes of the memory range that has actually

been erased or NULL if not required.

libmem_erase returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

erase function.

Note that the address range being erased cannot span multiple LIBMEM drivers.

Example:

uint8_t *erase_start;
size_t erase_size;
int res;

res = libmem_erase((uint8_t *)0x10000000, 1024, &erase_start, &erase_size);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_erase : success (erased %08X - 0x
%08X)\n", erase_start, erase_start + erase_size - 1);
else
 printf("libmem_erase : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1214

libmem_erase_all

Synopsis

int libmem_erase_all(void);

Description

libmem_erase_all erases all memory using LIBMEM drivers.

libmem_erase_all returns The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's erase function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's erase functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

int res;

res = libmem_erase_all();

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_erase_all : success\n");
else
 printf("libmem_erase_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1215

libmem_fill

Synopsis

int libmem_fill(uint8_t *dest,
 uint8_t c,
 size_t size);

Description

libmem_fill fills memory with a specific data value using a LIBMEM driver.

dest A pointer to the address to write the data.

c The data value to fill the memory with.

size The number of bytes to write.

libmem_fill returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by dest and then calls the LIBMEM driver's fill

function.

Note that the address range being written to cannot span multiple LIBMEM drivers.

Example:

int res;

res = libmem_fill((uint8_t *)0x10000000, 0xCC, 64);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_fill : success\n");
else
 printf("libmem_fill : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1216

libmem_flush

Synopsis

int libmem_flush(void);

Description

libmem_flush flushes any outstanding memory operations and returns memory to read mode if applicable.

libmem_flush returns The LIBMEM status result.

LIBMEM drivers do not necessarily carry out operations immediately or they may leave the memory in an

unreadable state for performance reasons. You should call libmem_flush once you have finished carrying out

memory operations in order to complete all outstanding transactions and return the memory to a readable

state.

Example:

int res;

res = libmem_flush();

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_flush : success\n");
else
 printf("libmem_flush : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1217

libmem_foreach_driver

Synopsis

int libmem_foreach_driver(libmem_foreach_driver_fn_t fn);

Description

libmem_foreach_driver iterates through all the registered LIBMEM drivers and calls fn for each. If any of the

calls return a response other than LIBMEM_STATUS_SUCCESS this function will terminate and return that

response.

fn The function to call for each driver.

libmem_foreach_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1218

libmem_foreach_driver_fn_t

Synopsis

typedef int (*libmem_foreach_driver_fn_t)(libmem_driver_handle_t *h);

Description

libmem_foreach_driver_fn_t is a function pointer to a function handling a libmem_foreach_driver call.

h A pointer to the handle of the LIBMEM driver.

libmem_foreach_driver_fn_t returns The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_foreach_driver function will terminate

and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1219

libmem_foreach_sector

Synopsis

int libmem_foreach_sector(libmem_driver_handle_t *h,
 libmem_foreach_sector_fn_t fn);

Description

libmem_foreach_sector is a helper function for iterating through all sectors handled by a LIBMEM driver.

h A pointer to the handle of the LIBMEM driver.

fn The function to call for each sector.

libmem_foreach_sector returns The LIBMEM status result.

This function iterates through all the sectors handled by a single LIBMEM driver and calls a

libmem_foreach_sector_fn_t function for each. If any of the calls return a response other than

LIBMEM_STATUS_SUCCESS this function will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1220

libmem_foreach_sector_fn_t

Synopsis

typedef int (*libmem_foreach_sector_fn_t)
(libmem_driver_handle_t *h, libmem_sector_info_t *sector_info);

Description

libmem_foreach_sector_fn_t is a function pointer to a function handling a libmem_foreach_sector or

libmem_foreach_sector_in_range call.

h A pointer to the handle of the LIBMEM driver.

sector_info A pointer to the sector information.

libmem_foreach_sector_fn_t returns The LIBMEM status result. If any value other than

LIBMEM_STATUS_SUCCESS is returned from this function the libmem_foreach_sector or

libmem_foreach_sector_in_range functions will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1221

libmem_foreach_sector_in_range

Synopsis

int libmem_foreach_sector_in_range(libmem_driver_handle_t *h,
 uint8_t *range_start,
 size_t range_size,
 libmem_foreach_sector_fn_t fn,
 uint8_t **actual_range_start,
 size_t *actual_range_size);

Description

libmem_foreach_sector_in_range is a helper function for iterating through all sectors handled by a driver that

are within a specific address range.

h A pointer to the handle of the LIBMEM driver.

range_start A pointer to the start of the address range.

range_size The size of the address range in bytes.

fn The function to call for each sector.

actual_range_start A pointer to the start of the first sector that is within the address range.

actual_range_size The combined size of all the sectors that are within the address range.

libmem_foreach_sector_in_range returns The LIBMEM status result.

This function iterates through all the sectors handled by a single LIBMEM driver and calls a

libmem_foreach_sector_fn_t function for each if it is within the specified address range. If any of the calls return

a response other than LIBMEM_STATUS_SUCCESS this function will terminate and return the response.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1222

libmem_foreach_sector_in_range_ex

Synopsis

int libmem_foreach_sector_in_range_ex(libmem_driver_handle_t *h,
 const libmem_geometry_t *geometry,
 uint8_t *range_start,
 size_t range_size,
 libmem_foreach_sector_fn_t fn,
 uint8_t **actual_range_start,
 size_t *actual_range_size);

Description

libmem_foreach_sector_in_range_ex is a helper function for iterating through all sectors in a specified

geometry that are within a specific address range.

h A pointer to the handle of the LIBMEM driver.

geometry A pointer to the NULL terminated geometry description.

range_start A pointer to the start of the address range.

range_size The size of the address range in bytes.

fn The function to call for each sector.

actual_range_start A pointer to the start of the first sector that is within the address range.

actual_range_size The combined size of all the sectors that are within the address range.

libmem_foreach_sector_in_range_ex returns The LIBMEM status result.

This function iterates through all the sectors in the specified geometry and calls a libmem_foreach_sector_fn_t

function for each if it is within the specified address range. If any of the calls return a response other than

LIBMEM_STATUS_SUCCESS this function will terminate and return the response. This function is essentially

the same as libmem_foreach_sector_in_range except it allows a different geometry to be specified to that

associated with the driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1223

libmem_get_driver

Synopsis

libmem_driver_handle_t *libmem_get_driver(const uint8_t *p);

Description

libmem_get_driver is a helper function that returns the handle of a LIBMEM driver that is responsible for a

specific memory location.

p A pointer to the memory location to get the driver for.

libmem_get_driver returns The LIBMEM driver handle or NULL if no driver could be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1224

libmem_get_driver_sector_size

Synopsis

size_t libmem_get_driver_sector_size(const uint8_t *p);

Description

libmem_get_driver_sector_size is a helper function that locates the driver for a specific address and then

returns the sector size for that address using the driver's geometry.

p A pointer to the address to determine the sector information of.

libmem_get_driver_sector_size returns The size of the sector or 0 if the sector cannot be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1225

libmem_get_geometry_size

Synopsis

size_t libmem_get_geometry_size(const libmem_geometry_t *geometry);

Description

libmem_get_geometry_size is a helper function that returns the size of the address range described by a

geometry description.

geometry A pointer to the NULL terminated geometry description.

libmem_get_geometry_size returns The size of the address range described the by geometry description in

bytes.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1226

libmem_get_number_of_regions

Synopsis

int libmem_get_number_of_regions(const libmem_geometry_t *geometry);

Description

libmem_get_number_of_regions is a helper function that returns the number of geometry regions described

by a geometry description.

geometry A pointer to the NULL terminated geometry description.

libmem_get_number_of_regions returns The number of geometry regions.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1227

libmem_get_number_of_sectors

Synopsis

int libmem_get_number_of_sectors(const libmem_geometry_t *geometry);

Description

libmem_get_number_of_sectors is a helper function that returns the number of sectors described by a

geometry description.

geometry A pointer to the NULL terminated geometry description.

libmem_get_number_of_sectors returns The number of sectors.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1228

libmem_get_sector_info

Synopsis

int libmem_get_sector_info(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p,
 libmem_sector_info_t *info);

Description

libmem_get_sector_info is a helper function that returns the sector information for an address within a

specified geometry.

start A pointer to the start address of the geometry desribed by geometry.

geometry A pointer to the NULL terminated geometry description.

p A pointer to the address to determine the sector information of.

info A pointer to the libmem_sector_info_t structure to write the sector information to.

libmem_get_sector_info returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1229

libmem_get_sector_number

Synopsis

int libmem_get_sector_number(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p);

Description

libmem_get_sector_number is a helper function that returns the sector number of an address within a specified

geometry.

start A pointer to the start address of the geometry desribed by geometry.

geometry A pointer to the NULL terminated geometry description.

p A pointer to the address to determine the sector number of.

libmem_get_sector_number returns The sector number or -1 if the address is not located within the described

geometry.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1230

libmem_get_sector_size

Synopsis

size_t libmem_get_sector_size(uint8_t *start,
 const libmem_geometry_t *geometry,
 const uint8_t *p);

Description

libmem_get_sector_size is a helper function that returns the sector size for an address within a specified

geometry.

start A pointer to the start address of the geometry desribed by geometry.

geometry A pointer to the NULL terminated geometry description.

p A pointer to the address to determine the sector information of.

libmem_get_sector_size returns The size of the sector or 0 if the sector cannot be found.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1231

libmem_get_ticks

Synopsis

uint32_t libmem_get_ticks(void);

Description

libmem_get_ticks is a helper function that returns the current timer tick count.

libmem_get_ticks returns The current timer tick count as returned by the libmem_get_ticks_fn function or 0 if

this function has not been defined.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1232

libmem_get_ticks_fn

Synopsis

libmem_get_ticks_fn_t libmem_get_ticks_fn;

Description

libmem_get_ticks_fn is a pointer to a function that returns the current timer tick count.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1233

libmem_get_ticks_fn_t

Synopsis

typedef uint32_t (*libmem_get_ticks_fn_t)(void);

Description

libmem_get_ticks_fn_t is a pointer to a function returning the current timer tick count.

libmem_get_ticks_fn_t returns The current timer tick count.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1234

libmem_lock

Synopsis

int libmem_lock(uint8_t *start,
 size_t size);

Description

libmem_lock locks a block of memory using a LIBMEM driver.

start A pointer to the start address of the memory range to lock.

size The size of the memory range to lock in bytes.

libmem_lock returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

lock function.

Example:

int res;

res = libmem_lock((uint8_t *)0x10000000, 1024);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_lock : success\n");
else
 printf("libmem_lock : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1235

libmem_lock_all

Synopsis

int libmem_lock_all(void);

Description

libmem_lock_all locks all memory using LIBMEM drivers.

libmem_lock_all returns The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's lock function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's lock functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

int res;

res = libmem_lock_all();

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_lock_all : success\n");
else
 printf("libmem_lock_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1236

libmem_read

Synopsis

int libmem_read(uint8_t *dest,
 const uint8_t *src,
 size_t size);

Description

libmem_read reads a block of data using a LIBMEM driver.

dest A pointer to the address to write the block of data.

src A pointer to the address to copy the block of data from.

size The size of the block of data to copy in bytes.

libmem_read returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by src and then calls the LIBMEM driver's read

extended function if it has been implemented. If the read function has not been implemented then the memory

will be read directly using memcpy. The intention for this function is to allow you to use the LIBMEM library for

memory that doesn't appear on the address bus by providing a virtual address range for the device.

Note that if the LIBMEM driver's read function is used, the address range being read cannot span multiple

LIBMEM drivers.

Example:

uint8_t buffer[64];
int res;

res = libmem_read(buffer, (uint8_t *)0x10000000, sizeof(buffer));

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_read : success\n");
else
 printf("libmem_read : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1237

libmem_register_am29f200b_driver

Synopsis

int libmem_register_am29f200b_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f200b_driver registers a driver for an AMD Am29F200B FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_am29f200b_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1238

libmem_register_am29f200t_driver

Synopsis

int libmem_register_am29f200t_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f200t_driver registers a driver for an AMD Am29F200T FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_am29f200t_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1239

libmem_register_am29f400bb_driver

Synopsis

int libmem_register_am29f400bb_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f400bb_driver registers a driver for an AMD Am29F400BB FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_am29f400bb_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1240

libmem_register_am29f400bt_driver

Synopsis

int libmem_register_am29f400bt_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29f400bt_driver registers a driver for an AMD Am29F400BT FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_am29f400bt_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1241

libmem_register_am29fxxx_driver

Synopsis

int libmem_register_am29fxxx_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 unsigned size,
 const libmem_geometry_t *geometry,
 unsigned device_id);

Description

libmem_register_am29fxxx_driver registers a driver for an AMD Am29Fxxx FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the address range handled by the LIBMEM driver in bytes.

geometry A pointer to a null-terminated geometry description list for the device.

device_id The device ID of the device. The expected device ID is checked against the device ID read from the

FLASH. If the device IDs differ this function return LIBMEM_STATUS_INVALID_DEVICE.

libmem_register_am29fxxx_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1242

libmem_register_am29lv010b_driver

Synopsis

int libmem_register_am29lv010b_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_am29lv010b_driver registers a driver for an AMD Am29LV010B FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_am29lv010b_driver returns The LIBMEM status result.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1243

libmem_register_cfi_0001_16_driver

Synopsis

int libmem_register_cfi_0001_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0001_16_driver registers a 16-bit CFI command set 1 (Intel Extended) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0001_16_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0001_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0001_16_driver : success\n");
else
 printf("libmem_register_cfi_0001_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1244

libmem_register_cfi_0001_8_driver

Synopsis

int libmem_register_cfi_0001_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0001_8_driver registers an 8-bit CFI command set 1 (Intel Extended) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0001_8_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0001_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0001_8_driver : success\n");
else
 printf("libmem_register_cfi_0001_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1245

libmem_register_cfi_0002_16_driver

Synopsis

int libmem_register_cfi_0002_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0002_16_driver registers a 16-bit CFI command set 2 (AMD Standard) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0002_16_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0002_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0002_16_driver : success\n");
else
 printf("libmem_register_cfi_0002_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1246

libmem_register_cfi_0002_8_driver

Synopsis

int libmem_register_cfi_0002_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0002_8_driver registers an 8 bit CFI command set 2 (AMD Standard) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0002_8_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0002_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0002_8_driver : success\n");
else
 printf("libmem_register_cfi_0002_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1247

libmem_register_cfi_0003_16_driver

Synopsis

int libmem_register_cfi_0003_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0003_16_driver registers a 16-bit CFI command set 3 (Intel Standard) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0003_16_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0003_16_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0003_16_driver : success\n");
else
 printf("libmem_register_cfi_0003_16_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1248

libmem_register_cfi_0003_8_driver

Synopsis

int libmem_register_cfi_0003_8_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_0003_8_driver registers an 8-bit CFI command set 3 (Intel Standard) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_cfi_0003_8_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[] =
 {
 { 8, 0x00002000 }, // 8 x 8KB sectors
 { 31, 0x00010000 }, // 31 x 64KB sectors
 { 0, 0 }, // NULL terminator
 };
int res;

res = libmem_register_cfi_0003_8_driver(&flash1_handle,
 flash1_start,
 libmem_get_geometry_size(flash1_geometry),
 flash1_geometry,
 0);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_0003_8_driver : success\n");
else
 printf("libmem_register_cfi_0003_8_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1249

libmem_register_cfi_amd_driver

Synopsis

int libmem_register_cfi_amd_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_amd_driver registers a multi-width CFI command set 2 (AMD) LIBMEM driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure.

libmem_register_cfi_amd_driver returns The LIBMEM status result.

This function registers a multi-width CFI command set 2 (AMD) LIBMEM driver. The advantage of this driver over

the individual single width and command set drivers is that one driver will support a range of FLASH chips, the

disadvantage is that of increased code size and reduced performance.

Example:

const int flash1_max_geometry_regions = 4;
libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
libmem_flash_info_t flash1_info;
size_t flash1_size;
int res;

// Detect the type, size and geometry of the Intel FLASH.
res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Register the driver
 res = libmem_register_cfi_amd_driver(&flash1_handle,
 flash1_start,
 flash1_size,
 flash1_geometry,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)

CrossWorks for ARM Reference Manual LIBMEM User Guide

1250

 printf("libmem_register_cfi_amd_driver : success\n");
 else
 printf("libmem_register_cfi_amd_driver : failed (%d)\n", res);

 }
else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1251

libmem_register_cfi_driver

Synopsis

int libmem_register_cfi_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 libmem_geometry_t *geometry,
 int max_geometry_regions,
 libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_driver registers a FLASH driver based on detected CFI information.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

geometry A pointer to the memory location to store the geometry description.

max_geometry_regions The maximum number of geometry regions that can be stored at the memory pointed

to by geometry. The geometry description is NULL terminated so max_geometry_regions must be at least two

regions in size in order to store one geometry region and one terminator entry.

flash_info A pointer to the memory location to store the remaining FLASH information.

libmem_register_cfi_driver returns The LIBMEM status result.

This function calls libmem_cfi_get_info to detect the type and geometry of the the FLASH pointed to by start

and then, if the FLASH memory is supported, registers an appropriate LIBMEM driver for the FLASH.

Use of this function requires all supported CFI LIBMEM drivers to be linked in, therefore if memory is at a

premium you should register only the LIBMEM FLASH driver you require instead of using this function.

Example:

uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_flash_info_t flash1_info;
const int flash1_max_geometry_regions = 4;
libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
libmem_driver_handle_t flash1_handle;
int res;

res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_driver : success\n");
else
 printf("libmem_register_cfi_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1252

libmem_register_cfi_intel_driver

Synopsis

int libmem_register_cfi_intel_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_cfi_intel_driver registers a combined multi-width CFI command set 1 and 3 (Intel) LIBMEM

driver.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure.

libmem_register_cfi_intel_driver returns The LIBMEM status result.

This function registers a combined multi-width CFI command set 1 and 3 (Intel) LIBMEM driver. The advantage

of this driver over the individual single width and command set drivers is that one driver will support a range of

Intel FLASH chips, the disadvantage is that of increased code size and reduced performance.

Example:

const int flash1_max_geometry_regions = 4;
libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
libmem_flash_info_t flash1_info;
size_t flash1_size;
int res;

// Detect the type, size and geometry of the Intel FLASH.
res = libmem_cfi_get_info(flash1_start,
 &flash1_size,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Register the driver
 res = libmem_register_cfi_intel_driver(&flash1_handle,
 flash1_start,
 flash1_size,
 flash1_geometry,
 &flash1_info);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1253

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_cfi_intel_driver : success\n");
 else
 printf("libmem_register_cfi_intel_driver : failed (%d)\n", res);

 }
else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1254

libmem_register_driver

Synopsis

void libmem_register_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info,
 const libmem_driver_functions_t *driver_functions,
 const libmem_ext_driver_functions_t *ext_driver_functions);

Description

libmem_register_driver registers a LIBMEM driver instance.

h A pointer to the handle of the LIBMEM driver being registered.

start A Pointer to the start of the address range handled by the LIBMEM driver.

size The size of the address range handled by the LIBMEM driver in bytes.

geometry A pointer to a null-terminated geometry description list or NULL if not required.

flash_info A pointer to the FLASH information structure or NULL if not required.

driver_functions A pointer to the structure describing the LIBMEM driver's functions.

ext_driver_functions A pointer to the structure describing the LIBMEM driver's extended functions, or NULL if

not required.

This function adds a LIBMEM driver to the list of LIBMEM drivers currently installed. This function is not normally

called directly by an application, it is typically called by a LIBMEM driver's own register function.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1255

libmem_register_ram_driver

Synopsis

int libmem_register_ram_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size);

Description

libmem_register_ram_driver registers a simple driver that directly accesses RAM.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the RAM.

size The size of the RAM.

libmem_register_ram_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t ram1_handle;
uint8_t *ram1_start = (uint8_t *)0x10000000;
const size_t ram1_size = 1024;
int res;

res = libmem_register_ram_driver(&ram_handle, ram1_start, ram1_size);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_ram_driver : success\n");
else
 printf("libmem_register_ram_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1256

libmem_register_sst39xFx00A_16_driver

Synopsis

int libmem_register_sst39xFx00A_16_driver(libmem_driver_handle_t *h,
 uint8_t *start,
 size_t size,
 const libmem_geometry_t *geometry,
 const libmem_flash_info_t *flash_info);

Description

libmem_register_sst39xFx00A_16_driver registers a driver for a 16-bit SST39xFx00A FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

size The size of the FLASH memory.

geometry A NULL terminated description of the FLASH's geometry.

flash_info A pointer to the FLASH information structure or NULL if not required.

libmem_register_sst39xFx00A_16_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
libmem_flash_info_t flash1_info;
const int flash1_max_geometry_regions = 4;
libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
size_t size;
int res;

// Get CFI FLASH information and geometry
res = libmem_cfi_get_info(flash1_start, &size, flash1_geometry, flash1_max_geometry_regions, &flash1_info);

if (res == LIBMEM_STATUS_SUCCESS)
 {

 res = libmem_register_sst39xFx00A_16_driver(&flash1_handle, flash1_start, size, flash1_geometry, &flash1_info)

 if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_sst39xFx00A_16_driver : success\n");
 else
 printf("libmem_register_sst39xFx00A_16_driver : failed (%d)\n", res);
 }
else
 printf("libmem_cfi_get_info : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1257

libmem_register_st_m28w320cb_driver

Synopsis

int libmem_register_st_m28w320cb_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_st_m28w320cb_driver registers a driver for an ST M28W320CB FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_st_m28w320cb_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
int res;

res = libmem_register_st_m28w320cb_driver(&flash1_handle, flash1_start);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_st_m28w320cb_driver : success\n");
else
 printf("libmem_register_st_m28w320cb_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1258

libmem_register_st_m28w320ct_driver

Synopsis

int libmem_register_st_m28w320ct_driver(libmem_driver_handle_t *h,
 uint8_t *start);

Description

libmem_register_st_m28w320ct_driver registers a driver for an ST M28W320CT FLASH chip.

h A pointer to the LIBMEM handle structure to use for this LIBMEM driver.

start The start address of the FLASH memory.

libmem_register_st_m28w320ct_driver returns The LIBMEM status result.

Example:

libmem_driver_handle_t flash1_handle;
uint8_t *flash1_start = (uint8_t *)0x10000000;
int res;

res = libmem_register_st_m28w320ct_driver(&flash1_handle, flash1_start);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_register_st_m28w320ct_driver : success\n");
else
 printf("libmem_register_st_m28w320ct_driver : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1259

libmem_set_busy_handler

Synopsis

libmem_busy_handler_fn_t libmem_set_busy_handler(libmem_busy_handler_fn_t busy_handler_fn);

Description

libmem_set_busy_handler specifies a handler function that should be called each time LIBMEM iterates a busy

loop.

busy_handler_fn A pointer to a busy handler function.

libmem_set_busy_handler returns A pointer to the existing busy handler or NULL if there isn't one.

This function allows a user defined function to be called each time LIBMEM iterates a busy loop. The typical use

of this is to keep watchdogs alive while LIBMEM is carrying out blocking operations.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1260

libmem_ticks_per_second

Synopsis

uint32_t libmem_ticks_per_second;

Description

libmem_ticks_per_second is the amount the value returned by the libmem_get_ticks_fn function increments

each second.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1261

libmem_unlock

Synopsis

int libmem_unlock(uint8_t *start,
 size_t size);

Description

libmem_unlock unlocks a block of memory using a LIBMEM driver.

start A pointer to the start address of the memory range to unlock.

size The size of the memory range to unlock in bytes.

libmem_unlock returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

unlock function.

Example:

int res;

res = libmem_unlock((uint8_t *)0x10000000, 1024);

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_unlock : success\n");
else
 printf("libmem_unlock : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1262

libmem_unlock_all

Synopsis

int libmem_unlock_all(void);

Description

libmem_unlock_all unlocks all memory using LIBMEM drivers.

libmem_unlock_all returns The LIBMEM status result.

This function iterates through all registered LIBMEM drivers calling each driver's unlock function specifying the

drivers entire memory range as its parameters.

The function will terminate if any of the driver's unlock functions return a result other than

LIBMEM_STATUS_SUCCESS.

Example:

int res;

res = libmem_unlock_all();

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_unlock_all : success\n");
else
 printf("libmem_unlock_all : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1263

libmem_write

Synopsis

int libmem_write(uint8_t *dest,
 const uint8_t *src,
 size_t size);

Description

libmem_write writes a block of data using a LIBMEM driver.

dest A pointer to the address to write the block of data.

src A pointer to the address to copy the block of data from.

size The size of the block of data to copy in bytes.

libmem_write returns The LIBMEM status result.

This function locates the LIBMEM driver for the address pointed to by start and then calls the LIBMEM driver's

write function.

Note that the address range being written to cannot span multiple LIBMEM drivers.

Example:

const unsigned char buffer[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
int res;

res = libmem_write((uint8_t *)0x10000000, buffer, sizeof(buffer));

if (res == LIBMEM_STATUS_SUCCESS)
 printf("libmem_write : success\n");
else
 printf("libmem_write : failed (%d)\n", res);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1264

<libmem_loader.h>

API Summary

Macros

LIBMEM_LOADER_VERSION_NUMBER LIBMEM loader interface version number.

LIBMEM_RPC_LOADER_FLAG_PARAM Indicates whether the loader parameter has been set.

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE Indicates that a loader should preserve target state.

LIBMEM_RPC_LOADER_MAGIC_NUMBER Magic number used to identify LIBMEM loader.

LIBMEM_RPC_LOADER_OPTION_HOST_ERASE Enables host erase loader mode.

LIBMEM_RPC_LOADER_OPTION_HOST_WRITE Enables host write loader mode.

Functions

libmem_rpc_loader_exit Exit an RPC loader and return the exit status to the
host.

libmem_rpc_loader_start Start up a LIBMEM loader that uses direct RPC (remote
procedure calls).

libmem_rpc_loader_start_ex Start up a LIBMEM loader that uses direct RPC (remote
procedure calls) with additional options flags.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1265

LIBMEM_LOADER_VERSION_NUMBER

Synopsis

#define LIBMEM_LOADER_VERSION_NUMBER 3

Description

The LIBMEM loader interface version number.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1266

LIBMEM_RPC_LOADER_FLAG_PARAM

Synopsis

#define LIBMEM_RPC_LOADER_FLAG_PARAM (1 << 0)

Description

LIBMEM loader flag used to indicate whether the loader parameter has been set.

If this flag is set in R0 on entry to an RPC loader then R1 holds the optional loader parameter specified using

CrossStudio's "Target | Loader Parameter" project property.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1267

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE

Synopsis

#define LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE (1 << 31)

Description

LIBMEM loader flag used to indicate that a loader should preserve target state.

If this flag is set in R0 on entry to an RPC loader then the loader should attempt to preserve any existing target

state. This is typically set when a loader is used to modify memory while a target program is running which

would happen when a software breakpoint is set in ROM during a debug session. If this is functionality is not

required then this flag can be ignored.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1268

LIBMEM_RPC_LOADER_MAGIC_NUMBER

Synopsis

#define LIBMEM_RPC_LOADER_MAGIC_NUMBER 0x76E9C416

Description

Defines the magic number used by host to identify the loader as a LIBMEM loader.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1269

LIBMEM_RPC_LOADER_OPTION_HOST_ERASE

Synopsis

#define LIBMEM_RPC_LOADER_OPTION_HOST_ERASE (1 << 30)

Description

LIBMEM loader option that enables host erase mode when used in the options parameter of

libmem_rpc_loader_start_ex.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1270

LIBMEM_RPC_LOADER_OPTION_HOST_WRITE

Synopsis

#define LIBMEM_RPC_LOADER_OPTION_HOST_WRITE (1 << 31)

Description

LIBMEM loader option that enables host write mode when used in the options parameter of

libmem_rpc_loader_start_ex.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1271

libmem_rpc_loader_exit

Synopsis

void libmem_rpc_loader_exit(int result,
 const char *error);

Description

result A LIBMEM status result.

error Pointer to optional error string or NULL if not required.

This function provides a way of signalling to the host that the loader program has completed and also

allows the loader to return an exit code and optional error string. Note that this function should only

be used in conjunction with libmem_rpc_loader_start() and that any code located after the call to

libmem_rpc_loader_exit() has been made will not be executed.

The error parameter can be used to describe an error not covered by the LIBMEM status results. To use it, set

result to LIBMEM_STATUS_ERROR and error to the error string to be displayed.

The following example demonstrates how to return user defined error messages from the loader and how code

can be executed after the loader server has terminated prior to the loader program exiting:

static unsigned char buffer[256];

int initialise()
{
 ... initialisation code ...
}

int deinitialise()
{
 ... deinitialisation code ...
}

int main(void)
{
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;
 const char *error = 0;

 if (initialise())
 {
 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)

CrossWorks for ARM Reference Manual LIBMEM User Guide

1272

 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }
 }
 else
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot initialise loader";
 }

 if (!deinitialise() && res == LIBMEM_STATUS_SUCCESS)
 {
 res = LIBMEM_STATUS_ERROR;
 error = "cannot deinitialise loader";
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
}

CrossWorks for ARM Reference Manual LIBMEM User Guide

1273

libmem_rpc_loader_start

Synopsis

int libmem_rpc_loader_start(void *comm_buffer_start,
 void *comm_buffer_end);

Description

comm_buffer_start A pointer to the start of an area of RAM that can be used by the host to store data passed to

the remotely called libmem functions.

comm_buffer_end A pointer to the last byte of the of an area of RAM that can be used by the host to store data

passed to the remotely called libmem functions.

libmem_rpc_loader_start returns The last error result returned from a LIBMEM function or

LIBMEM_STATUS_SUCCESS if there has been no error.

This function starts up a LIBMEM loader that uses direct remote procedure calls of the LIBMEM library.

A communication buffer is required to store the parameters passed to the LIBMEM functions, this buffer is

specified using the comm_buffer_start and comm_buffer_end parameters. The buffer must be at least 8 bytes

in length, however you will find the bigger the buffer is, the better the loader performance will be because fewer

RPC calls will be required.

Example:

static unsigned char buffer[256];

int main(void)
{
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;

 // Register FLASH driver.
 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Run the loader
 libmem_rpc_loader_start(buffer, buffer + sizeof(buffer) - 1);
 }

 libmem_rpc_loader_exit(res, NULL);

CrossWorks for ARM Reference Manual LIBMEM User Guide

1274

 return 0;
}

Parameters are passed to an RPC loader by initialising the CPU registers prior to starting the loader. On entry, the

register R0 contains the LIBMEM loader flags which can be any of the following:

LIBMEM_RPC_LOADER_FLAG_PARAM - If this flag is set then R1 holds the optional loader parameter

specified using CrossStudio's "Target | Loader Parameter" project property.

LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE - If this flag is set then the loader should attempt to

preserve any existing target state. This is typically set when a loader is used to modify memory while a

target program is running which would happen when a software breakpoint is set in ROM during a debug

session. If this is functionality is not required then this flag can be ignored.

Note that older versions of LIBMEM loader required that you always link certain LIBMEM functions such as

libmem_write() and libmem_erase() into the loader using the "Linker | Keep Symbols" project property. This is

now only required if you want the loader to be compatible with versions of CrossWorks prior to version 3.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1275

libmem_rpc_loader_start_ex

Synopsis

int libmem_rpc_loader_start_ex(void *comm_buffer_start,
 void *comm_buffer_end,
 uint32_t options);

Description

comm_buffer_start A pointer to the start of an area of RAM that can be used by the host to store data passed to

the remotely called libmem functions.

comm_buffer_end A pointer to the last byte of the of an area of RAM that can be used by the host to store data

passed to the remotely called libmem functions.

options This parameter is usually 0, but can be used to enable different loader behaviour by specifying a

combination of the following loader options:

LIBMEM_RPC_LOADER_OPTION_HOST_WRITE - This option flag enables host write loader mode.

This mode is intended for devices with small amounts RAM. When enabled it guarantees that all

write operations will be the size of, and aligned to, the communication buffer. This allows a lot of the

complexity involved in carrying out a memory write operation to be avoided, thereby saving code size at

the cost of download performance.

LIBMEM_RPC_LOADER_OPTION_HOST_ERASE - This option flag enables host erase loader mode.

This mode is intended for devices with small amounts RAM. When enabled it guarantees that all erase

operations will be the size of, and aligned to, the device's geometry. This allows a lot of the complexity

involved in carrying out a memory erase operation to be avoided, thereby saving code size at the cost of

download performance.

libmem_rpc_loader_start_ex returns The last error result returned from a LIBMEM function or

LIBMEM_STATUS_SUCCESS if there has been no error.

This function is the same as libmem_rpc_loader_start except that it allows a loader option parameter to be

specified.

Example:

static unsigned char buffer[256];

int main(void)
{
 uint8_t *flash1_start = (uint8_t *)0x10000000;
 const int flash1_max_geometry_regions = 4;
 libmem_driver_handle_t flash1_handle;
 libmem_geometry_t flash1_geometry[flash1_max_geometry_regions];
 libmem_flash_info_t flash1_info;
 int res;

 // Register FLASH driver.

CrossWorks for ARM Reference Manual LIBMEM User Guide

1276

 res = libmem_register_cfi_driver(&flash1_handle,
 flash1_start,
 flash1_geometry,
 flash1_max_geometry_regions,
 &flash1_info);

 if (res == LIBMEM_STATUS_SUCCESS)
 {
 // Run the loader
 libmem_rpc_loader_start_ex(buffer,
 buffer + sizeof(buffer) - 1,
 LIBMEM_LOADER_OPTION_HOST_WRITE |
 LIBMEM_LOADER_OPTION_HOST_ERASE);
 }

 libmem_rpc_loader_exit(res, NULL);

 return 0;
}

CrossWorks for ARM Reference Manual Utilities Reference

1277

Utilities Reference

CrossWorks for ARM Reference Manual Utilities Reference

1278

Command-Line Compiler
This section describes the switches accepted by the compiler driver, cc. The compiler driver is capable of

controlling compilation by all supported language compilers and the final link by the linker. It can also construct

libraries automatically.

File naming conventions

The compiler driver uses file extensions to distinguish the language the source file is written in. The compiler

driver recognizes the extension .c as C source files, .cpp, .cc or .cxx as C++ source files, .s and .asm as assembly

code files.

The compiler driver recognizes the extension .o as object files, .a as library files, .ld as linker script files and .xml

as special-purpose XML files.

We strongly recommend that you adopt these extensions for your source files and object files because you'll find

that using the tools is much easier if you do.

C language files

When the compiler driver finds a file with a .c extension, it runs the C compiler to convert it to object code.

Alternatively you can specify that it is a C file using

cc -x c cfile.notc ...

C++ language files

When the compiler driver finds a file with a .cpp extension, it runs the C++ compiler to convert it to object code.

Alternatively you can specify that it is a C++ file using

cc -x c++ cppfile.notcpp ...

Assembly language files

When the compiler driver finds a file with a .s or .asm extension, it runs the C preprocessor and then the

assembler to convert it to object code. Alternatively you can specify that it is an assembly language file using

cc -x asm asmfile.nots ...

Object code files

When the compiler driver finds a file with a .o or .a extension, it passes it to the linker to include it in the final

application.

Compilation

To compile or assemble a file you should supply the -c option together with the source file and provide a name

for the output file using the -o option

CrossWorks for ARM Reference Manual Utilities Reference

1279

cc -c file.c -o file.o

if you don't supply an output name then the output file will be use the basename of the source file.

You can supply the file to be compiled from the standard input using the

cc -c - -o main.o
int main()
{
 return 3;
}
<EOF>

You can preprocess the source file rather than compile it using the -E option

cc -E main.c

This will send the output to the standard output or you can use -o to send it to a named file.

You can show the preprocessor defines that are defined for the compilation using the -dM option

cc -E -dM main.c

You can supply preprocessor defines and include directories using -D and -I options

cc -c file.c -Dmydefine -Imyincludedir

You can include a file before compilation using -include

cc -c file.c -include file.h

There is also a variant that will just use the #defines that are declared in the included file

cc -c file.c -imacros file.h

If you wish to not use the default C/C++ library you can use -I- and then supply your own system library directory

using -isystem

cc -c file.c -I- -isystemmysystemincludedir

You can using the -g option to include debugging information in the output file

cc -c file.c -g

You can use the -O option to set the desired optimization level

cc -c file.c -O0

Linking

You can compile/link a number of files with the standard libraries

cc Cortex_M_Startup.s thumb_crt0.s main.o -o main.elf

CrossWorks for ARM Reference Manual Utilities Reference

1280

You'll also need to supply linker control details. There are a number of ways of doing this

cc .. -placement ram_placement.xml -placementsegments "SRAM RW 0x0 0x1000" -ereset_handler

cc .. -memorymap map.xml -placementsegments "SRAM RW 0x0 0x1000" -ereset_handler

cc .. -Tlinker.icf -ereset_handler

Target Selection

You can specify the target cpu using -cpu= or -mcpu=

cc -c file.c -mcpu=cortex-m7

or the equivalent architecture using -arch= or -march=

cc -c file.c -march=armv7e-m

You can select the fpu using -fpu= or -mfpu=

cc -c file.c -march=armv7e-m -mfpu=fpv4-sp-d16

and the floating point abi to use

cc -c file.c -march=armv7e-m -mfpu=fpv4-sp-d16 -mfloat-abi=hard

Advanced

You can create a precompile header using the -pch option

cc -c -xc -pch main.h -o main.h.pch

Note that the output file must be in the same directory as the input file. You can use this precompiled header file

cc -c main.c -include-pch main.h.pch

You can create a C++ 20 module using

cc++ -c -xc++ main.cxx -std=c++20 -fmodules-ts -fmodule-file=main=main.o -o main.o

The module file will be named either .gcm or .pcm and can be used by another file using

cc++ -c -xc++ another.cxx -std=c++20 -fmodules-ts -fmodule-file=main=main.o -o another.o

Options:

Option Description

- input is taken from standard input

-### show commands but don't execute them

-allow-multiple-definition allow multiple symbol definition when linking

-ansi enforce ANSI checking

CrossWorks for ARM Reference Manual Utilities Reference

1281

-ar create library from input files

-arch=val set cpu architecture to 'val', use list to display
supported

-arm generate ARM code

-arm64 generate ARM64 code

-be big endian target

-be8 big endian target

-builtins use builtin compiler functions

-c compile the files, no link/library

-clang use clang compiler/assembler/lto

-cmselib=l create cmse output library in 'l'

-codec=c set file codec to 'c', use list to display supported

-common allocate global variables in the common section

-cpu=val set cpu core to 'val', use list to display supported

-debugio=bkpt use breakpoint implementation for debugio

-debugio=dcc use dcc implementation for debugio

-debugio=mempoll use memory polling implementation for debugio

-depend file generate dependency file in 'file'

-dependu file generate dependency file in 'file' with user header files
only

-dM show #defines

-Dname define the preprocessor macro 'name'

-dname=val define the linker symbol 'name' as 'val'

-Dname=val define the preprocessor macro 'name' as 'val'

-E preprocess file and write to standard output

-emit-relocs emit relocations into executable

-ename set program entry symbol to 'name'

-exceptions enable C++ exceptions

-Fbin create an additional binary output file

-fbuiltin enable compiler builtin functions

-fcommon place global variables in COMMON section

-fcoroutines enable C++ coroutine support

-fdebug-types-section generate .debug_types section

-fdiagnostics-color=always color diagnostic output of the compiler

-fdiagnostics-color=never do not color diagnostic output of the compiler

CrossWorks for ARM Reference Manual Utilities Reference

1282

-fdiagnostics-show-caret show caret in diagostic output of the compiler

-fexceptions enable C++ exception support

-Fhex create an additional hex output file

-fill=b fill gaps in the additional output file with byte 'b'

-flto generate code suitable for link time optimization

-fmath-errno set errno after calling math functions

-fmodule-file='name' get module dependencies from the file 'name'

-fmodules-ts enable c++20 modules

-fno-builtin disable compiler builtin functions

-fno-common place global variables in bss section

-fno-diagnostics-show-caret do not show caret in diagostic output of the compiler

-fno-exceptions disable C++ exception support

-fno-math-errno set errno after calling math functions

-fno-omit-frame-pointer disable framepointer generation

-fno-rtti disable C++ RTTI support

-fno-short-enums enumerations are int sized

-fno-short-wchar wide characters are 32-bit

-fno-signed-char char is considered to be unsigned char

-fomit-frame-pointer disable framepointer generation

-fpabi=hard generate FPU instructions passing fp arguments in FPU
registers

-fpabi=soft do not generate FPU instructions

-fpabi=softfp generate FPU instructions passing fp arguments in
CPU registers

-fpu=val set fpu to 'val', use list to display supported

-framepointer generate code to maintain a frame pointer register

-frtti enable C++ RTTI support

-fshort-enums enumerations are minimal container sized

-fshort-wchar wide characters are 16-bit

-fsigned-char char is considered to be signed char

-Fsrec create an additional srec output file

-ftree-vectorize perform vectorization on trees

-funwind-tables generate unwind tables

-g1 generate only backtrace and line number debugging
information

CrossWorks for ARM Reference Manual Utilities Reference

1283

-g2 generate level 1 and variable display debugging
information

-g3 generate level 2 and macro display debugging
information

-gcc-target=name select gcc 'name' tools to use

-gdwarf-2 generate dwarf-2 debugging information

-gdwarf-3 generate dwarf-3 debugging information

-gdwarf-4 generate dwarf-4 debugging information

-gdwarf-5 generate dwarf-5 debugging information

-gpubnames generate .debug_pubnames and .debug_pubtypes
sections

-hascmse v8m architecture has cmse instructions

-hascrc v8a architecuture has crc instructions

-hascrypto v8a architecture has crypto instructions

-hasdsp v8m architecture has dsp instructions

-hasidiv v7ar architecture has integer divide instructions

-hassmallmultiplier cortex-m0/m0+/m1 architecture has small multiplier

-help show this text

-I- do not search any standard directories for include files

-Idir add 'dir' to the end of the user include search list

-imacros file same as -include but only keep #defines

-include file #include 'file' before the source file

-include-pch file #include precompiled header 'file' before the source
file

-inputfiles file list of files in 'file' to link or archive

-instrument instrument functions

-isystem dir add 'dir' to the end of the system include search list

-Jdir add 'dir' to the end of the system include search list

-kasm keep assembly code output

-kind keep indirect files

-kldscript keep generated linker script

-klto keep lto generated files

-Kname keep symbol 'name' in the linked output

-kpp keep preprocessor output

-l- disable linking of standard libraries

-Ldir search directory 'dir' to find libraries

CrossWorks for ARM Reference Manual Utilities Reference

1284

-le little endian target

-libdir dir specify system library directory 'dir'

-lname search library 'name' to resolve symbols

-longcalls generate long calling instruction sequences

-lunwind generate stack unwind tables

-M generate linkage map file

-march=val set cpu architecture to 'val', use list to display
supported

-marm generate arm code

-mbe8 big endian target

-mbig-endian big endian target

-mcmse v8m architecture has cmse instructions

-mcpu=val set cpu core to 'val', use list to display supported

-memorymap file supply memory map file in 'file'

-memorymapmacros macros define macros for memory map file in 'macros'

-mfloat-abi=val specify the floating-point abi to use, val can be 'soft',
'softfp', 'hard'

-mfp16-format=ieee specify the format of the __fp16 half-precision
floating-point type

-mfpu=val set fpu to 'val', use list to display supported

-mlittle-endian little endian target

-mno-thumb-interwork do not generate interworking code for v4t architecture

-mno-unaligned-access disable unaligned word and half-word load/store
instructions

-mthumb generate thumb code, default is to generate ARM code
for processors that support it

-mthumb-interwork generate thumb interworking code for v4t architecture

-mtp=soft specify the thread local storage model

-munaligned-access enable unaligned word and half-word load/store
instructions

-n show commands but don't execute them

-nointerwork do not generate interworking code for v4t architecture

-noshortenums enumerations are int sized

-noshortwchar wide characters are 32-bit

-nostderr redirect output from stderr to stdout

-nostdinc do not search any standard directories for include files

-nostdlib disable linking of standard libraries

CrossWorks for ARM Reference Manual Utilities Reference

1285

-nowarn-enumsize no linker warning on mismatched enum sized input
files

-nowarn-mismatch no linker warning on mismatched architecture input
files

-nowarn-rwx-segments no linker warning on load segments with RWX
permissions

-nowarn-wcharsize no linker warning on mismatched wchar sized input
files

-o file leave output in 'file'

-O0 set optimization level to level 0

-O1 set optimization level to level 1

-O2 set optimization level to level 2

-O3 set optimization level to level 3

-Og set optimization level to debug

-Os set optimization level to optimize for size

-patch cmd run 'cmd' after link but before the creation of the
additional output file

-pch generate a precompiled header file

-pedantic warning on non-standard language usage

-pedantic-errors error on non-standard language usage

-placement file supply placement file in 'file'

-placementmacros macros define macros for placement file in 'macros'

-placementsegments segments memory segments for placement in 'segments'

-printf=d[ll][w] double, optional long long, optional wchar

-printf=f[ll][w] float, optional long long, optional wchar

-printf=i[p][w] integer, optional width and precision, optional wchar

-printf=ll[p][w] long long integer, optional width and precision,
optional wchar

-Rc,name name the default code section to 'name'

-Rd,name name the default data section to 'name'

-Rk,name name the default const section to 'name'

-rtti enable C++ rtti

-Rz,name name the default bss section to 'name'

-scanf=d[ll][c] double, optional long long, optional %[...] and %[^...]
character class

-scanf=ll[c] long long integer, optional %[...] and %[^...] character
class

CrossWorks for ARM Reference Manual Utilities Reference

1286

-shortenums enumerations are minimal container sized

-shortwchar wide characters are 16-bit

-simd=neon generate simd vector processing code

-stack-sizes generate stack-sizes section

-std=s set language standard to 's', use list to display
supported

-stripdebug strip debug information from linked executable

-stripsymbols strip symbols from linked executable

-symbols=s link symbols file 's' into executable

-Tfile use 'file' as linker script

-thumb generate thumb code, default is to generate ARM code
for processors that support it

-unwindtables generate stack unwind tables

-v show command lines as they are executed

-vectorize enable auto vectorization code generation

-W supply option to the compiler

-w suppress warnings

-Wa,x pass 'x' to the assembler

-Wc,x pass 'x' to the compiler

-we treat warnings as errors

-Werror treat warnings as errors

-Wl,x pass 'x' to the linker

-x t subsequent files are considered to be of file type 't'

-xa subsequent files are considered to be library files

-xasm subsequent files are considered to be assembly code

-xassembler-with-cpp subsequent files are considered to be assembly code

-xc subsequent files are considered to be C code

-xc++ subsequent files are considered to be C++ code

-Xlinker x pass 'x' to the linker

-xo subsequent files are considered to be object code

CrossWorks for ARM Reference Manual Utilities Reference

1287

Command-Line Project Builder
CrossBuild is a program used to build your software from the command line without using CrossStudio. You

can, for example, use CrossBuild for nightly (automated) builds, production builds, and batch builds.

CrossWorks for ARM Reference Manual Utilities Reference

1288

Building with a CrossStudio project file
You can specify a CrossStudio project file:

Syntax

crossbuild [options] project-file

You must specify a configuration to build using -config. For instance:

crossbuild -config "V5T Thumb LE Release" arm.hzp

The above example uses the configuration V5T Thumb LE Release to build all projects in the solution contained

in arm.hzp.

To build a specific project that is in a solution, you can specify it using the -project option. For example:

crossbuild -config "V5T Thumb LE Release" -project "libm" libc.hzp

This example will use the configuration V5T Thumb LE Release to build the project libm that is contained in

libc.hzp.

If your project file imports other project files (using the <import> mechanism), when denoting projects you must

specify the solution names as a comma-separated list in parentheses after the project name:

crossbuild -config "V5T Thumb LE Release" -project "libc(C Library)" arm.hzp

libc(C Library) specifies the libc project in the C Library solution that has been imported by the project file

arm.hzp.

To build a specific solution that has been imported from other project files, you can use the -solution option.

This option takes the solution names as a comma-separated list. For example:

crossbuild -config "ARM Debug" -solution "ARM Targets,EB55" arm.hzp

In this example, ARM Targets,EB55 specifies the EB55 solution imported by the ARM Targets solution, which

was itself imported by the project file arm.hzp.

You can do a batch build using the -batch option:

crossbuild -config "ARM Debug" -batch libc.hzp

This will build the projects in libc.hzp that are marked for batch build in the configuration ARM Debug.

By default, a make-style build will be donei.e., the dates of input files are checked against the dates of output

files, and the build is avoided if the output is up to date. You can force a complete build by using the -rebuild

option. Alternatively, to remove all output files, use the -clean option.

CrossWorks for ARM Reference Manual Utilities Reference

1289

To see the commands being used in the build, use the -echo option. To also see why commands are being

executed, use the -verbose option. You can see what commands will be executed, without executing them, by

using the -show option.

CrossWorks for ARM Reference Manual Utilities Reference

1290

Building without a CrossStudio project file
To use CrossBuild without a CrossStudio project, specify the name of an installed project template, the name of

the project, and the files to build. For example:

crossbuild -config -template LM3S_EXE -project myproject -file main.c

Or, instead of a template, you can specify a project type:

crossbuild -config -type "Library" -project myproject -file main.c

You can specify project properties with the -property option:

crossbuild -property Target=LM3S811

CrossWorks for ARM Reference Manual Utilities Reference

1291

Command-line options
This section describes the command-line options accepted by CrossBuild.

CrossWorks for ARM Reference Manual Utilities Reference

1292

-batch (Batch build)

Syntax

-batch

Description

Perform a batch build.

CrossWorks for ARM Reference Manual Utilities Reference

1293

-config (Select build configuration)

Syntax

-config name

Description

Specify the configuration for a build. If the configuration name can't be found, CrossBuild will list the available

configurations.

CrossWorks for ARM Reference Manual Utilities Reference

1294

-clean (Remove output files)

Syntax

-clean

Description

Remove all output files resulting from the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1295

-D (Define macro)

Syntax

-D macro=value

Description

Define a CrossWorks macro value for the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1296

-echo (Show command lines)

Syntax

-echo

Description

Show the command lines as they are executed.

CrossWorks for ARM Reference Manual Utilities Reference

1297

-file (Build a named file)

Syntax

-file name

Description

Build the file name. Use with -template or -type.

CrossWorks for ARM Reference Manual Utilities Reference

1298

-packagesdir (Specify packages directory)

Syntax

-packagesdir dir

Description

Override the default value of the $(PackagesDir) macro.

CrossWorks for ARM Reference Manual Utilities Reference

1299

-project (Specify project to build)

Syntax

-project name

Description

Specify the name of the project to build. When used with a project file, if CrossBuild can't find the specified

project, the names of available projects are listed.

CrossWorks for ARM Reference Manual Utilities Reference

1300

-property (Set project property)

Syntax

-property name=value

Description

Specify the value of a project property use with -template or -type. If CrossBuild cannot find the specified

property, a list of the properties is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1301

-rebuild (Always rebuild)

Syntax

-rebuild

Description

Always execute the build commands.

CrossWorks for ARM Reference Manual Utilities Reference

1302

-show (Dry run, don't execute)

Syntax

-show

Description

Show the command lines that would be executed, but do not execute them.

CrossWorks for ARM Reference Manual Utilities Reference

1303

-solution (Specify solution to build)

Syntax

-solution name

Description

Specify the name of the solution to build. If CrossBuild cannot find the given solution, the valid solution names

are listed.

CrossWorks for ARM Reference Manual Utilities Reference

1304

-studiodir (Specify CrossStudio directory)

Syntax

-studiodir name

Description

Override the default value of the $(StudioDir) macro.

CrossWorks for ARM Reference Manual Utilities Reference

1305

-template (Specify project template)

Syntax

-template name

Description

Specify the project template to use. If CrossBuild cannot find the specified template then a list of template

names is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1306

-time (Time the build)

Syntax

-time

Description

Show the time taken for the build.

CrossWorks for ARM Reference Manual Utilities Reference

1307

-threadnum (Specify number of build threads)

Syntax

-threadnum n

Description

Specify the number of build threads to use for the build. The default is zero which will use the number of

processor cores on your machine.

CrossWorks for ARM Reference Manual Utilities Reference

1308

-type (Specify project type)

Syntax

-type name

Description

Specify the project type to use. If CrossBuild cannot find the specified project type then a list of project type

names is shown.

CrossWorks for ARM Reference Manual Utilities Reference

1309

-verbose (Show build information)

Syntax

-verbose

Description

Show extra information relating to the build process.

CrossWorks for ARM Reference Manual Utilities Reference

1310

Command-Line Simulator
CrossSim is a program that allows you to run CrossStudio's instruction set simulator from the command line.

The primary purpose of CrossSim is to enable command line tests to be run. The debug I/O provided by

CrossStudio is supported, as are command line arguments and exit.

CrossSim will accept a single elf file, it will allocate and load memory regions based on the program sections

in the elf file. CrossSim will start execution from the entry point symbol contained in the elf file. CrossSim will

terminate when exit is called or execution reaches a specified symbol.

Example

Assuming that app.c contains the following

#include <stdio.h>
int
main(int argc, const char *argv)
{
 int i;
 for (i=1;i < argc; i++)
 printf("argv[%d]=%s\n", i, argv[n]);
 exit(EXIT_SUCCESS);
}

and app.elf has been built with the preprocessor definition FULL_LIBRARY then

crosssim app.elf hello world

will produce the output

argv[1]=hello
argv[2]=world

if the debug I/O implementation has to set breakpoints or poll memory locations then you can supply the name

of the symbol to breakpoint on that will enable the debug I/O

crosssim app.elf -startup __startup_complete hello world

if the application uses memory that isn't allocated in the elf file then you can supply the memory segments that

the simulator should create

crosssim app.elf -segments 0x08000000;0x10000;0x20000000;0x10000

and there is an alternative form of this

crosssim app.elf -memory-segments "FLASH RX 0x08000000 0x10000;SRAM RWX 0x20000000 0x10000"

The simulator attempts to determine the machine architecture from data in the elf file this can be override using

crosssim app.elf -arch v7m

If the simulator doesn't support the architecture then the the list of supported architectures will be displayed.

CrossWorks for ARM Reference Manual Utilities Reference

1311

The simulator will start executing at the entry point symbol in the elf file. If the application doesn't set the stack

pointer then you can supply this

crosssim app.elf -stackpointer __stack_end__

If the application doesn't call exit then you can supply a symbol to breakpoint on that will terminate the

simulation

crosssim app.elf -end _Exit

You can show an instruction trace

crosssim app.elf -trace

Which will show the addresses of instructions, the instruction opcode and the disassembly

0x000002d8 E59F003C ldr r0, =0xE01FC000
0x000002dc E3A01000 mov r1, #0
0x000002e0 E5801000 str r1, [r0]
0x000002e4 E3A01003 mov r1, #3
0x000002e8 E5801004 str r1, [r0, #4]
0x000002ec E3A01002 mov r1, #2

You can display the instruction execution counts at the end of the simulation

crosssim app.elf -counts

Which will show the addresses of instructions, with the number of times executed

0x08000298=1
0x0800029a=1
...
0x080008ac=278
0x080008ae=2
...

Usage:

crosssim file [options] args

Option Description

-arch 'a' Specify architecture to simulate

-arch list List supported architectures

-counts Show execution counts when the simulation ends

-end 's' Specify the symbol to end simulation

-max 'c' Specify the maximum number of instructions to
simulate

-memory-segments 'name [access] start size;' Specify the list of memory segments

-segments 'start;size;' Specify the list of memory segments

-stackpointer 's' Specify the starting stackpoint symbol

CrossWorks for ARM Reference Manual Utilities Reference

1312

-startup 's' Specify the startup completion point symbol

-trace Show instruction execution

CrossWorks for ARM Reference Manual Utilities Reference

1313

Command-Line Project Download and Debug
The CrossLoad program can be used to download and, optionally, debug applications without using

CrossStudio.

In order to carry out a download or verify, CrossLoad needs to know what target interface to use. The supported

target interfaces vary between operating systems; to list the supported target interfaces, use the -listtargets

option:

crossload -listtargets

This command will produce a list of target interface names and descriptions, such as:

usb USB CrossConnect
parport Parallel Port Interface
sim Simulator

Use the -target option followed by the desired target interface's name to specify which interface to use:

crossload -target usb

CrossLoad normally is used to download and/or verify projects created and built with CrossStudio. To do this,

you must specify the target interface you want to use, the CrossStudio solution file, the project name, and the

build configuration. The following command line will download and verify the debug version of the project

MyProject contained within the MySolution.hzp solution file, using a USB CrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config Debug

In some cases, it is useful to download a program that was not created with CrossStudio by using the settings

from an existing CrossStudio project. You might want to do this if your existing project describes specific loaders

or scripts required in order to download the application. To do this, you simply add the name of the file you want

to download to the command line. For example, the following command line will download the Intel hex file

ExternalApp.hex using the release settings of the project MyProject connecting, using a USB CrossConnect:

crossload -target usb -solution MySolution.hzp -project MyProject -config Release
 ExternalApp.hex

CrossLoad can download and verify a range of file types. The supported file types vary between systems; to list

the file types supported on your system, use the -listfiletypes option:

crossload -listfiletypes

This produces a list of the supported file types. For example:

hzx CrossStudio Executable File
bin Binary File
ihex Intel Hex File
hex Hex File

CrossWorks for ARM Reference Manual Utilities Reference

1314

tihex TI Hex File
srec Motorola S-Record File

CrossLoad will attempt to determine the type of any load file given to it. If it cannot do this, you may specify the

file type using the -filetype option:

crossload -target usb -solution MySolution.hzp -project MyProject -config Release
 ExternalApp.txt -filetype tihex

It is possible, with some targets, to download without specifying a CrossStudio project. In such cases, you only

need to specify the target interface and the load file. For example, the following will download myapp.s19 using

a USB CrossConnect:

crossload -target usb myapp.s19

Each target interface has a range of configurable properties allowing you to customize the default behaviour. To

list the target properties and their current values, use the -listprops option:

crossload -target parport -listprops

This command will list the parport target-interfaces properties, a description of what the properties are, and

their current values:

Name: JTAG Clock Divider
Description: The amount to divide the JTAG clock frequency.
Value : 1

Name: Parallel Port
Description: The parallel port connection to use to connect to target.
Value : Lpt1

Name: Parallel Port Sharing
Description: Specifies whether sharing of the parallel port with other device drivers or
 programs is permitted.
Value : No

You can modify a target property using the -setprop option. For example, the following command line would

set the parallel port interfaced used to lpt2:

crossload -target parport -setprop "Parallel Port"="Ltp2"

CrossWorks for ARM Reference Manual Utilities Reference

1315

Command line debugging
You can instruct CrossLoad to start a command-line debugging session by using -debug and optional -break

and -script options. For example:

crossload -target sim -solution mysolution.hzp -project myproject -config "ARM RAM Debug" -
debug -break main

This will load the executable created with the ARM RAM Debug configuration for myproject onto the simulator

and run it until its main function is called.

A command prompt is then shown that will accept JavaScript statements. The debugger functionality is

accessed using the built-in JavaScript object Debug, so all debugger commands are be entered using the form

Debug.command().

CrossWorks for ARM Reference Manual Utilities Reference

1316

Managing breakpoints
You can set breakpoints on global symbols using the Debug.breakexpr("expr") method. The type of the symbol

will determine the breakpoint that is set. For example

Debug.breakexpr("fn1")

will set a breakpoint on entry to the fn1 function, and

Debug.breakexpr("var1")

will set a breakpoint when the variable var1 is written. This method can also be used set breakpoints on

addresses. For example

Debug.breakexpr("0x248")

will cause a breakpoint when the address 0x248 is executed, and

Debug.breakexpr("(unsigned[1])0xec8")

will cause a breakpoint when the word at the address 0xec8 is written.

You can use the Debug.breakline("filename", linenumber) method to set breakpoints on specific lines of code.

For example, to set a breakpoint at line number 4 of c:/directory/file.c, you can use:

Debug.breakline("c:/directory/file.c", 4)

Note the use of forward slashes when specifying filenames.

To refer to the current file (the one where the debugger is located), you can use the Debug.getfilename()

method. Similarly, the current line number is accessed using the Debug.getlinenumber() method. Using these

functions, you can set a breakpoint at a line-offset from the current position. For example

Debug.breakline(Debug.getfilename(), Debug.getlinenumber()+4)

will break at 4 lines after the current line.

You can use the Debug.breakdata("expr", value, readNotWrite) method to set a breakpoint for when a value is

written to a global variable. For example

Debug.breakdata("var1", 4, false)

will cause a breakpoint when the value 4 is written to variable var. The third parameter, readNotWrite specifies

whether a breakpoint is set on reading (true) or writing (false) the data.

Each method of setting a breakpoint accepts three optional arguments: temporary, counter, and hardware.

A temporary breakpoint is removed the next time it occurs. For example

CrossWorks for ARM Reference Manual Utilities Reference

1317

Debug.breakexpr("fn1()", true)

will break on entry to fn1 unless another breakpoint occurs before this one.

Counted breakpoints are ignored for the specified number of hits. For example

Debug.breakexpr("fn1()", false, 9)

will break the 10th time fn1 is called.

The hardware argument specifies whether the debugger should use a hardware breakpoint in preference to a

software breakpoint. This can be used to set breakpoints on code that is copied to RAM prior to the copying.

The breakexpr and breakline methods return a positive breakpoint number that can be used to delete the

breakpoint using the Debug.deletebreak(number) method. For example:

fn1bkpt = Debug.breakexpr("fn1")

Debug.deletebreak(fn1bkpt)

To delete all breakpoints, supply zero to the deletebreak method. Note that temporary breakpoints do not have

breakpoint numbers.

The Debug.showbreak(number) method displays information about a breakpoint.

To show all breakpoints, supply zero to the showbreak method.

Some targets support exception breakpoints, which can be listed using the Debug.showexceptions() method.

For example, on an ARM9 or XScale target:

> Debug.showexceptions()
Reset disabled
Undef enabled
SWI disabled
P_Abort enabled
D_Abort enabled
IRQ disabled
FIQ disabled
>

You can enable or disable an exception with the Debug.enableexception("exception", enable) method. For

example

Debug.enableexception("IRQ", true)

will enable breakpoints when the IRQ exception occurs.

Some targets support breakpoint chaining. This enables breakpoints to be paired, with one breakpoint enabling

another one. For example:

> first = Debug.breakdata("count", 3)

CrossWorks for ARM Reference Manual Utilities Reference

1318

> second = Debug.breakexpr("fn1")
> Debug.chainbreak(first, second)

When count is written with the value 3, the breakpoint at fn1 is enabled; so when fn1 is subsequently called, if

ever, the breakpoint occurs. To remove breakpoint chaining, specify 0 as the second argument. For example:

Debug.chainbreak(first, 0)

Deleting either of the chained breakpoints will break the chain.

CrossWorks for ARM Reference Manual Utilities Reference

1319

Displaying state
You can display the register state of the current context using the Debug.printregisters method, the local

variables of the current context using the Debug.printlocals() method and the global variables by using the

Debug.printglobals() method. To display single variables, use the Debug.print("expr"[,"format"]) method. For

example, where int i = -1:

> Debug.print("i")
0xffffffff
> Debug.print("i", "d")
-1
> Debug.print("i, "u")
4294967295
>

You can change the default radix, used when printing numbers, with the Debug.setprintradix(radix) method.

For example:

> Debug.setprintradix(10)
> Debug.print("i")
-1
> Debug.setprintradix(8)
> Debug.print("i)
037777777777
>

The Debug.print method is used to access registers

> Debug.print("@pc")
0x000002ac
>

and memory, too:

> Debug.print("((unsigned[2])0x0)")
[0xeafffffe, 0xe59ff018]
>

You can use the print method to update variables, registers, and memory using assignment operators:

> Debug.print("x=45")
0x0000002d
> Debug.print("x+=45")
0x0000005a
>

You can change whether character pointers are displayed as null-terminated strings using the

Debug.setprintstring(bool) method. For example, where const char *string = "hello":

> Debug.print("string")
hello
> Debug.print("string", "p")
0x00000770

CrossWorks for ARM Reference Manual Utilities Reference

1320

> Debug.setprintstring(false)
> Debug.print("string")
0x00000770
> Debug.print("string", "s")
hello
>

To change the maximum number of array elements that will be displayed, use the Debug.setprintarray(n)

method. For example, where unsigned array[4] = {1, 2, 3, 4}:

> Debug.print("array", "d")
[1, 2, 3, 4]
> Debug.setprintarray(2)
> Debug.print("array", "d")
[1, 2]

You can use the Debug.evaluate(expr) method to return the value of variables rather than displaying them. For

example

> x = Debug.evaluate("x")
> if (x == -1) Debug.echo("x is 45")
x is 45
>

where the method Debug.echo(str) outputs its string argument.

CrossWorks for ARM Reference Manual Utilities Reference

1321

Locating the current context
You can use the Debug.where() method to display a backtrace of the functions that have been called. Each entry

in the backtrace has its own framenumber which can be supplied to the Debug.locate(framenumber) method.

Framenumbers start at zero and are incremented for each function call. So framenumber zero is the current

location, framenumber one is the caller of the current location, and so on. For example

> Debug.where()
0) int debug_printf(const char* fmt=5) C:\svn\shared\target\libc\debug_printf.c:6
1) int main() C:\tmp\try\main.c:17
2) ??? C:\svn\arm\arm\source\crt0.s:237
>

then

Debug.locate(1)

will locate the debugger context at main and

Debug.locate(0)

will change the debugger location back to debug_printf.

When the debugger locates (either because locate has been called or it has stopped), the corresponding

source line is displayed. You can display source lines around the located line by using the Debug.list(before,

after) method, which specifies the number of lines to display before and after the located line.

You can set the debugger to locate (and step) to machine instructions using the method

Debug.setmode(mode). Setting the mode to 1 selects interleaved mode (source code interleaved with

assembly code). Setting the mode to 2 selects assembly mode (disassembly with source code annotation).

Setting the mode to 0 selects source mode. For example:

> Debug.setmode(2)
0000031C E1A0C00D mov r12, sp
> Debug.stepinto()
00000320 E92DD800 stmfd sp!, {r11-r12, lr-pc}
>Debug.setmode(0)
>

You can locate the debugger at a specified program counter by using the Debug.locatepc(pc) method. For

example, you can disassemble from specific address:

> Debug.setmode(2)
> Debug.locatepc(0x2f4)
000002F4 E59F30D0 ldr r3, [pc, #+0x0D0]
> Debug.list(0, 1)
000002F4 E59F30D0 ldr r3, [pc, #+0x0D0]
000002F8 E50B3020 str r3, [r11, #-0x020]
>

CrossWorks for ARM Reference Manual Utilities Reference

1322

You can locate the debugger to a full register context using the Debug.locateregisters(registers) method. This

method takes an array that specifies each register value, typically in ascending register number order. You can

use the Debug.printregisters() method to see the the order. For example, for an ARM7, ARM9, or XScale:

var a = new Array()
a[0] = 0 // r0 value

a[15] = 0x2f4 // pc value
a[16] = 0x10 // cspr value
Debug.locateregisters(a)

You can put the debugger context back at the stopped state by calling Debug.locate without any parameters:

Debug.locate()

CrossWorks for ARM Reference Manual Utilities Reference

1323

Controlling execution
To continue execution from a breakpoint, use the Debug.go() method. You can single step into function calls

with Debug.stepinto(). You can single step over function calls by using the Debug.stepover() method. To

complete execution of the current function, use the Debug.stepout() method.

You will get the debugger prompt immediately when the go, stepinto, stepover or stepout methods are called.

If you want to wait for the target to stop (for example in a script), you need to use the Debug.wait(mstimeout)

method, which returns 0 if the millisecond timeout occurred or 1 if execution has stopped. For example

> Debug.go(); Debug.wait(1000)

will wait for one second or until a breakpoint occurs. If a breakpoint isn't reached, you can use the method

Debug.breaknow() to stop execution. You can end the debug session with the Debug.quit() method.

CrossWorks for ARM Reference Manual Utilities Reference

1324

Support packages
The preceding examples assume that the support packages required to carry out the download or debugging

have already been installed using CrossStudio's package manager. On some systems however, it is not possible

or desirable to use CrossStudio to do this. This section describes how to manually install packages from the

command line and specify where CrossLoad should look for them.

The first thing to do is decide on the directory path to store the installed packages, we're going to use an

environment variable PACKAGES_DIR to specify this. For example:

 export PACKAGES_DIR=/my_crossload_packages
 echo $PACKAGES_DIR

Please note, Windows command prompt users should use set instead of export and %PACKAGES_DIR% instead

of $PACKAGES_DIR.

Next, we need to get hold of the package .hzq or .hzr files to be installed. These can be downloaded from our

package website or package archive.

Once we have got the package files, the mkpkg tool can be used to install the packages. For example:

 mkpkg -x CMSIS_3.hzq $PACKAGES_DIR
 mkpkg -x LPC1000.hzq $PACKAGES_DIR

By default, CrossLoad will look for packages in CrossStudio's packages directory. We can override this so that our

local package installation is used instead with CrossLoad's -packagesdir option. For example:

 crossload -packagesdir $PACKAGES_DIR -target usb -solution MySolution.hzp -project
 MyProject -config Debug

http://www.rowleydownload.co.uk/arm/packages/index.htm
http://www.rowleydownload.co.uk/arm/packages/archive/index.htm

CrossWorks for ARM Reference Manual Utilities Reference

1325

Command-line options
This section describes the command-line options accepted by CrossLoad.

Usage

crossload [options] [files]

ARM Usage

crossload [options] [files] -serve [arguments]

CrossWorks for ARM Reference Manual Utilities Reference

1326

-break (Stop execution at symbol)

Syntax

-break symbol

Description

When used with the -debug option, this will stop execution at symbol.

CrossWorks for ARM Reference Manual Utilities Reference

1327

-config (Specify build configuration)

Syntax

-config name

Description

Specify the build configuration to use.

CrossWorks for ARM Reference Manual Utilities Reference

1328

-connection (Specify connection)

Syntax

-connection name

Description

Specify the connection to use.

CrossWorks for ARM Reference Manual Utilities Reference

1329

-debug (Enter command line debugging)

Syntax

-debug

Description

Enable command-line debugging. A command prompt is displayed at which debugger commands can be

entered. The command prompt has a simple history and editing mechanism.

CrossWorks for ARM Reference Manual Utilities Reference

1330

-eraseall (Erase all flash memory)

Syntax

-eraseall

Description

Erase all flash memory rather than just the flash memory to be programmed.

CrossWorks for ARM Reference Manual Utilities Reference

1331

-filetype (Specify load file type)

Syntax

-filetype filetype

Description

Specify the type of the file to download. By default, CrossLoad will attempt to detect the file type, you should

use this option if CrossLoad cannot determine the file type or to override the detection and force the type to a

specific value. Use the -listfiletypes option to list the supported file types.

CrossWorks for ARM Reference Manual Utilities Reference

1332

-help (Display help)

Syntax

-help

Description

Display the command-line options CrossLoad accepts.

CrossWorks for ARM Reference Manual Utilities Reference

1333

-listfiletypes (Display supported load file types)

Syntax

-listfiletypes

Description

Lists all the supported file types.

CrossWorks for ARM Reference Manual Utilities Reference

1334

-listprojectprops (Display all project properties)

Syntax

-listprojectprops

Description

List all properties of selected project and configuration

CrossWorks for ARM Reference Manual Utilities Reference

1335

-listprops (Display target properties)

Syntax

-listprops

Description

List the target properties of the target specified by the -target option.

CrossWorks for ARM Reference Manual Utilities Reference

1336

-listtargets (Display supported target interfaces)

Syntax

-listtargets

Description

List all the supported target interfaces.

CrossWorks for ARM Reference Manual Utilities Reference

1337

-loadaddress (Set load address)

Syntax

-loadaddress address

Description

When downloading a load file that doesn't contain any address information, such a binary file, this option

specifies the base address to which the file should be downloaded.

CrossWorks for ARM Reference Manual Utilities Reference

1338

-loader (Specify loader configuration)

Syntax

-loader config

Description

Select the loader configuration to use for the download.

CrossWorks for ARM Reference Manual Utilities Reference

1339

-nodifferential (Inhibit differential download)

Syntax

-nodifferential

Description

Do not use differential downloading.

CrossWorks for ARM Reference Manual Utilities Reference

1340

-nodisconnect (Inhibit target disconnection)

Syntax

-nodisconnect

Description

Do not disconnect the target interface when finished.

CrossWorks for ARM Reference Manual Utilities Reference

1341

-nodownload (Inhibit download)

Syntax

-nodownload

Description

Do not download, just verify.

CrossWorks for ARM Reference Manual Utilities Reference

1342

-noverify (Inhibit verification)

Syntax

-noverify

Description

Do not verify the downloaded application.

CrossWorks for ARM Reference Manual Utilities Reference

1343

-packagesdir (Specify package directory)

Syntax

-packagesdir directory

Description

Set $(PackagesDir) to directory.

CrossWorks for ARM Reference Manual Utilities Reference

1344

-project (Specify project name)

Syntax

-project name

Description

Specify the name of the desired project.

CrossWorks for ARM Reference Manual Utilities Reference

1345

-quiet (Be silent)

Syntax

-quiet

Description

Do not output any progress messages.

CrossWorks for ARM Reference Manual Utilities Reference

1346

-reset (Reset only)

Syntax

-reset

Description

Reset the target and don't carry out download.

CrossWorks for ARM Reference Manual Utilities Reference

1347

-script (Execute debug script)

Syntax

-script file

Description

When used with the -debug option, this will execute the debug commands in file.

CrossWorks for ARM Reference Manual Utilities Reference

1348

-serve (Run semihosting server)

Syntax

-serve

Description

Serve CrossStudio debug I/O operations. Any command-line arguments following this option will be passed to

the target application. The application can access them either by calling debug_getargs or by compiling the

startup code in crt0.s or crt0.asm with the FULL_LIBRARY C preprocessor symbol defined so that argc and argv

are passed to main.

CrossWorks for ARM Reference Manual Utilities Reference

1349

-setprop (Set target interface property)

Syntax

-setprop property=value

Description

Set the target interface property property to value.

CrossWorks for ARM Reference Manual Utilities Reference

1350

-solution (Specify solution file)

Syntax

-solution file

Description

Specify the CrossWorks solution file to use.

CrossWorks for ARM Reference Manual Utilities Reference

1351

-studiodir (Specify Studio directory)

Syntax

-studiodir directory

Description

Set $(StudioDir) to directory.

CrossWorks for ARM Reference Manual Utilities Reference

1352

-target (Specify target interface)

Syntax

-target name

Description

Specify the target interface to use. Use the -listtargets option to list the supported target interfaces.

CrossWorks for ARM Reference Manual Utilities Reference

1353

-verbose (Display additional status)

Syntax

-verbose

Description

Produce verbose output.

CrossWorks for ARM Reference Manual Utilities Reference

1354

Command-Line Scripting
CrossScript is a program that allows you to run CrossStudio's JavaScript (ECMAScript) interpreter from the

command line.

The primary purpose of CrossScript is to facilitate the creation of platform-independent build scripts.

Syntax

crossscript [options] file

CrossWorks for ARM Reference Manual Utilities Reference

1355

Command-line options
This section describes the command-line options accepted by CrossScript.

CrossWorks for ARM Reference Manual Utilities Reference

1356

-define (Define global variable)

Syntax

-define variable=value

Description

CrossWorks for ARM Reference Manual Utilities Reference

1357

-help (Show usage)

Syntax

-help

Description

Display usage information and command line options.

CrossWorks for ARM Reference Manual Utilities Reference

1358

-load (Load script file)

Syntax

-load path

Description

Loads the script file path.

CrossWorks for ARM Reference Manual Utilities Reference

1359

-define (Verbose output)

Syntax

-verbose

Description

Produces verbose output.

CrossWorks for ARM Reference Manual Utilities Reference

1360

CrossScript classes
CrossScript provides the following predefined classes:

BinaryFile

CWSys

ElfFile

WScript

CrossWorks for ARM Reference Manual Utilities Reference

1361

Example uses
The following example demonstrates using CrossScript to increment a build number:

First, add a JavaScript file to your project called incbuild.js containing the following code:

function incbuild()
{
 var file = "buildnum.h"
 var text = "#define BUILDNUMBER "
 var s = CWSys.readStringFromFile(file);
 var n;
 if (s == undefined)
 n = 1;
 else
 n = eval(s.substring(text.length)) + 1;
 CWSys.writeStringToFile(file, text + n);
}

// Executed when script loaded.
incbuild();

Add a file called getbuildnum.h to your project containing the following code:

#ifndef GETBUILDNUM_H
#define GETBUILDNUM_H

unsigned getBuildNumber();

#endif

Add a file called getbuildnum.c to your project containing the following code:

#include "getbuildnum.h"
#include "buildnum.h"

unsigned getBuildNumber()
{
 return BUILDNUMBER;
}

Now, to combine these:

Set the Build Options > Always Rebuild project property of getbuildnum.c to Yes.

Set the User Build Step Options > Pre-Compile Command project property of getbuildnum.c to

"$(StudioDir)/bin/crossscript" -load "$(ProjectDir)/incbuild.js".

CrossWorks for ARM Reference Manual Utilities Reference

1362

Embed
Embed is a program that converts a binary file into a C/C++ array definition.

The primary purpose of the Embed tool is to provide a simple method of embedding files into an application.

This may be useful if you want to include firmware images, bitmaps, etc. in your application without having to

read them first from an external source.

Syntax

embed variable_name input_file output_file

variable_name is the name of the C/C++ array to be initialised with the binary data.

input_file is the path to the binary input file.

output_file is the path to the C/C++ source file to generate.

Example

To convert a binary file image.bin to a C/C++ file called image.h:

embed img image.bin image.h

This will generate the following output in image.h:

static const unsigned char img[] = {
 0x5B, 0x95, 0xA4, 0x56, 0x16, 0x5F, 0x2D, 0x47,
 0xC5, 0x04, 0xD4, 0x8D, 0x73, 0x40, 0x31, 0x66,
 0x3E, 0x81, 0x90, 0x39, 0xA3, 0x8E, 0x22, 0x37,
 0x3C, 0x63, 0xC8, 0x30, 0x90, 0x0C, 0x54, 0xA4,
 0xA2, 0x74, 0xC2, 0x8C, 0x1D, 0x56, 0x57, 0x05,
 0x45, 0xCE, 0x3B, 0x92, 0xAD, 0x0B, 0x2C, 0x39,
 0x92, 0x59, 0xB9, 0x9D, 0x01, 0x30, 0x59, 0x9F,
 0xC5, 0xEA, 0xCE, 0x35, 0xF6, 0x4B, 0x05, 0xBF
};

CrossWorks for ARM Reference Manual Utilities Reference

1363

Header file generator
The command line program mkhdr generates a C or C++ header file from a CrossWorks memory map file.

CrossWorks for ARM Reference Manual Utilities Reference

1364

Using the header generator
For each register definition in the memory map file a corresponding #define is generated in the header file. The

#define is named the same as the register name and is defined as a volatile pointer to the address.

The type of the pointer is derived from the size of the register. A four-byte register generates an unsigned long

pointer. A two-byte register generates an unsigned short pointer. A one-byte register will generates an unsigned

char pointer.

If a register definition in the memory map file has bitfields then preprocessor symbols are generated for each

bitfield. Each bitfield will have two preprocessor symbols generated, one representing the mask and one

defining the start bit position. The bitfield preprocessor symbol names are formed by prepending the register

name to the bitfield name. The mask definition has _MASK appended to it and the start definition has _BIT

appended to it.

For example consider the following definitions in the the file memorymap.xml.

<RegisterGroup start="0xFFFFF000" name="AIC">
 <Register start="+0x00" size="4" name="AIC_SMR0">
 <BitField size="3" name="PRIOR" start="0" />
 <BitField size="2" name="SRCTYPE" start="5" />
 </Register>
 ...

We can generate the header file associated with this file using:

mkhdr memorymap.xml memorymap.h

This generates the following definitions in the file memorymap.h.

#define AIC_SMR0 (*(volatile unsigned long *)0xFFFFF000)
#define AIC_SMR0_PRIOR_MASK 0x7
#define AIC_SMR0_PRIOR_BIT 0
#define AIC_SMR0_SRCTYPE_MASK 0x60
#define AIC_SMR0_SRCTYPE_BIT 5

These definitions can be used in the following way in a C/C++ program:

Reading a register

unsigned r = AIC_SMR0;

Writing a register

AIC_SMR0 = (priority << AIC_SMR0_PRIOR_BIT) | (srctype << AIC_SMR0_SRCTYPE_BIT);

Reading a bitfield

unsigned srctype = (AIC_SMR0 & AIC_SMR0_SRCTYPE_MASK) >> AIC_SMR0_SRCTYPE_BIT;

Writing a bitfield

AIC_SMR0 = (AIC_SMR0 & ~AIC_SMR0_SRCTYPE_MASK) | ((srctype & AIC_SMR0_SRCTYPE_MASK) << AIC_SMR0_SRCTYPE_BIT);

CrossWorks for ARM Reference Manual Utilities Reference

1365

Command line options
This section describes the command line options accepted by the header file generator.

Syntax

mkhdr inputfile outputfile targetname [option]

inputfile is the name of the source CrossWorks memory map file. outputfile is the the name of the file to write.

CrossWorks for ARM Reference Manual Utilities Reference

1366

-regbaseoffsets (Use offsets from peripheral base)

Syntax

-regbaseoffsets

Description

Instructs the header generator to include offsets of registers from the peripheral base.

CrossWorks for ARM Reference Manual Utilities Reference

1367

-nobitfields (Inhibit bitfield macros)

Syntax

-nobitfields

Description

Instructs the header generator not to generate any definitions for bitfields.

CrossWorks for ARM Reference Manual Utilities Reference

1368

Linker script file generator
The command line program mkld generates a GNU ld linker script from a CrossWorks memory map or section

placement file.

Syntax

mkld -memory-map-file inputfile outputfile [options]

mkld -memory-map-segments segments outputfile [options]

Description

inputfile is the name of the CrossWorks memory map file to generate the ld script from.

segments is a list of memory segments of the form SegmentName RWX Address Size

outputfile is the the name of the ld script file to write.

CrossWorks for ARM Reference Manual Utilities Reference

1369

Command-line options
This section describes the command-line options accepted by mkld.

CrossWorks for ARM Reference Manual Utilities Reference

1370

-check-section-overflow

Syntax

-check-section-overflow

Description

Add checks for memory section overflow to the linker script.

CrossWorks for ARM Reference Manual Utilities Reference

1371

-check-segment-overflow

Syntax

-check-segment-overflow

Description

Add checks for memory segment overflow to the linker script.

CrossWorks for ARM Reference Manual Utilities Reference

1372

-disable-missing-runin-error

Syntax

-disable-missing-runin-error

Description

Discard any sections with a missing run in section.

CrossWorks for ARM Reference Manual Utilities Reference

1373

-memory-map-macros

Syntax

-memory-map-macros macro=value[;macro=value]

Description

Define CrossWorks macros to use when reading a memory map file.

CrossWorks for ARM Reference Manual Utilities Reference

1374

-no-check-unplaced-sections

Syntax

-no-check-unplaced-sections

Description

Removes checks for unplaced memory sections from the linker script.

CrossWorks for ARM Reference Manual Utilities Reference

1375

-no-ctors

Syntax

-no-ctors

Description

Ignore the .ctors section.

CrossWorks for ARM Reference Manual Utilities Reference

1376

-no-dtors

Syntax

-no-ctors

Description

Ignore the .dtors section.

CrossWorks for ARM Reference Manual Utilities Reference

1377

-section-placement-file

Syntax

-section-placement-file filename

Description

Generate a GNU ld linker script from the CrossWorks section placement file filename. If this option is used, a

memory map file should also be specified with the -memory-map-file option.

CrossWorks for ARM Reference Manual Utilities Reference

1378

-section-placement-macros

Syntax

-section-placement-macros macro=value[;macro=value]

Description

Define CrossWorks macros to use when reading a section placement file.

CrossWorks for ARM Reference Manual Utilities Reference

1379

-symbols

Syntax

-symbols symbol=value[;symbol=value]

Description

Add extra symbol definitions to the ld linker script.

CrossWorks for ARM Reference Manual Utilities Reference

1380

Package generator
To create a package the program mkpkg can be used. The set of files to put into the package should be

in the desired location in the $(PackagesDir) directory. The mkpkg command should be run with

$(PackagesDir) as the working directory and all files to go into the package must be referred to using

relative paths. A package must have a package description file that is placed in the $(PackagesDir)/

packages directory. The package description file name must end with _package.xml. If a package is to

create entries in the new project wizard then it must have a file name project_templates.xml.

For example, a package for the mythical FX150 processor would supply the following files:

A project template file called targets/FX150/project_templates.xml. The format of the

project templates file is described in Project Templates file format.

The $(PackagesDir)-relative files that define the functionality of the package.

A package description file called packages/FX150_package.xml. The format of the package

description file is described in Package Description file format.

The package file FX150.hzq would be created using the following command line:

mkpkg -c packages/FX150.hzq targets/FX150/project_templates.xml packages/FX150_package.xml

You can exclude specific files or directories from being added to a package using the -exclude option:

mkpkg -c packages/FX150.hzq targets/FX150 -exclude targets/FX150/excluded_file.txt -exclude
 targets/FX150/excluded_directory packages/FX150_package.xml

You can list the contents of the package using the -t option:

mkpkg -t packages/FX150.hzq

You can remove an entry from a package using the -d option:

mkpkg -d packages/FX150.hzq -d fileName

You can add or replace a file into an existing package using the -r option:

mkpkg -r packages/FX150.hzq -r fileName

You can extract files from an existing package using the -x option:

mkpkg -x packages/FX150.hzq outputDirectory

You can automate the package creation process using a Combining project type.

Using the new project wizard create a combining project in the directory $(PackagesDir).

Set the Output File Path property to be $(PackagesDir)/packages/mypackage.hzq.

Set the Combine command property to $(StudioDir)/bin/mkpkg -c $(CombiningOutputFilePath)

$(CombiningRelInputPaths).

CrossWorks for ARM Reference Manual Utilities Reference

1381

Add the files you want to go into the package into the project using the Project Explorer.

Right-click the project node in the Project Explorer and choose Build.

When a package is installed, the files in the package are copied into the desired $(PackagesDir)-relative

locations. When a file is copied into the $(PackagesDir)/packages directory and its filename ends with

_package.xml the file $(PackagesDir)/packages/installed_packages.xml is updated with an

entry:

<include filename="FX150_package.xml" />

During development of a package you can manually edit this file. The same applies to the file

$(PackagesDir)/targets/project_templates.xml which will contain a reference to your

project_templates.xml file.

Usage:

mkpkg [options] packageFileName file1 file2

Option Description

-c Create a new package.

-compress level Change compression level (0 for none, 9 for
maximum).

-d Remove files from a package.

-exclude path Exclude path when adding files to a package.

-f Output files to stdout.

-overwrite Overwrite existing files.

-no-date Do not add date attribute to package.

-r Replace files in a package.

-readonly Force all files to have read only attribute.

-set-attr attribute=value Set package attribute to value.

-sub-arch-endian Create architecture and endian specific sub packages.

-sub-arch-endian-compatiblity Create architecture and endian specific sub packages
including compatibility packages for versions of the
IDE that don't have $(LibEndian) macro.

-sub-base-type Specify the type description of the base package.

-sub-type Specify the type description of the sub packages.

-t List the contents of a package.

-v Be chatty.

-V Show version information.

-x Extract files from a package.

CrossWorks for ARM Reference Manual Utilities Reference

1382

Package manager
The pkg program can be used to download, install, remove and search for packages from the command line.

Usage Description

pkg history package_names... List version history of packages

pkg install package_names... Download and install packages

pkg install -manual package_files... Manually install package files

pkg list List all available packagess

pkg list -installed List installed packages

pkg list -installed-names List installed package names

pkg list -dependencies package_names... List package dependencies

pkg list -dependents package_names... List dependent packages

pkg remove package_names... Remove packages

pkg remove -all Remove all packages

pkg search keywords... Search for packages

pkg update Update list of available packages

pkg upgrade Upgrade all installed packages

pkg upgrade package_names... Upgrade selected packages

Option Description

-D macro=value Set a global macro

-keepgoing Continue when errors occur

-legacy Include legacy packages

-nodelete Don't delete downloaded packages after installation

-noverify Don't verify downloaded packages

-outputformat string Specify list/search output format string

-packagesdir directory Set the packages directory to be directory

-packagesurl url Set the URL of the packages website to be url

-quiet Do not output any progress messages

-rootuserdir directory Set the root user data directory to directory

-verbose Produce verbose output

-yes Answer yes to all questions without prompting

Macro Description

$(Description) Package description

$(Name) Package name

$(Title) Package title

CrossWorks for ARM Reference Manual Utilities Reference

1383

$(Version) Package version

Before you can download, install or search for packages you must first update the local list of available packages:

$ pkg update

The search command can be used to search for a specific package:

$ pkg search libcxx
libcxx_arm - ARM libcxx Library Package (1.1)

The install command can be used to install a package:

$ pkg install libcxx_arm

The list command can be used to list installed packages:

$ pkg list -installed
libcxx_arm - ARM libcxx Library Package (1.1)

The history command can be used to show package history:

$ pkg history libcxx_arm
libcxx_arm - libcxx Library Package [ARM]

 1.1 (Installed)
 - Fixed name of Type Interpretation File.

 1.0
 - Initial release.

Specific versions of a package can be installed:

$ pkg install libcxx_arm:1.0

The upgrade command can be used to upgrade to the latest version of a package:

$ pkg upgrade libcxx_arm

The remove command can be used to uninstall a package:

$ pkg remove libcxx_arm

CrossWorks for ARM Reference Manual Utilities Reference

1384

CrossWorks for ARM Reference Manual Appendices

1385

Appendices

CrossWorks for ARM Reference Manual Appendices

1386

File formats
This section describes the file formats CrossWorks uses:

Memory Map file format
Describes the memory map file format that defines memory regions and registers in a microcontroller.

Section Placement file format
Describes the section placement file format that maps program sections to memory areas in the target

microcontroller.

Project file format
Describes the format of CrossStudio project files.

Project Templates file format
Describes the format of project template files used by the New Project wizard.

Property Groups file format
Describes the format of the property groups file you can use to define meta-properties.

Package Description file format
Describes the format of the package description files you use to create packages other users can install in

CrossStudio.

External Tools file format
Describes the format of external tool configuration files you use to extend CrossStudio.

Debugger Type Interpretation file format
Describes the format of the debugger type interpretation file.

CrossWorks for ARM Reference Manual Appendices

1387

Memory Map file format
CrossStudio memory-map files are structured using XML syntax for its simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format.

<!DOCTYPE Board_Memory_Definition_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="My Board">

A Root element has a name attribute every element in a memory map file has a name attribute. Names should

be unique within a hierarchy level. Within a Root element, there are MemorySegment elements that represent

regions within the memory map.

<Root name="My Board">
 <MemorySegment name="Flash" start="0x1000" size="0x200" access="ReadOnly">

MemorySegment elements have the following attributes:

start:The start address of the memory segment. A simple expression, usually a hexadecimal number with

a 0x prefix.

size:The size of the memory segment. A simple expression, usually a hexadecimal number with a 0x prefix.

access:The permissible access types of the memory segment. One of ReadOnly, Read/Write,

WriteOnly, or None.

address_symbol:A symbolic name for the start address of the memory segment.

size_symbol:A symbolic name for the size of the memory segment.

end_symbol:A symbolic name for the end address of the memory segment.

RegisterGroup elements are used to organize registers into groups. Register elements are used to define

peripheral registers:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >

RegisterGroup elements have the same attributes as MemorySegment elements. Register elements

have the following attributes:

name:Register names should be valid C/C++ identifier names, i.e., alphanumeric characters and

underscores are allowed but names cannot start with a number.

start:The start address of the memory segment. Either a C-style hexadecimal number or, if given a + prefix,

an offset from the enclosing element's start address.

size:The size of the register in bytes, either 1, 2, or 4.

access:The same as the access attribute of the MemorySegment element.

CrossWorks for ARM Reference Manual Appendices

1388

address_symbol:The same as the address_symbol attribute of the MemorySegment element.

A Register element can contain BitField elements that represent the bits in a peripheral register:

 <Root name="My Board" >
 <MemorySegment name="System" start="0x2000" size="0x200" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />

BitField elements have the following attributes:

name:The same as the name attribute of the RegisterGroup element.

start:The starting bit position, 031.

size:The total number of bits, 132.

A Bitfield element can contain Enum elements:

<Root name="My Board" >
 <RegisterGroup name="Peripheral1" start="0x2100" size="0x10" >
 <Register name="Register1" start="+0x8" size="4" >
 <BitField name="Bits_0_to_3" start="0" size="4" />
 <Enum name="Enum3" start="3" />
 <Enum name="Enum5" start="5" />

You can import CMSIS SVD files (see http://www.onarm.com/) into a memory map using the ImportSVD

element:

<ImportSVD filename="$(TargetsDir)/targets/Manufacturer1/Processor1.svd.xml">

The filename attribute is an absolute filename which is macro-expanded using CrossWorks system macros.

When a memory map file is loaded either for the memory map viewer or to be used for linking or debugging, it is

preprocessed using the (as yet undocumented) CrossWorks XML preprocessor.

http://www.onarm.com/

CrossWorks for ARM Reference Manual Appendices

1389

Section Placement file format
CrossStudio section-placement files are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Linker_Placement_File>

The next entry is the Root element. There can only be one Root element in a memory map file:

<Root name="Flash Placement">

A Root element has a name attribute. Every element in a section-placement file has a name attribute. Each

name should be unique within its hierarchy level. Within a Root element, there are MemorySegment elements.

These correspond to memory regions defined in a memory map file that will be used in conjunction with the

section-placement file when linking a program. For example:

 <Root name="Flash Placement">
 <MemorySegment name="FLASH">

A MemorySegment contains ProgramSection elements that represent program sections created by the C/

C++ compiler and assembler. The order of ProgramSection elements within a MemorySegment element

represents the order in which the sections will be placed when linking a program. The first ProgramSection

will be placed first and the last one will be placed last.

<Root name="My Board" >
 <MemorySegment name="FLASH">
 <ProgramSection name=".text">

ProgramSection elements have the following attributes:

address_symbol:A symbolic name for the start address of the section.

alignment:The required alignment of the program section; a decimal number specifying the byte

alignment.

end_symbol:A symbolic name for the end address of the section.

fill:The optional value used to fill unspecified regions of memory, a hexadecimal number with a 0x prefix.

inputsections:An expression describing the input sections to be placed in this section. If you omit this

(recommended) and the section name isn't one of .text, .dtors, .ctors, .data, .rodata, or .bss, then the

equivalent input section of *(.name .name.*) is supplied to the linker.

keep:If Yes, the section will be kept even if none of the symbols are referenced by the rest of the program.

load:If Yes, the section is loaded. If No, the section isn't loaded.

place_from_segment_end:If Yes, this section and following sections will be placed at the end of the

segment. Please note that this will only succeed if the section and all following sections have a fixed size

specified with the size attribute.

runin:This specifies the name of the section to copy this section to. Multiple sections can be specified

separated by a semicolon, the first section that exists will be used.

CrossWorks for ARM Reference Manual Appendices

1390

runoffset:This specifies an offset from the load address that the section will be run from.

size:The optional size of the program section in bytes, a hexadecimal number with a 0x prefix. The macro

$(SEGMENT_SIZE_REMAINING) can be used for size calcuations based on the remaining number of bytes in

the segment.

size_symbol:A symbolic name for the size of the section.

start:The optional start address of the program section, a hexadecimal number with a 0x prefix.

When a section placement file is used for linking it is preprocessed using the (as yet undocumented) CrossWorks

XML preprocessor.

CrossWorks for ARM Reference Manual Appendices

1391

Project file format
CrossStudio project files are held in text files with the .hzp extension. Because you may want to edit project

files, and perhaps generate them, they are structured using XML syntax to enable simple construction and

parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE CrossStudio_Project_File>

The next entry is the solution element; there can only be one solution element in a project file. This

specifies the solution name displayed in the Project Explorer and has a version attribute that defines the file-

format version of the project file. Solutions can contain projects, projects can contain folders and files, and

folders can contain folders and files. This hierarchy is reflected in the XML nestingfor example:

<solution version="1" Name="solutionname">
 <project Name="projectname">
 <file Name="filename" />
 <folder Name="foldername">
 <file Name="filename2" />
 </folder>
 </project>
</solution>

Note that each entry has a Name attribute. Names of project elements must be unique to the solution, and

names of folder elements must be unique to the project, but names of files do not need to unique.

Each file element must have a file_name attribute that is unique to the project. Ideally, the file_name

is a file path relative to the project (or solution directory), but you can also specify a full file path, if you want to.

File paths are case-sensitive and use "/" as the directory separator. They may contain macro instantiations, so file

paths cannot contain the "$" character. For example

<file file_name="$(StudioDir)/source/crt0.s" Name="crt0.s" />

will be expanded using the value of $(StudioDir) when the file is referenced from CrossStudio.

Project properties are held in configuration elements with the Name attribute of the configuration element

corresponding to the configuration name, e.g., "Debug". At a given project level (i.e., solution, project, folder),

there can only be one named configuration elementi.e., all properties defined for a configuration are in single

configuration element.

<project Name="projectname">

 <configuration project_type="Library" Name="Common" />
 <configuration Name="Release" build_debug_information="No" />

</project>

You can use the import element to link projects:

<import file_name="target/libc.hzp" />

CrossWorks for ARM Reference Manual Appendices

1392

Project Templates file format
The CrossStudio New Project dialog works from a file called project_templates.xml in the targets

subdirectory of the CrossStudio installation directory. Because you may want to add your own new project types,

they are structured using XML syntax to enable simple construction and parsing.

The first entry of the project file defines the XML document type used to validate the file format:

<!DOCTYPE Project_Templates_File>

The next entry is the projects element, which is used to group a set of new project entries into an XML

hierarchy.

<projects>
 <project>
</projects>

Each entry has a project element that contains the class of the project (attribute caption), the name of the

project (attribute name), its type (attribute type) and a description (attribute description). For example:

<project caption="ARM Evaluator7T" name="Executable"
 description="An executable for an ARM Evaluator7T." type="Executable"/>

The project type can be one of these:

Executable: a fully linked executable.

Library: a static library.

Object file: an object file.

Staging: a staging project.

Combining: a combining project.

Externally Built Executable: an externally built executable.

The configurations to be created for the project are defined using the configuration element, which must

have a name attribute:

<configuration name="ARM RAM Release"/>

The property values to be created for the project are defined using the property element. If you have a

defined value, you can specify this using the value attribute and, optionally, set the property in a defined

configuration, such as:

<property name="target_reset_script" configuration="RAM"
 value="Evaluator7T_ResetWithRamAtZero()" />

Alternatively, you can include a property that will be shown to the user, prompting them to supply a value as

part of the new-project process.

<property name="linker_output_format"/>

CrossWorks for ARM Reference Manual Appendices

1393

The folders to be created are defined using the folder element. The folder element must have a name

attribute and can also have a filter attribute. For example:

<folder name="Source Files" filter="c;cpp;cxx;cc;h;s;asm;inc" />

The files to be in the project are specified using the file element. You can use build-system macros (see

Project macros) to specify files located in the CrossStudio installation directory. Files will be copied to the

project directory or just left as references, depending on the value of the source attribute:

<file name="main.c" source="$(StudioDir)/samples/Shared/main.c"/>
<file name="$(StudioDir)/source/thumb_crt0.s"/>

You can define the set of configurations that can be referred to in the top-level configurations element:

<configurations>
 <configuration>
</configurations>

This contains the set of all configurations that can be created when a project is created. Each configuration is

defined using a configuration element, which can define the property values for that configuration. For

example:

<configuration name="Debug">
 <property name="build_debug_information" value="Yes">

CrossWorks for ARM Reference Manual Appendices

1394

Property Groups file format
The CrossStudio project system provides a means to create new properties that change a number of project

property settings and can also set C pre-processor definitions when selected. Such properties are called property

groups and are defined in a property-groups file. The property-group file to use for a project is defined by the

Property Groups File property. These files usually define target-specific properties and are structured using XML

syntax to enable simple construction and parsing.

The first entry of the property groups file defines the XML document type, which is used to validate the file

format:

<!DOCTYPE CrossStudio_Group_Values>

The next entry is the propertyGroups element, which is used to group a set of property groups entries into

an XML hierarchy:

<propertyGroups>
 <grouphdots

 <grouphdots
</propertyGroups>

Each group has the name of the group (attribute name), the name of the options category (attribute group),

short (attribute short) and long (attribute long) help descriptions, and a default value (attribute default).

For example:

<group short="Target Processor" group="Build Options" short="Target Processor"
 long="Select a set of target options" name="Target" default="STR912FW44" />

Each group has a number of groupEntry elements that define the enumerations of the group.

<group\>
 <groupEntry>

 <groupEntry>
</group>

Each groupEntry has the name of the entry (attribute name), e.g.:

<groupEntry name="STR910FW32">

A groupEntry has the property values and C pre-processor definitions that are set when the groupEntry is

selected; they are specified with property and cdefine elements. For example:

<groupEntry>
 <property>
 <cdefine>
 <property>
</groupEntry>

CrossWorks for ARM Reference Manual Appendices

1395

A property element has the property's name (attribute name), its value (attribute value), and an optional

configuration (attribute configuration):

<property name="linker_memory_map_file"
 value="$(StudioDir)/targets/ST_STR91x/ST_STR910FM32_MemoryMap.xml" />

A cdefine element has the C preprocessor name (attribute name) and its value (attribute value):

<cdefine value="STR910FM32" name="TARGET_PROCESSOR" />

CrossWorks for ARM Reference Manual Appendices

1396

Package Description file format
Package-description files are XML files used by CrossStudio to describe a support package, its contents, and any

dependencies it has on other packages.

Each package file must contain one package element that describes the package. Optionally, the package

element can contain a collection of file, history, and documentation elements to be used by

CrossStudio for documentation purposes.

The filename of the package-description file should match that of the package and end in "_package.xml".

Below is an example of two package-description files. The first is for a base chip-support package for the

LPC2000; the second is for a board-support package dependent on the first:

Philips_LPC2000_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" version="1.1"
 crossstudio_versions="8:1.6-" author="Rowley Associates Ltd" >
 <file file_name="$(TargetsDir)/Philips_LPC210X/arm_target_Philips_LPC210X.htm"
 title="LPC2000 Support Package Documentation" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Loader.hzp" title="LPC2000 Loader
 Application Solution" />
 <group title="System Files">
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Startup.s" title="LPC2000
 Startup Code" />
 <file file_name="$(TargetsDir)/Philips_LPC210X/Philips_LPC210X_Target.js" title="LPC2000
 Target Script" />
 </group>
 <history>
 <version name="1.1" >
 <description>Corrected LPC21xx header files and memory maps to include GPIO ports 2
 and 3.</description>
 <description>Modified loader memory map so that .libmem sections will be placed
 correctly.</description>
 </version>
 <version name="1.0" >
 <description>Initial Release.</description>
 </version>
 </history>
 <documentation>
 <section name="Supported Targets">
 <p>This CPU support package supports the following LPC2000 targets:

 LPC2103
 LPC2104
 LPC2105
 LPC2106
 LPC2131
 LPC2132
 LPC2134
 LPC2136
 LPC2138

 </p>
 </section>
 </documentation>

CrossWorks for ARM Reference Manual Appendices

1397

</package>

CrossFire_LPC2138_package.xml

<!DOCTYPE CrossStudio_Package_Description_File>
<package cpu_manufacturer="Philips" cpu_family="LPC2000" cpu_name="LPC2138"
 board_manufacturer="Rowley Associates" board_name="CrossFire LPC2138"
 dependencies="Philips_LPC2000" version="1.0">
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/CrossFire_LPC2138.hzp" title="CrossFire
 LPC2138 Samples Solution" />
 <file file_name="$(SamplesDir)/CrossFire_LPC2138/ctl/ctl.hzp" title="CrossFire LPC2138 CTL
 Samples Solution" />
</package>

Package elements

The package element describes the support package, its contents, and any dependencies it has on other

packages. Valid attributes for this element are:

Attribute Description

author The author of the package.

board_manufacturer The manufacturer of the board supported by the
package (if omitted, CPU manufacturer will be used).

board_name The name of the specific board supported by the
package (only required for board-support packages).

company_name The name of the company to group the package under
in the package dialogs. (if omitted, the Board/CPU
manufacturer will be used).

cpu_family The family name of the CPU supported by the package
(optional).

cpu_manufacturer The manufacturer of the CPU supported by the
package.

cpu_name The name of the specific CPU supported by the
package (may be omitted if the CPU family is specified).

crossstudio_versions A string describing which version of CrossStudio
supports the package (optional). The format of the
string is target_id_number:version_range_string.

description A description of the package (optional).

dependencies A semicolon-separated list of packages the package
requires to be installed in order to work (optional).

installation_directory The directory in which the package should be installed
(optional - if undefined, defaults to "$(PackagesDir)").

CrossWorks for ARM Reference Manual Appendices

1398

replaces A semicolon-separated list of package names listing
the packages that this package replaces. The replaced
packages are marked as legacy packages and are only
visible in the package manager if the if the Include
Legacy Packages option is selected (optional).

deprecated If set to true, indicates that the package has been
deprecated. Deprecated packages are marked as
legacy packages and are only visible in the package
manager if the if the Include Legacy Packages option is
selected (optional).

title A short description of the package (optional).

uninstalls A semicolon-separated list of packages names listing
the packages to be uninstalled if this package is
installed (optional).

version The package version number.

File elements

The file element is used by CrossStudio for documentation purposes by adding links to files of interest within

the package such as example project files and documentation.

Attribute Description

file_name The file path of the file.

title A description of the file.

Optionally, file elements can be grouped into categories using the group element.

Group elements

The group element is used for categorizing files described by file elements into a particular group.

Attribute Description

title Title of the group.

History elements

The history element is used to hold a description of the package's version history.

The history element should contain a collection of version elements.

Version element

The version element is used to hold the description of a particular version of the package.

CrossWorks for ARM Reference Manual Appendices

1399

Attribute Description

name The name of the version being described.

The version element should contain a collection of description elements.

Description elements

Each description element contains text that describes a feature of the package version.

Documentation elements

The documentation element is used to provide arbitrary documentation for the package.

The documentation element should contain a collection of one or more section elements.

Section elements

The section element contains package documentation in XHTML format.

Attribute Description

name The title of the documentation section.

target_id_number

The following table lists the possible target ID numbers:

Target ID

AVR 4

ARM 8

MSP430 9

MAXQ20 18

MAXQ30 19

version_range_string

The version_range_string can be any of the following:

version_number:The package will only work on version_number.

version_number-:The package will work on version_number or any future version.

-version_number:The package will work on version_number or any earlier version.

low_version_number-high_version_number:The package will work on low_version_number,

high_version_number or any version in between.

CrossWorks for ARM Reference Manual Appendices

1400

External Tools file format
CrossStudio external-tool configuration files are structured using XML syntax for its simple construction and

parsing.

Tool configuration files

The CrossStudio application will read the tool configuration file when it starts up. By default, CrossStudio will

read the file $(StudioUserDir)/tools.xml.

Structure

All tools are wrapped in a tools element:

<tools>

</tools>

Inside the tools element are item elements that define each tool:

<tools>
 <item name="logical name">

 </item>
</tools>

The item element requires an name attribute, which is an internal name for the tool, and has an optional wait

element. When CrossStudio invokes the tool on a file or project, it uses the wait element to determine whether

it should wait for the external tool to complete before continuing. If the wait attribute is not provided or is set to

yes, CrossStudio will wait for external tool to complete.

The way that the tool is presented in CrossStudio is configured by elements inside the

element.

menu

The menu element defines the wording used inside menus. You can place a shortcut to the menu using an

ampersand, which must be escaped using & in XML, before the shortcut letter. For instance:

<menu>&PC-lint (Unit Check)</menu>

text

The optional text element defines the wording used in contexts other than menus, for instance when the tool

appears as a tool button with a label. If text is not provided, the tool's textual appearance outside the menu is

taken from the menu element (and is presented without an shortcut underline). For instance:

CrossWorks for ARM Reference Manual Appendices

1401

<text>PC-lint (Unit Check)</text>

tip

The optional tip element defines the status tip, shown on the status line, when moving over the tool inside

CrossStudio:

<tip>Run a PC-lint unit checkout on the selected file or folder</tip>

key

The optional key element defines the accelerator key, or key chord, to use to invoke the tool using the keyboard.

You can construct the key sequence using modifiers Ctrl, Shift, and Alt, and can specify more than one key in a

sequence (note: Windows and Linux only; OS X does not provide key chords). For instance:

<key>Ctrl+L, Ctrl+I</key>

message

The optional message element defines the text shown in the tool log in CrossStudio when running the tool. For

example:

<message>Linting</message>

match

The optional match element defines which documents the tool will operator on. The match is performed using

the file extension of the document. If the file extension of the document matches one of the wildcards provided,

the tool will run on that document. If there is no match element, the tool will run on all documents. For instance:

<match>*.c;*.cpp</match>

output

The optional output element defines the name of the output file created by the tool. If this element is specified

the the output file will be opened in the editor when the tool has finished execution. The macros $(InputPath)

and $(InputBaseName) can be used to name the output file. For Instance:

<output>$(InputBaseName).txt</output>

commands

The commands element defines the command line to run to invoke the tool. The command line is expanded

using macros applicable to the file derived from the current build configuration and the project settings. Most

importantly, the standard $(InputPath) macro expands to a full pathname for the target file.

CrossWorks for ARM Reference Manual Appendices

1402

Additional macros constructed by CrossStudio are:

$(DEFINES) is the set of -D options applicable to the current file, derived from the current configuration

and project settings.

$(INCLUDES) is the set of -I options applicable to the current file, derived from the current configuration

and project settings.

For instance:

<commands>
 "$(LINTDIR)/lint-nt" -i$(LINTDIR)/lnt "$(LINTDIR)/lnt/co-gcc.lnt"
 $(DEFINES) $(INCLUDES) -D__GNUC__ -u -b +macros -w2 -e537 +fie +ffn -width(0,4) -hF1
 "-format=%f:%l:%C:s%t:s%m" "$(InputPath)"
</commands>

In this example we intend $(LINTDIR) to point to the directly where PC-lint is installed and for $(LINTDIR) to be

defined as a CrossStudio global macro. You can set global macros using Project > Macros... or Tools > Options >

Building > Global Macros.

Note that additional " entities are placed around pathnames in the commands sectionthis is to ensure that

paths that contain spaces are correctly interpreted when the command is executed by CrossStudio.

CrossWorks for ARM Reference Manual Appendices

1403

Debugger Type Interpretation file format
CrossStudio debugger type interpretation files are used by the debugger to provide list and string displays of C+

+ template container types. The files are structured using XML syntax for its simple construction and parsing.

Consider the following C++ template type

template <class _Type> class VeryBasicArray
{
private:
 size_t m_Count;
 _Type *m_pData;
public:
 VeryBasicArray(size_t count)
 : m_Count(count)
 , m_pData(new _Type[count])
 {
 }
}

VeryBasicArray<int> basicArray(5);

To display a variable of this type as a list the type interpretation file contains the following entry

<List Name="VeryBasicArray<*>"
 Head="(($(T)*)HEAD).m_pData"
 Data="(*($(T0)*)CURRENT)"
 Length="(($(T)*)HEAD).m_Count"
 Next="CURRENT+sizeof($(T0))"/>

The Name attribute is used to match the template type name note that the < and > xml entities are used to

match the template argument.

When an entry has been matched the head of the list is located by evaluating the debugger expression in the

Head attribute. The debugger expressions can contain macros that refer to the matched template type and will

use the symbols HEAD and CURRENT.

The macro $(T) refers to the instantiated template type, for the above example $(T)=VeryBasicArray<int>.

The template arguments are referred to using macros $(T0), for the above example $(T0)=int.

The symbol HEAD is the address of the variable being displayed, for the above example if the variable

basicArray is allocated at address 0x20004000 then the Head expression

 ((VeryBasicArray<int>*)0x20004000).m_pData

will be evaluated by the debugger, note that the . operator and the -> operator are equivalent in debugger

expressions.

To display an element the debugger will evaluate the Data expression. This expression contains the symbol

CURRENT which is the address of the element to display, for the above example the first element is at the

address basicArray.m_pData which is allocated at address 0x20008000 then the Data expression

CrossWorks for ARM Reference Manual Appendices

1404

 (*(int*)0x20008000)

will be evaluated by the debugger.

To increment the CURRENT symbol the Next expression

 0x20008000+sizeof(int)

will be evaluated by the debugger.

Before the CURRENT symbol is incremented the debugger needs to check if it is at the end of list. The can be

done either as a Condition expression or as a Length expression

 ((VeryBasicArray<int>*)0x20004000).m_Count

The String display is simpler than the List display since the characters are contiguous and optionally null

terminated. The Data and Length expressions are supported, for example

<String Name="string"
 Data="*(($(T) *)HEAD)._M_start_of_storage._M_data"
 Length="(($(T) *)HEAD)._M_finish-(($(T) *)HEAD)._M_start_of_storage._M_data"/>

is used to display STLPort std::string types.

CrossWorks for ARM Reference Manual Appendices

1405

Building Environment Options

Build

Property Description

Automatically Build Before Debug
Environment/Build/Build Before

DebugBoolean

Enables auto-building of a project before downloading
if it is out of date.

Confirm Automatically Build Before Debug
Environment/Build/Show Build Before

DebugBoolean

Enables the display of the auto-building popup.

Confirm Debugger Stop
Environment/Build/Confirm Debugger

StopBoolean

Present a warning when you start to build that requires
the debugger to stop.

Display ETA
Environment/Build/Display ETABoolean

Selects whether to attempt to compute and display
the ETA on building.

Display Progress Bar
Environment/Build/Display Progress

BarBoolean

Selects whether to display progress bar on building.

Echo Build Command Lines
Environment/Build/Show Command

LinesBoolean

Selects whether build command lines are written to
the build log.

Echo Raw Error/Warning Output
Environment/Build/Show Unparsed Error

OutputBoolean

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Find Error After Building
Environment/Build/Find Error After

BuildBoolean

Moves the cursor to the first diagnostic after a build
completes with errors.

Global Macros
Environment/Macros/Global MacrosStringList

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Keep Going On Error
Environment/Build/Keep Going On

ErrorBoolean

Build doesn't stop on error.

Save Project File Before Building
Environment/Build/Save Project File On

BuildBoolean

Selects whether to save the project file prior to build.

Show Build Information
Environment/Build/Show Build

InformationBoolean

Show build information.

CrossWorks for ARM Reference Manual Appendices

1406

Build Acceleration

Property Description

Disable Unity Build
Environment/Build/Disable Unity

BuildBoolean

Ignore Unity Build project properties and always build
individual project components.

Parallel Building Threads
Environment/Build/Building

ThreadsIntegerRange

The number of threads to launch when building.

Compatibility

Property Description

Installation Directory
ARM/Build/StudioDir DirectoryDirPath

The installation directory to be used for building - the
value $(StudioDir) is set to.

Window

Property Description

Show Build Log On Build
Environment/Show Transcript On

BuildBoolean

Show the build log when a build starts.

CrossWorks for ARM Reference Manual Appendices

1407

Debugging Environment Options

Breakpoint
Property Description

Disassembly Breakpoints
Environment/Debugger/Disassembly

BreakpointsBoolean

What to do with disassembly breakpoints on debug
stop/start.

Focus On Breakpoint
Environment/Debugger/Focus On

BreakpointBoolean

Focus IDE when breakpoint is hit.

Display
Property Description

Close Disassembly On Mode Switch
Environment/Debugger/Close Disassembly On

Mode SwitchBoolean

Close Disassembly On Mode Switch.

Data Tips Display a Maximum Of
Environment/Debugger/Maximum Array

Elements DisplayedIntegerRange

Selects the maximum number of array elements
displayed in a data tip.

Default Display Mode
Environment/Debugger/Default Variable

Display ModeEnumeration

Selects the format that data values are shown in.

Display Floating Point Number In
Environment/Debugger/Floating Point

Format DisplayCustom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Environment/Debugger/Maximum Backtrace

CallsIntegerRange

Selects the maximum number of calls when
backtracing.

Prompt To Display If More Than
Environment/Debugger/Array Elements

Prompt SizeIntegerRange

The array size to display with prompt.

Show Data Tips In Text Editor
Environment/Debugger/Show Data TipsBoolean

Show Data Tips In Text Editor.

Show ELF Header
ElfDwarf/Environment/Show ELF

HeaderBoolean

Display ELF Headers when executable and object files
are displayed in text editor.

Show Folds In Disassembly
Environment/Debugger/Disassembly Show

FoldsBoolean

Show Folds In Disassembly.

CrossWorks for ARM Reference Manual Appendices

1408

Show Labels In Disassembly
Environment/Debugger/Disassembly Show

LabelsBoolean

Show Labels In Disassembly.

Show Source In Disassembly
Environment/Debugger/Disassembly Show

SourceBoolean

Show Source In Disassembly.

Show char * as null terminated string
Environment/Debugger/Display Char Ptr As

StringBoolean

Show char * as null terminated string.

Source Path
Environment/Debugger/Source PathStringList

Global search path to find source files.

Use objdump For File Disassembly
ElfDwarf/Environment/Use Objdump For

DisassemblyBoolean

Specifies whether to use objdump to disassemble files
rather than the built-in disassembler.

Extended Data Tips

Property Description

ASCII
Environment/Debugger/Extended Tooltip

Display Mode/ASCIIBoolean

Display ASCII extended data tips.

Binary
Environment/Debugger/Extended Tooltip

Display Mode/BinaryBoolean

Display Binary extended data tips.

Decimal
Environment/Debugger/Extended Tooltip

Display Mode/DecimalBoolean

Display Decimal extended data tips.

Hexadecimal
Environment/Debugger/Extended Tooltip

Display Mode/HexadecimalBoolean

Display Hexadecimal extended data tips.

Octal
Environment/Debugger/Extended Tooltip

Display Mode/OctalBoolean

Display Octal extended data tips.

Unsigned Decimal
Environment/Debugger/Extended Tooltip

Display Mode/Unsigned DecimalBoolean

Display Unsigned Decimal extended data tips.

Target

Property Description

CrossWorks for ARM Reference Manual Appendices

1409

Automatically Connect When Starting Debug
Target/Auto ConnectBoolean

Enable automatic connection to last connected target
when debug start pressed.

Automatically Disconnect When Stopping Debug
Target/Auto DisconnectBoolean

Enable automatic disconnection on debug stop.

Background Scan for Debug Pod Presence
Environment/Targets Window/Background

Target ScanBoolean

Scan USB devices to detect if debug pods are plugged
in which may affect CrossStudio response.

Check Project And Target Processor Compatibility
Target/Enable Processor CheckBoolean

Verify that the project-defined processor is compatible
with the connected target processor.

Enable Differential Download
Target/Enable Differential DownloadBoolean

Verify the contents of memory prior to download and
only download the code and data that is different.

Identify Target On Connect
Target/IdentifyBoolean

Note that turning this off may make a malfunctioning
target connection appear as if it is working.

Step Using Hardware Step
Environment/Debugger/Step Using Hardware

StepBoolean

Step using hardware single stepping rather than
setting breakpoints.

Switch Project To Text Editor
Environment/Debugger/Switch ProjectBoolean

Switch Debugger Project To Text Editor.

Verify Program After Download
Target/Enable Load VerificationBoolean

Verify that a program has been successfully
downloaded after download.

Window

Property Description

Clear Debug Terminal On Run
Environment/Clear Debug Terminal On

RunBoolean

Clear the debug terminal automatically when a
program is run.

Hide Output Window On Successful Load
Debugging/Hide Transcript On Successful

LoadBoolean

Hide the Output window when a load completes
without error.

Show Target Log On Load
Debugging/Show Transcript On LoadBoolean

Show the target log when a load starts.

CrossWorks for ARM Reference Manual Appendices

1410

IDE Environment Options

Browser

Property Description

Text Size
Environment/Browser/Text SizeEnumeration

Sets the text size of the integrated HTML and help
browser.

Underline Hyperlinks In Browser
Environment/Browser/Underline Web

LinksBoolean

Enables underlining of hypertext links in the
integrated HTML and help browser.

File Extension

Property Description

ELF Archive File Extensions
ElfDwarf/Environment/Archive File

ExtensionsStringList

The file extensions used for ELF archive files.

ELF Executable File Extensions
ElfDwarf/Environment/Executable File

ExtensionsStringList

The file extensions used for ELF executable files.

ELF Object File Extensions
ElfDwarf/Environment/Object File

ExtensionsStringList

The file extensions used for ELF object files.

File Search

Property Description

Collapse Search Results
Find In Files/Collapse ResultsBoolean

Whether to initially collapse search results.

Files To Exclude
Find In Files/Exclude File TypesStringList

The wildcard used to exclude files in Find In Files
searches.

Files To Search
Find In Files/File TypeStringList

The wildcard used to match files in Find In Files
searches.

Find History
Find In Files/Find HistoryStringList

The list of strings recently used in searches.

Flat Search Result Output
Find In Files/Flat OutputBoolean

Whether to display file search results as a flat list.

CrossWorks for ARM Reference Manual Appendices

1411

Folder History
Find In Files/Folder HistoryStringList

The set of folders recently used in file searches.

Match Case
Find In Files/Match CaseBoolean

Whether the case of letters must match exactly when
searching.

Match Whole Word
Find In Files/Match Whole WordBoolean

Whether the whole word must match when searching.

Replace History
Find In Files/Replace HistoryStringList

The list of strings recently used in searches.

Search Dependencies
Find In Files/Search DependenciesBoolean

Controls searching of dependent files."

Search In
Find In Files/ContextEnumeration

Where to look to find files.

Use Regular Expressions
Find In Files/Use RegExpBoolean

Whether to use a regular expression or plain text
search.

Find And Replace
Property Description

Greedy Regular Expressions
Find/Greedy RegExpBoolean

Enables greedy matching when using regular
expressions.

Internet
Property Description

Automatically Check For Packages
Environment/Internet/Check PackagesBoolean

Specifies whether to enable downloading of the list of
available packages.

Automatically Check For Updates
Environment/Internet/Check UpdatesBoolean

Specifies whether to check for software updates.

Check For Latest News
Environment/Internet/RSS UpdateBoolean

Specifies whether to update the latest news window.

Enable Connection Debugging
Environment/Internet/Enable

DebuggingBoolean

Controls debugging traces of internet connections and
downloads.

External Web Browser
Environment/External Web BrowserFileName

The path to the external web browser to use when
accessing non-local files.

HTTP Caching
Environment/Internet/HTTP CachingBoolean

Specifies if caching should be permitted when carrying
out HTTP requests.

HTTP Proxy Host
Environment/Internet/HTTP Proxy

ServerString

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

CrossWorks for ARM Reference Manual Appendices

1412

HTTP Proxy Port
Environment/Internet/HTTP Proxy

PortIntegerRange

Specifies the HTTP proxy server's port number.

Maximum Download History Items
Environment/Internet/Max Download History

ItemsIntegerRange

The maximum amount of download history kept in the
downloads window.

Launcher

Property Description

Confirm Check Solution Target
Environment/Launcher/Confirm Check

Solution TargetBoolean

Specifies whether the CrossStudio launcher should
present a warning if the solution being launched
targets a device it does not support.

Launch Latest Installations Only
Environment/Launcher Use Latest

Installations OnlyBoolean

Specifies whether the CrossStudio launcher should
only consider the latest installations when deciding
which one to use.

Launcher Enabled
Environment/Launcher EnabledBoolean

Specifies whether the CrossStudio launcher should
be used when the operating system or an external
application requests a file to be opened.

Package Manager

Property Description

Check Solution Package Dependencies
Environment/Package/Check Solution

Package DependenciesBoolean

Specifies whether to check package dependencies
when a solution is loaded.

Delete Package Downloads
Environment/Package/Delete

DownloadsBoolean

Specifies whether to delete downloaded package files
after they have been installed.

Install Default Packages
Environment/Package/Install Default

PackagesBoolean

Specifies whether default packages should be installed
on startup if they are not installed already.

Package Directory
Environment/Package/Destination

DirectoryString

Specifies the directory packages are installed to.

Parallel Download And Install
Environment/Package/Parallel Download And

InstallBoolean

Specifies whether the package manager should
download and install packages in parallel.

Show Logos
Environment/Package/Show LogosEnumeration

Specifies whether the package manager should display
company logos.

CrossWorks for ARM Reference Manual Appendices

1413

Verify Package Downloads
Environment/Package/Verify

DownloadsBoolean

Specifies whether to carry out an MD5 sum check on
downloaded package files.

Print

Property Description

Bottom Margin
Environment/Printing/Bottom

MarginIntegerRange

The page's bottom margin in millimetres.

Left Margin
Environment/Printing/Left MarginIntegerRange

The page's left margin in millimetres.

Page Orientation
Environment/Printing/OrientationEnumeration

The page's orientation.

Page Size
Environment/Printing/Page SizeEnumeration

The page's size.

Right Margin
Environment/Printing/Right

MarginIntegerRange

The page's right margin in millimetres.

Top Margin
Environment/Printing/Top MarginIntegerRange

The page's top margin in millimetres.

Startup

Property Description

Allow Multiple CrossStudios
Environment/Permit Multiple Studio

InstancesBoolean

Allow more than one CrossStudio to run at the same
time.

Load Last Project On Startup
Environment/Load Last Project On

StartupBoolean

Specifies whether to load the last project the next time
CrossStudio runs.

New Project Directory
Environment/General/Solution

DirectoryString

The directory where projects are created.

Sort Project File On Save
Environment/Sort Project FileBoolean

The project file is sorted when it is saved.

Splash Screen
Environment/Splash ScreenEnumeration

How to display the splash screen on startup.

CrossWorks for ARM Reference Manual Appendices

1414

Status Bar

Property Description

(Visible)
Environment/Status BarBoolean

Show or hide the status bar.

Show Build Status Pane
Environment/General/Status Bar/Show Build

StatusBoolean

Show or hide the Build pane in the status bar.

Show Caret Position Pane
Environment/General/Status Bar/Show Caret

PosBoolean

Show or hide the Caret Position pane in the status bar.

Show Insert/Overwrite Status Pane
Environment/General/Status Bar/Show

Insert ModeBoolean

Show or hide the Insert/Overwrite pane in the status
bar.

Show Read-Only Status Pane
Environment/General/Status Bar/Show Read

OnlyBoolean

Show or hide the Read Only pane in the status bar.

Show Size Grip
Environment/General/Status Bar/Show Size

GripBoolean

Show or hide the status bar size grip.

Show Target Pane
Environment/General/Status Bar/Show

TargetBoolean

Show or hide the Target pane in the status bar.

Show Time Pane
Environment/General/Status Bar/Show

TimeBoolean

Show or hide the Time pane in the status bar.

Title Bar

Property Description

Show Full Solution Path
Environment/General/Title Bar/Show Full

Solution PathBoolean

Show the full solution path in title bar.

User Interface

Property Description

Application Main Font
Environment/Application Main FontFont

The font to use for the user interface as a whole.

CrossWorks for ARM Reference Manual Appendices

1415

Application Monospace Font
Environment/Application Monospace

FontFixedPitchFont

The fixed-size font to use for the user interface as a
whole.

Error Display Timeout
Environment/Error Display

TimeoutIntegerRange

The minimum time, in seconds, that errors are shown
for in the status bar.

Errors Are Displayed
Environment/Error Display ModeEnumeration

How errors are reported in CrossStudio.

File Size Display Units
Environment/Size Display UnitEnumeration

How to display sizes of items in the user interface. SI
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate SI defines 1kB=1024 bytes.

Number File Names in Menus
Environment/Number MenusBoolean

Number the first nine file names in menus for quick
keyboard access.

Qt Style Sheet
Environment/Qt Style SheetFileName

The Qt style sheet to use in order to customize the user
interface (experimental).

Show Large Icons In Toolbars
Environment/General/Large IconsEnumeration

Show large or small icons on toolbars.

Show Ribbon
Environment/General/Ribbon/ShowBoolean

Show or hide the ribbon.

Show Window Selector On Ctrl+Tab
Environment/Show SelectorBoolean

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

Theme
Environment/Studio ThemeEnumeration

The user interface style and color theme to use.

Window Menu Contains At Most
Environment/Max Window Menu

ItemsIntegerRange

The maximum number of windows appearing in the
Windows menu.

CrossWorks for ARM Reference Manual Appendices

1416

Programming Language Environment Options

Assembly Language

Property Description

Column Guide Columns
Text Editor/Indent/Assembly Language/

Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Assembly Language/

Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Assembly Language/

Context LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Assembly Language/

Indent ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Assembly Language/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Assembly Language/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Assembly Language/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Assembly Language/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Assembly Language/

KeywordsStringList

Additional identifiers to highlight as keywords.

C and C++

Property Description

Column Guide Columns
Text Editor/Indent/C and C++/Column

GuidesString

The columns that guides are drawn for.

CrossWorks for ARM Reference Manual Appendices

1417

Indent Closing Brace
Text Editor/Indent/C and C++/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/C and C++/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/C and C++/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/C and C++/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/C and C++/

SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/C and C++/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/C and C++/Use

TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/C and C++/

KeywordsStringList

Additional identifiers to highlight as keywords.

Default

Property Description

Column Guide Columns
Text Editor/Indent/Default/Column

GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Default/Close

BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Default/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Default/Indent

ModeEnumeration

How to indent when a new line is inserted.

CrossWorks for ARM Reference Manual Appendices

1418

Indent Opening Brace
Text Editor/Indent/Default/Open

BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Default/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Default/Tab

SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Default/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Default/

KeywordsStringList

Additional identifiers to highlight as keywords.

Java
Property Description

Column Guide Columns
Text Editor/Indent/Java/Column GuidesString

The columns that guides are drawn for.

Indent Closing Brace
Text Editor/Indent/Java/Close BraceBoolean

Indent the closing brace of compound statements.

Indent Context
Text Editor/Indent/Java/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/Java/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Opening Brace
Text Editor/Indent/Java/Open BraceBoolean

Indent the opening brace of compound statements.

Indent Size
Text Editor/Indent/Java/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/Java/Tab SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/Java/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/Java/KeywordsStringList

Additional identifiers to highlight as keywords.

XML
Property Description

CrossWorks for ARM Reference Manual Appendices

1419

Column Guide Columns
Text Editor/Indent/XML/Column GuidesString

The columns that guides are drawn for.

Indent Context
Text Editor/Indent/XML/Context

LinesIntegerRange

The number of lines to use for context when indenting.

Indent Mode
Text Editor/Indent/XML/Indent

ModeEnumeration

How to indent when a new line is inserted.

Indent Size
Text Editor/Indent/XML/SizeIntegerRange

The number of columns to indent a code block.

Tab Size
Text Editor/Indent/XML/Tab SizeIntegerRange

The number of columns between tabstops.

Use Tabs
Text Editor/Indent/XML/Use TabsBoolean

Insert tabs when indenting.

User-Defined Keywords
Text Editor/Indent/XML/KeywordsStringList

Additional identifiers to highlight as keywords.

CrossWorks for ARM Reference Manual Appendices

1420

Source Control Environment Options

External Tools

Property Description

Diff Command Line
Environment/Source Code Control/

DiffCommandStringList

The diff command line.

Merge Command Line
Environment/Source Code Control/

MergeCommandStringList

The merge command line.

Preference

Property Description

Add Immediately
Environment/Source Code Control/Immediate

AddBoolean

Bypasses the confirmation dialog and immediately
adds items to source control.

Commit Immediately
Environment/Source Code Control/Immediate

CommitBoolean

Bypasses the confirmation dialog and immediately
commits items.

Get Immediately
Environment/Source Code Control/Immediate

GetBoolean

Bypasses the confirmation dialog and immediately
gets items from source control.

Lock Immediately
Environment/Source Code Control/Immediate

LockBoolean

Bypasses the confirmation dialog and immediately
locks items.

Remove Immediately
Environment/Source Code Control/Immediate

RemoveBoolean

Bypasses the confirmation dialog and immediately
removes items from source control.

Resolved Immediately
Environment/Source Code Control/Immediate

ResolvedBoolean

Bypasses the confirmation dialog and immediately
mark items resolved.

Revert Immediately
Environment/Source Code Control/Immediate

RevertBoolean

Bypasses the confirmation dialog and immediately
revert items.

Unlock Immediately
Environment/Source Code Control/Immediate

UnlockBoolean

Bypasses the confirmation dialog and immediately
unlocks items.

CrossWorks for ARM Reference Manual Appendices

1421

Update Immediately
Environment/Source Code Control/Immediate

UpdateBoolean

Bypasses the confirmation dialog and immediately
updates items.

CrossWorks for ARM Reference Manual Appendices

1422

Text Editor Environment Options

Auto Recovery
Property Description

Auto Recovery Backup Time
Text Editor/Auto Recovery Backup

TimeIntegerRange

The time in minutes between saving of auto recovery
backups files or 0 to disable generation of backup files.

Auto Recovery Keep Time
Text Editor/Auto Recovery Keep

TimeIntegerRange

The time in days to keep unrecovered backup files or 0
to disable deletion of unrecovered backup files.

Cursor Fence
Property Description

Bottom Margin
Text Editor/Margins/BottomIntegerRange

The number of lines in the bottom margin.

Keep Cursor Within Fence
Text Editor/Margins/EnabledBoolean

Enable margins to fence and scroll around the cursor.

Left Margin
Text Editor/Margins/LeftIntegerRange

The number of characters in the left margin.

Right Margin
Text Editor/Margins/RightIntegerRange

The number of characters in the right margin.

Top Margin
Text Editor/Margins/TopIntegerRange

The number of lines in the right margin.

Editing
Property Description

Allow Drag and Drop Editing
Text Editor/Drag Drop EditingBoolean

Enables dragging and dropping of selections in the
text editor.

Bold Popup Diagnostic Messages
Text Editor/Bold Popup DiagnosticsBoolean

Displays popup diagnostic messages in bold for easier
reading.

Column-mode Tab
Text Editor/Column Mode TabBoolean

Tab key moves to the next textual column using the
line above.

Confirm Modified File Reload
Text Editor/Confirm Modified File

ReloadBoolean

Display a confirmation prompt before reloading a file
that has been modified on disk.

CrossWorks for ARM Reference Manual Appendices

1423

Copy Action When Nothing Selected
Text Editor/Copy ActionEnumeration

What Copy copies when nothing is selected.

Cut Action When Nothing Selected
Text Editor/Cut ActionEnumeration

What Cut cuts when nothing is selected.

Cut Single Blank Line
Text Editor/Cut Blank LinesBoolean

Selects whether to place text on the clipboard when
a single blank line is cut. When set to Yes, cutting
a single blank line will put the blank line on the
clipboard. When set to No, cutting a single blank line
deletes the line and does not place it on the clipboard.

Diagnostic Cycle Mode
Text Editor/Diagnostic Cycle

ModeEnumeration

Iterates through diagnostics either from most severe
to least severe or in reported order.

Edit Read-Only Files
Text Editor/Edit Read OnlyBoolean

Allow editing of read-only files.

Enable Virtual Space
Text Editor/Enable Virtual SpaceBoolean

Permit the cursor to move into locations that do not
currently contain text.

Numeric Keypad Editing
Text Editor/Numeric Keypad EnabledBoolean

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

Tab Key Indents Preprocessor Directives
Text Editor/Tab Key Indents Preprocessor

DirectivesBoolean

Enables or disables the indentation of C preprocessor
directives when using tab key indentation on a
selection.

Undo And Redo Behavior
Text Editor/Undo ModeEnumeration

How Undo and Redo group your typing when it is
undone and redone.

Find And Replace
Property Description

Case Sensitive Matching
Text Editor/Find/Match CaseBoolean

Enables or disables the case sensitivity of letters when
searching.

Find History
Text Editor/Find/HistoryStringList

The list of strings recently used in searches.

Regular Expression Matching
Text Editor/Find/Use RegExpBoolean

Enables regular expression matching rather than plain
text matching.

Replace History
Text Editor/Replace/HistoryStringList

The list of strings recently used in replaces.

Whole Word Matching
Text Editor/Find/Match Whole WordBoolean

Enables or disables whole word matching when
searching.

Formatting
Property Description

CrossWorks for ARM Reference Manual Appendices

1424

Access Modifier Offset
Text Editor/Formatting/

AccessModifierOffsetInteger

The extra indent or outdent of access modifiers, e.g.
public:.

Additional Formatting Styles
Text Editor/Additional Formatting

StylesStringList

Additional styles to pass to clang-format.

Align After Open Bracket
Text Editor/Formatting/

AlignAfterOpenBracketBoolean

If enabled, horizontally aligns arguments after an open
bracket.

Align Consecutive Assignments
Text Editor/Formatting/

AlignConsecutiveAssignmentsBoolean

If enabled, aligns consecutive assignments.

Align Consecutive Declarations
Text Editor/Formatting/

AlignConsecutiveDeclarationsBoolean

If enabled, aligns consecutive declarations.

Align Escaped Newlines Left
Text Editor/Formatting/

AlignEscapedNewlinesLeftBoolean

If enabled, aligns escaped newlines as far left as
possible otherwise puts them into the right-most
column.

Align Operands
Text Editor/Formatting/

AlignOperandsBoolean

If enabled, horizontally align operands of binary and
ternary expressions.

Align Trailing Comments
Text Editor/Formatting/

AlignTrailingCommentsBoolean

If enabled, aligns trailing comments.

Allow All Parameters Of Declaration On Next Line
Text Editor/Formatting/

AllowAllParametersOfDeclarationOnNextLineBoolean

Allow putting all parameters of a function declaration
onto the next line even if Bin-pack Parameters is
disabled.

Allow Short 'if' Statements On A Single Line
Text Editor/Formatting/

AllowShortIfStatementsOnASingleLineBoolean

If enabled, short 'if' statements are put on a single line.

Allow Short Blocks On A Single Line
Text Editor/Formatting/

AllowShortBlocksOnASingleLineBoolean

If enabled, allows contracting simple braced
statements to a single line.

Allow Short Case Labels On A Single Line
Text Editor/Formatting/

AllowShortCaseLabelsOnASingleLineBoolean

If enabled, short case labels will be contracted to a
single line.

Allow Short Functions On A Single Line
Text Editor/Formatting/

AllowShortFunctionsOnASingleLineEnumeration

Optionally compress small functions to a single line.

Allow Short Loop Statements On A Single Line
Text Editor/Formatting/

AllowShortLoopsOnASingleLineBoolean

If enabled, short loop statements are put on a single
line.

CrossWorks for ARM Reference Manual Appendices

1425

Always Break After Return Type
Text Editor/Formatting/

AlwaysBreakAfterReturnTypeEnumeration

The function declaration return type breaking style to
use.

Always Break Before Multiline Strings
Text Editor/Formatting/

AlwaysBreakBeforeMultilineStringsBoolean

If enabled, always break before multiline strings.

Always Break Template Declarations
Text Editor/Formatting/

AlwaysBreakTemplateDeclarationsBoolean

If enabled, always break after the 'template<...>' of a
template declaration.

Bin-Pack Arguments
Text Editor/Formatting/

BinPackArgumentsBoolean

If disabled, a function call?s arguments will either be all
on the same line or will have one line each.

Bin-Pack Parameters
Text Editor/Formatting/

BinPackParametersBoolean

If disabled, a function call's or function definition's
parameters will either all be on the same line or will
have one line each.

Break Before Binary Operators
Text Editor/Formatting/

BreakBeforeBinaryOperatorsBoolean

The way to wrap binary operators.

Break Before Braces
Text Editor/Formatting/

BreakBeforeBracesEnumeration

The brace breaking style to use.

Break Before Inheritance Comma
Text Editor/Formatting/

BreakBeforeInheritanceCommaBoolean

If enabled, the class inheritance expression will break
before : and , if there is multiple inheritance.

Break Before Ternary Operators
Text Editor/Formatting/

BreakBeforeTernaryOperatorsBoolean

If enabled, ternary operators will be placed after line
breaks.

Break Constructor Initializers Before Comma
Text Editor/Formatting/

BreakConstructorInitializersBeforeCommaBoolean

If enabled, always break constructor initializers before
commas and align the commas with the colon.

Break String Literals
Text Editor/Formatting/

BreakStringLiteralsBoolean

Allow breaking string literals when formatting.

C++11 Braced List Style
Text Editor/Formatting/

Cpp11BracedListStyleBoolean

If enabled, format braced lists as best suited for C++11
braced lists.

Column Limit
Text Editor/Formatting/ColumnLimitInteger

The column limit which limits the width of formatted
lines.

Comment Pragmas
Text Editor/Formatting/CommentPragmasString

A regular expression that describes comments with
special meaning, which should not be split into lines or
otherwise changed.

CrossWorks for ARM Reference Manual Appendices

1426

Compact Namespaces
Text Editor/Formatting/

CompactNamespacesBoolean

If enabled, consecutive namespace declarations will
be on the same line. If disabled, each namespace is
declared on a new line.

Constructor Initializer All On One Line Or One Per Line
Text Editor/Formatting/

ConstructorInitializerAllOnOneLineOrOnePerLineBoolean

If enabled and the constructor initializers don't fit on a
line, put each initializer on its own line.

Constructor Initializer Indent Width
Text Editor/Formatting/

ConstructorInitializerIndentWidthInteger

The number of characters to use for indentation of
constructor initializer lists.

Continuation Indent Width
Text Editor/Formatting/

ContinuationIndentWidthInteger

Indent width for line continuations.

Derive Pointer Alignment
Text Editor/Formatting/

DerivePointerAlignmentBoolean

If enabled, analyze the formatted file for the most
common alignment of address of and dereference.
PointerAlignment is then used only as fallback.

Empty Lines At End Of File
Text Editor/Extra Formatting/

LinesAtEOFIntegerRange

The number of lines to add at the end of the file.

Fix Namespace Comments
Text Editor/Formatting/

FixNamespaceCommentsBoolean

If enabled, add missing namespace end comments and
fix invalid existing ones.

For-Each Macros
Text Editor/Formatting/

ForEachMacrosStringList

A list of macros that should be interpreted as foreach
loops rather than function calls.

Formatting Indent Width
Text Editor/Formatting/IndentWidthInteger

The number of columns the code formatter uses for
indentation. Note that this is not the indent width
used by the text editor, that value is specified in the
'Languages' environment option group.

Formatting Style
Text Editor/FormattingStyleEnumeration

Select a set of formatting options based on a named
standard.

Formatting Tab Width
Text Editor/Formatting/TabWidthIntegerRange

The number of columns the code formatter uses
for tab stops. Note that this is not the tab width
used by the text editor, that value is specified in the
'Languages' environment option group.

Include Is Main Regex
Text Editor/Formatting/

IncludeIsMainRegexString

Specify a regular expression of suffixes that are
allowed in the file-to-main-include mapping.

Indent Case Labels
Text Editor/Formatting/

IndentCaseLabelsBoolean

If enabled, indent case labels one level from the switch
statement.

Indent Wrapped Function Names
Text Editor/Formatting/

IndentWrappedFunctionNamesBoolean

If enabled, Indent if a function definition or declaration
is wrapped after the type.

CrossWorks for ARM Reference Manual Appendices

1427

Keep Empty Lines At The Start Of Blocks
Text Editor/Formatting/

KeepEmptyLinesAtTheStartOfBlocksBoolean

If enabled, empty lines at the start of blocks are kept.

Macro Block Begin
Text Editor/Formatting/

MacroBlockBeginString

A regular expression matching macros that start a
block.

Macro Block End
Text Editor/Formatting/MacroBlockEndString

A regular expression matching macros that end a
block.

Maximum Empty Lines To Keep
Text Editor/Formatting/

MaxEmptyLinesToKeepInteger

The maximum number of consecutive empty lines to
keep.

Namespace Indentation
Text Editor/Formatting/

NamespaceIndentationEnumeration

The indentation used for namespaces.

Penalty Break Assignment
Text Editor/Formatting/

PenaltyBreakAssignmentIntegerRange

The penalty for breaking around an assignment
operator.

Penalty Break Before First Call Parameter
Text Editor/Formatting/

PenaltyBreakBeforeFirstCallParameterIntegerRange

The penalty for breaking a function call after 'call('.

Penalty Break Before First Less-Less
Text Editor/Formatting/

PenaltyBreakFirstLessLessIntegerRange

The penalty for breaking before the first less-less.

Penalty Break Comment
Text Editor/Formatting/

PenaltyBreakCommentIntegerRange

The penalty for each line break introduced inside a
comment.

Penalty Break String
Text Editor/Formatting/

PenaltyBreakStringIntegerRange

The penalty for each line break introduced inside a
string literal.

Penalty Excess Character
Text Editor/Formatting/

PenaltyExcessCharacterIntegerRange

The penalty for each character outside of the column
limit.

Penalty Return Type On Its Own Line
Text Editor/Formatting/

PenaltyReturnTypeOnItsOwnLineIntegerRange

Penalty for putting the return type of a function onto
its own line.

Pointer Alignment
Text Editor/Formatting/

PointerAlignmentEnumeration

Pointer and reference alignment style.

Reflow Comments
Text Editor/Formatting/

ReflowCommentsBoolean

If enabled, clang-format will attempt to re-flow
comments.

Sort Includes
Text Editor/Formatting/SortIncludesBoolean

If enabled, sort #includes.

CrossWorks for ARM Reference Manual Appendices

1428

Sort Using Declarations
Text Editor/Formatting/

SortUsingDeclarationsBoolean

If enabled, sort using declarations.

Space After C Style Cast
Text Editor/Formatting/

SpaceAfterCStyleCastBoolean

If enabled, a space may be inserted after C style casts.

Space After Template Keyword
Text Editor/Formatting/

SpaceAfterTemplateKeywordBoolean

If enabled, a space will be inserted after the ?template?
keyword.

Space Before Assignment Operators
Text Editor/Formatting/

SpaceBeforeAssignmentOperatorsBoolean

If disabled spaces will be removed before assignment
operators.

Space Before Parentheses
Text Editor/Formatting/

SpaceBeforeParensEnumeration

Defines in which cases to put a space before opening
parentheses.

Space In Empty Parentheses
Text Editor/Formatting/

SpaceInEmptyParenthesesBoolean

If enabled, spaces may be inserted into '()'.

Spaces Before Trailing Comments
Text Editor/Formatting/

SpacesBeforeTrailingCommentsIntegerRange

The number of spaces before trailing line comments.

Spaces In Angles
Text Editor/Formatting/

SpacesInAnglesBoolean

If enabled, spaces will be inserted around the angle
brackets in template argument lists.

Spaces In C-style Cast Parentheses
Text Editor/Formatting/

SpacesInCStyleCastParenthesesBoolean

If enabled, spaces may be inserted into C style casts.

Spaces In Container Literals
Text Editor/Formatting/

SpacesInContainerLiteralsBoolean

If enabled, spaces are inserted inside container literals.

Spaces In Parentheses
Text Editor/Formatting/

SpacesInParenthesesBoolean

If true, spaces will be inserted after '(' and before ')'.

Spaces In Square Brackets
Text Editor/Formatting/

SpacesInSquareBracketsBoolean

If true, spaces will be inserted after '[' and before ']'.

Standard
Text Editor/Formatting/StandardEnumeration

Format compatible with this standard

Tab Style
Text Editor/Formatting/UseTabEnumeration

The way to use hard tab characters in the resulting file.

CrossWorks for ARM Reference Manual Appendices

1429

Use .clang-format File
Text Editor/Use .clang-format FileBoolean

Load code formatting style configuration from
a .clang-format file located in one of the parent
directories of the source file rather than use the
formatting options.

International
Property Description

Auto-Detect UTF-8
Text Editor/Auto-Detect UTF-8Boolean

Auto-detect UTF-8 encoding without signature.

Default Text File Encoding
Text Editor/Default CodecEnumeration

The encoding to use if not overridden by a project
property or file is not in a known format.

Verify Text File Decoding
Text Editor/Verify DecodeBoolean

Specifies whether the decoding of a text file should be
verified when file is loaded.

Mouse
Property Description

Alt+Left Click Action
Environment/Project Explorer/Alt+Left

Click ActionEnumeration

The action the editor performs on Alt+Left Click.

Alt+Middle Click Action
Environment/Project Explorer/Alt+Middle

Click ActionEnumeration

The action the editor performs on Alt+Middle Click.

Alt+Right Click Action
Environment/Project Explorer/Alt+Right

Click ActionEnumeration

The action the editor performs on Alt+Right Click.

Copy On Mouse Select
Text Editor/Copy On Mouse SelectBoolean

Automatically copy text to clipboard when marking a
selection with the mouse.

Ctrl+Left Click Action
Environment/Project Explorer/Ctrl+Left

Click ActionEnumeration

The action the editor performs on Ctrl+Left Click.

Ctrl+Middle Click Action
Environment/Project Explorer/Ctrl+Middle

Click ActionEnumeration

The action the editor performs on Ctrl+Middle Click.

Ctrl+Right Click Action
Environment/Project Explorer/Ctrl+Right

Click ActionEnumeration

The action the editor performs on Ctrl+Right Click.

Middle Click Action
Environment/Project Explorer/Middle Click

ActionEnumeration

The action the editor performs on Middle Click.

CrossWorks for ARM Reference Manual Appendices

1430

Mouse Wheel Adjusts Font Size
Text Editor/Mouse Wheel Adjusts Font

SizeBoolean

Enable or disable resizing of font by mouse wheel
when CTRL key pressed.

Shift+Middle Click Action
Environment/Project Explorer/Shift+Middle

Click ActionEnumeration

The action the editor performs on Shift+Middle Click.

Shift+Right Click Action
Environment/Project Explorer/Shift+Right

Click ActionEnumeration

The action the editor performs on Shift+Right Click.

Programmer Assistance
Property Description

ATTENTION Tag List
Text Editor/ATTENTION TagsStringList

Set the tags to display as ATTENTION comments.

Ask For Index
Text Editor/Ask For IndexBoolean

Ask to index the project if goto symbol fails in current
editor context.

Auto-Comment Text
Text Editor/Auto CommentBoolean

Enable or disable automatically swapping
commenting on source lines by typing '/' with an
active selection.

Auto-Surround Text
Text Editor/Auto SurroundBoolean

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Check Spelling
Text Editor/Spell CheckingBoolean

Enable spell checking in comments.

Code Completion Replaces Existing Word
Text Editor/Completion Replaces Existing

WordBoolean

Replace existing word with completion suggestion if
cursor is located on one.

Code Completion Suggestion Selection Key
Text Editor/Suggestion Selection

KeyEnumeration

The key used to select a code completion suggestion.

Display Code Completion Suggestions While Typing
Text Editor/Suggest Completion While

TypingBoolean

Enable code completion as you type without needing
to use the show suggestions key (Ctrl+J).

Enable Popup Diagnostics
Text Editor/Enable Popup

DiagnosticsBoolean

Enables on-screen diagnostics in the text editor.

FIXME Tag List
Text Editor/FIXME TagsStringList

Set the tags to display as FIXME comments.

Inactive Code Opacity
Text Editor/Inactive Code

OpacityIntegerRange

Specifies the opacity of code that has been
conditionally excluded by the preprocessor.

CrossWorks for ARM Reference Manual Appendices

1431

Include Preprocessor Definitions in Suggestions
Text Editor/Preprocessor Definition

SuggestionsBoolean

Include or exclude preprocessor definitions in code
completion suggestions.

Include Templates in Suggestions
Text Editor/Template SuggestionsBoolean

Include or exclude templates in code completion
suggestions.

Lint Tag List
Text Editor/LINT TagsStringList

Set the tags to display as Lint directives.

Show Inactive Code
Text Editor/Show Inactive CodeBoolean

Show code that has been conditionally excluded by
the preprocessor.

Show Symbol Declaration Tooltips
Text Editor/Show TooltipBoolean

Show tooltips when hovering over symbols.

Template Characters To Match
Text Editor/Template Suggestions

CharactersIntegerRange

The number of characters to match before suggesting
a template.

Save
Property Description

Backup File History Depth
Text Editor/Backup File DepthIntegerRange

The number of backup files to keep when saving an
existing file.

Default Line Endings
Text Editor/Default Line EndingsEnumeration

The line ending format to use for a new file or a file
where the existing line ending format cannot be
determined.

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On

SaveBoolean

Deletes trailing whitespace from each line when a file
is saved.

Format On Save
Text Editor/Format On SaveEnumeration

Formats text when a file is saved.

Tab Cleanup On Save
Text Editor/Cleanup Tabs On SaveEnumeration

Cleans up tabs when a file is saved.

Visual Appearance
Property Description

Fold Comments
Text Editor/Fold CommentsBoolean

Allow multiline comments to be collapsed.

Fold Preprocessor Directives
Text Editor/Fold Preprocessor

DirectivesBoolean

Allow preprocessor directives to be collapsed.

Font
Text Editor/FontFixedPitchFont

The font to use for text editors.

CrossWorks for ARM Reference Manual Appendices

1432

Font Rendering
Text Editor/Font RenderingEnumeration

The font rendering scheme to use in text editors.

Font Smoothing Threshold
Text Editor/Antialias ThresholdIntegerRange

The minimum size for font smoothing: font sizes
smaller than this will have antialiasing turned off.

Hide Cursor When Typing
Text Editor/Hide Cursor When TypingBoolean

Hide or show the I-beam cursor when you start to type.

Highlight All Selected Text
Text Editor/Highlight All Selected

TextBoolean

Enable or disable visually highlighting all text that
matches the current selection.

Highlight Cursor Line
Text Editor/Highlight Cursor LineBoolean

Enable or disable visually highlighting the cursor line.

Horizontal Scroll Bar
Text Editor/HScroll BarEnumeration

Show or hide the horizontal scroll bar.

Insert Caret Style
Text Editor/Insert Caret StyleEnumeration

How the caret is displayed with the editor in insert
mode.

Line Numbers
Text Editor/Line Number ModeEnumeration

How often line numbers are displayed in the margin.

Mate Match Off Screen
Text Editor/Mate Match Off ScreenBoolean

Specifies whether braces, brackets, and parentheses
are matched when off screen.

Mate Matching Mode
Text Editor/Mate Matching ModeEnumeration

Controls when braces, brackets, and parentheses are
matched.

Maximum Collapsed Fold Preview Lines
Text Editor/Maximum Collapsed Fold

Preview LinesIntegerRange

The maximum number of lines to show in a collapsed
fold preview tooltip.

Minimum Scroll Width
Text Editor/Minimum Scroll WidthIntegerRange

Specifies the minimum width of the scrolling region in
characters.

Overwrite Caret Style
Text Editor/Overwrite Caret

StyleEnumeration

How the caret is displayed with the editor in overwrite
mode.

Selection Opacity
Text Editor/Selection OpacityIntegerRange

Specifies the opacity of text selection.

Show Bookmarks In Vertical Scroll Bar
Text Editor/Show Bookmarks In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with bookmark
positions.

Show Breakpoints In Vertical Scroll Bar
Text Editor/Show Breakpoints In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with breakpoint
positions.

Show Caret Position In Vertical Scroll Bar
Text Editor/Show Caret In Vertical Scroll

BarBoolean

Annotate the vertical scroll bar with the caret's
position within the document.

CrossWorks for ARM Reference Manual Appendices

1433

Show Diagnostic Icons In Gutter
Text Editor/Diagnostic IconsBoolean

Enables display of diagnostic icons in the icon gutter.

Show Errors In Vertical Scroll Bar
Text Editor/Show Errors In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with error positions.

Show Fold Gutter
Text Editor/Fold GutterBoolean

Show or hide the left-hand gutter containing folding
controls.

Show Icon Gutter
Text Editor/Icon GutterBoolean

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show Mini Toolbar
Text Editor/Mini ToolbarBoolean

Show the mini toolbar when selecting text with the
mouse.

Show Toolbar
Text Editor/ShowWidgetStripBoolean

Show or hide the Editor toolbar in the dock window.

Show Warnings In Vertical Scroll Bar
Text Editor/Show Warnings In Vertical

Scroll BarBoolean

Annotate the vertical scroll bar with warning positions.

Use I-beam Cursor
Text Editor/Ibeam cursorBoolean

Show an I-beam or arrow cursor in the text editor.

Vertical Scroll Bar
Text Editor/VScroll BarEnumeration

Show or hide the vertical scroll bar.

View Whitespace
Text Editor/View WhitespaceBoolean

Make whitespace characters visible in the text editor.

CrossWorks for ARM Reference Manual Appendices

1434

Windows Environment Options

Autos

Property Description

Show Digit Separator
Environment/AutosWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/AutosWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/AutosWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/AutosWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/AutosWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Call Stack

Property Description

Execution Frame at Top
Environment/Call Stack/Most Recent At

TopBoolean

Controls whether the most recent call is at the top or
the bottom of the list.

Show Call Address
Environment/Call Stack/Show Call

AddressBoolean

Enables the display of the call address in the call stack.

Show Call Source Location
Environment/Call Stack/Show Call

LocationBoolean

Enables the display of the call source location in the
call stack.

Show Frame Size
Environment/Call Stack/Show Stack

UsageBoolean

Enables the display of the amount of stack used by the
call.

Show Frame Size In Bytes
Environment/Call Stack/Show Stack Usage

In BytesBoolean

Display the stack usage in bytes rather than words.

CrossWorks for ARM Reference Manual Appendices

1435

Show Parameter Names
Environment/Call Stack/Show Parameter

NamesBoolean

Enables the display of parameter names in the call
stack.

Show Parameter Types
Environment/Call Stack/Show Parameter

TypesBoolean

Enables the display of parameter types in the call stack.

Show Parameter Values
Environment/Call Stack/Show Parameter

ValuesBoolean

Enables the display of parameter values in the call
stack.

Show Stack Pointer
Environment/Call Stack/Show Stack

PointerBoolean

Enables the display of the stack pointer in the call
stack.

Show Stack Usage
Environment/Call Stack/Show Cumulative

Stack UsageBoolean

Enables the display of the amount of stack used.

Show Stack Usage In Bytes
Environment/Call Stack/Show Cumulative

Stack Usage In BytesBoolean

Display the stack usage in bytes rather than words.

Clipboard Ring
Property Description

Maximum Items Held In Ring
Environment/Clipboard Ring/Max

EntriesIntegerRange

The maximum number of items held on the clipboard
ring before they are recycled.

Preserve Contents Between Runs
Environment/Clipboard Ring/SaveBoolean

Save the clipboard ring across CrossStudio runs.

Debug Terminal
Property Description

Backscroll Buffer Lines
Debug Terminal/Backscroll Buffer

LinesIntegerRange

The number of lines you can see when you scroll
backward in the debug terminal window.

Use Window System Colors
Debug Terminal/Use Window System

ColorsBoolean

Substitute window system colors for ANSI black
background and white foreground in debug terminal.

Frame Buffer
Property Description

CrossWorks for ARM Reference Manual Appendices

1436

Maximum Frame Buffer Height
Environment/Frame Buffer Window/Maximum

HeightIntegerRange

Specifies the maximum frame buffer height.

Maximum Frame Buffer Width
Environment/Frame Buffer Window/Maximum

WidthIntegerRange

Specifies the maximum frame buffer width.

Show Frame Buffer Tooltips
Environment/Frame Buffer Window/Display

TooltipsBoolean

Specifies whether tooltips are displayed in the frame
buffer window.

Globals

Property Description

Show Digit Separator
Environment/GlobalsWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/GlobalsWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/GlobalsWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/GlobalsWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/GlobalsWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Latest News

Property Description

Article Grouping
Environment/Latest News/GroupingEnumeration

How to display the RSS feed articles.

Locals

Property Description

CrossWorks for ARM Reference Manual Appendices

1437

Show Digit Separator
Environment/LocalsWindow/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/LocalsWindow/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Struct Offsets
Environment/Watch4Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/Watch3Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/Watch2Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/Watch1Window/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/AutosWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/GlobalsWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Struct Offsets
Environment/LocalsWindow/Show Struct

OffsetsBoolean

Show offsets of structure fields in the address column.

Show Variable Address Column
Environment/LocalsWindow/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/LocalsWindow/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/LocalsWindow/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Memory

Property Description

CrossWorks for ARM Reference Manual Appendices

1438

Confirm Large Download
Environment/Memory Window/Confirm

SizeBoolean

Present a warning if you attempt to download a large
amount of memory in the memory window.

Group Auto Columns
Environment/Memory Window/Group Auto

ColumnsBoolean

Selects whether columns are grouped in automatic
column mode.

Locate Sets Entry Width
Environment/Memory Window/Locate Sets

Entry WidthBoolean

Set the memory window entry width if possible when
locating.

Locate Sets Size
Environment/Memory Window/Locate Sets

SizeBoolean

Set the memory window size when locating.

Scroll Wheel Modifies Start Address
Environment/Memory Window/Scroll Wheel

Modifies Start AddressBoolean

Selects whether the mouse scroll wheel can change
the memory window start address.

Outline
Property Description

Group #define Directives
Windows/Outline/Group DefinesBoolean

Group consecutive #define and #undef preprocessor
directives.

Group #include Directives
Windows/Outline/Group IncludesBoolean

Group consecutive #include preprocessor directives.

Group Top-Level Declarations
Windows/Outline/Group Top Level

ItemsBoolean

Group consecutive top-level variable and type
declarations.

Show Function Arguments
Windows/Outline/Show Function ArgsBoolean

Show function arguments.

Project Explorer
Property Description

Add Filename Replace Macros
Environment/Project Explorer/Filename

Replace MacrosStringList

Macros (system and global) used to replace the start of
a filename on project file addition.

Check Solution Target
Environment/Project Explorer/Check

Solution TargetBoolean

Specifies whether to check target is correct when
loading a solution.

Color Project Nodes
Environment/Project Explorer/Color

NodesBoolean

Show the project nodes colored for identification in
the Project Explorer.

CrossWorks for ARM Reference Manual Appendices

1439

Confirm Configuration Folder Delete
Project Explorer/Confirm Configuration

Folder DeleteBoolean

Display a confirmation prompt before deleting a
configuration folder cotaining properties.

Confirm File Replacement Warning
Project Explorer/Confirm File Replacement

WarningBoolean

Display a confirmation prompt before replacing
project files for import and creation

Confirm Forget Modified Properties
Project Explorer/Confirm Reject Property

ChangesBoolean

Display a confirmation prompt before forgetting
property modifications.

Context Menu Uses Common Folder
Environment/Project Explorer/Context Menu

Common FolderBoolean

Controls how common options are displayed by the
Project Explorer's context menu.

Edit Properties At Top
Environment/Project Explorer/Context Menu

Properties PositionBoolean

Controls where edit properties is displayed by the
Project Explorer's context menu.

External Editor
Environment/Project Explorer/External

EditorFileName

The file name of the application to use as the external
text editor. The external editor is started by holding
down the Shift key when opening files from the
project explorer.

Favorite Properties
Environment/Project Explorer/Favorite

PropertiesStringList

The favorite list of properties that are displayed starred
and before other properties in the Project Explorer.

Highlight Dynamic Items
Environment/Project Explorer/Show Dynamic

OverlayBoolean

Show an overlay on an item if it is populated from a
dynamic folder.

Highlight External Items
Environment/Project Explorer/Show Non-

Local OverlayBoolean

Show an overlay on an item if it is not held within the
project directory.

Output Files Folder
Environment/Project Explorer/Show Output

FilesBoolean

Show the build output files in an Output Files folder in
the project explorer.

Read-Only Data In Code
Environment/Project Explorer/Statistics

Read-Only Data HandlingBoolean

Configures whether read-only data contributes to the
Code or Data statistic.

Show Dependencies
Environment/Project Explorer/Dependencies

DisplayEnumeration

Controls how the dependencies are displayed.

Show Favorite Properties
Environment/Project Explorer/Context Menu

Show FavoritesBoolean

Controls if favorite properties are displayed by the
Project Explorer's context menu.

Show File Count on Folder
Environment/Project Explorer/Count

FilesBoolean

Show the number of files contained in a folder as a
badge in the Project Explorer.

CrossWorks for ARM Reference Manual Appendices

1440

Show Modified Properties on Folder/File
Environment/Project Explorer/Show

Modified PropertiesBoolean

Show if a folder or file has modified properties as a
badge in the Project Explorer.

Show Project Count on Solution
Environment/Project Explorer/Count

ProjectsBoolean

Show the number of projects contained in a solution
as a badge in the Project Explorer.

Show Properties
Environment/Project Explorer/Properties

DisplayEnumeration

Controls how the properties are displayed.

Show Source Control Annotation
Environment/Project Explorer/Show Source

Control AnnotationBoolean

Annotate items in the project explorer with their
source control status.

Show Statistics Rounded
Environment/Project Explorer/Statistics

FormatBoolean

Show exact or rounded sizes in the project explorer.

Source Control Status Column
Environment/Project Explorer/Show Source

Control ColumnBoolean

Show the source control status column in the project
explorer.

Starred Files Names
Environment/Project Explorer/Starred File

NamesStringList

The list of wildcard-matched file names that are
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Statistics Column
Environment/Project Explorer/Statistics

DisplayBoolean

Show the code and data size columns in the Project
Explorer.

Synchronize Explorer With Editor
Environment/Project Explorer/Sync

EditorBoolean

Synchronizes the Project Explorer with the document
being edited.

Use Common Properties Folder
Environment/Project Explorer/Common

Properties DisplayBoolean

Controls how common properties are displayed.

Properties

Property Description

Enable Favorites Group
Environment/Properties Windows/Favorites

GroupedEnumeration

Assign favorites to their own group.

Properties Displayed
Environment/Properties Windows/Property

Display FormatEnumeration

Set how the properties are displayed.

CrossWorks for ARM Reference Manual Appendices

1441

Public Setting Check
Environment/Properties Windows/Public

Setting CheckEnumeration

Warn when setting property in public configuration.

Show Property Details
Environment/Properties Windows/Show

DetailsBoolean

Show or hide the property description.

Registers 1
Property Description

Show Digit Separator
Environment/Registers1Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers1Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Registers 2
Property Description

Show Digit Separator
Environment/Registers2Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers2Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Registers 3
Property Description

Show Digit Separator
Environment/Registers3Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers3Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Registers 4
Property Description

CrossWorks for ARM Reference Manual Appendices

1442

Show Digit Separator
Environment/Registers4Window/Show Digit

SeparatorBoolean

Show digit separator in register value display.

Show Register Address Column
Environment/Registers4Window/Show Address

ColumnBoolean

Controls whether the register address column is
displayed.

Source Navigator

Property Description

Show Definitions Only
Windows/Source Navigator/Show Definitions

OnlyBoolean

Show definitions only. When set to Yes only symbols
that are defined will be included in the source
navigator display. When set to No declarations of
symbols will also be included in the source navigator
display.

Show Function Arguments
Windows/Source Navigator/Show Function

ArgsBoolean

Show function arguments.

Symbol Browser

Property Description

Code Field
Environment/Symbol Browser/Display

CodeBoolean

Selects whether the Code field is displayed.

Const Field
Environment/Symbol Browser/Display

ConstBoolean

Selects whether the Const field is displayed.

Data Field
Environment/Symbol Browser/Display

DataBoolean

Selects whether the Data field is displayed.

Frame Size Field
Environment/Symbol Browser/Display Frame

SizeBoolean

Selects whether the Frame Size field is displayed.

Range Field
Environment/Symbol Browser/Display

RangeBoolean

Selects whether the Range field is displayed.

Section Field
Environment/Symbol Browser/Display

SectionBoolean

Selects whether the Section field is displayed.

CrossWorks for ARM Reference Manual Appendices

1443

Size Field
Environment/Symbol Browser/Display

SizeBoolean

Selects whether the Size field is displayed.

Sort Criteria
Environment/Symbol Browser/

GroupingEnumeration

Selects how to sort or group the symbols displayed.

Type Field
Environment/Symbol Browser/Display

TypeBoolean

Selects whether the Type field is displayed.

Value Field
Environment/Symbol Browser/Display

ValueBoolean

Selects whether the Value field is displayed.

Terminal Emulator
Property Description

Backscroll Buffer Lines
Terminal Emulator/Backscroll Buffer

LinesIntegerRange

The number of lines you can see when you scroll
backward in the terminal emulator window.

Baud Rate
Terminal Emulator/Communications/Baud

RateEnumeration

Baud rate used when transmitting and receiving data.

Data Bits
Terminal Emulator/Communications/Data

BitsEnumeration

Number of data bits to use when transmitting and
receiving data.

Flow Control
Terminal Emulator/Communications/Flow

ControlEnumeration

The flow control method to use.

Line Feed On Carriage Return
Terminal Emulator/Line Feed On Carriage

ReturnBoolean

Append a line feed character when a carriage return
character is received.

Local Echo
Terminal Emulator/Local EchoBoolean

Displays every character typed before sending to the
remote computer.

Maximum Input Block Size
Terminal Emulator/Maximum Input Block

SizeIntegerRange

The maximum number of bytes to read at a time.

Parity
Terminal Emulator/Communications/

ParityEnumeration

Parity used when transmitting and receiving data.

Port
Terminal Emulator/Communications/

PortCOMPort

The communications port to use, e.g. /dev/ttyS0, /dev/
ttyS1, etc.

CrossWorks for ARM Reference Manual Appendices

1444

Port Used By Target Interface
Terminal Emulator/Communications/Port

Used By Target InterfaceBoolean

The COM port will be disconnected when the target
interface is connected and reconnected when the
target interface is disconnected.

Set DTR
Terminal Emulator/Communications/

DTRBoolean

Set the DTR signal.

Stop Bits
Terminal Emulator/Communications/Stop

BitsEnumeration

Number of stop bits to use when transmitting data.

Watch 1
Property Description

Show Digit Separator
Environment/Watch1Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch1Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch1Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch1Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch1Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Watch 2
Property Description

Show Digit Separator
Environment/Watch2Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch2Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch2Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

CrossWorks for ARM Reference Manual Appendices

1445

Show Variable Size Column
Environment/Watch2Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch2Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Watch 3
Property Description

Show Digit Separator
Environment/Watch3Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch3Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch3Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch3Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

Show Variable Type Column
Environment/Watch3Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Watch 4
Property Description

Show Digit Separator
Environment/Watch4Window/Show Digit

SeparatorBoolean

Show digit separator in variable value display.

Show Member Functions
Environment/Watch4Window/Show Member

FunctionsBoolean

Controls whether C++ class member functions are
displayed.

Show Variable Address Column
Environment/Watch4Window/Show Address

ColumnBoolean

Controls whether the variable address column is
displayed.

Show Variable Size Column
Environment/Watch4Window/Show Size

ColumnBoolean

Controls whether the variable size column is displayed.

CrossWorks for ARM Reference Manual Appendices

1446

Show Variable Type Column
Environment/Watch4Window/Show Type

ColumnBoolean

Controls whether the variable type column is
displayed.

Windows

Property Description

Buffer Grouping
Environment/Windows/GroupingEnumeration

How the files are grouped or listed in the Windows
window.

Show File Path as Tooltip
Environment/Windows/Show Filename

TooltipsBoolean

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show Line Count and File Size
Environment/Windows/Show SizesBoolean

Show the number of lines and size of each file in the
windows list.

CrossWorks for ARM Reference Manual Appendices

1447

Code Options

Assembler
Property Description

Additional Assembler Options
asm_additional_optionsStringList

Enables additional options to be supplied to the
assembler. This property will have macro expansion
applied to it.

Additional Assembler Options From File
asm_additional_options_from_fileProjFileName

Enables additional options to be supplied to the
assembler from a file. This property will have macro
expansion applied to it.

Assembler
arm_assembler_variantEnumeration

Specifies which assembler to use.

Backup Additional Assembler Options
asm_additional_options_backupString

Value of additional assembler options prior to generic
options processing.

Run Preprocessor
arm_preprocess_assembly_codeBoolean

The assembly code file is preprocessed before
assembly

Build
Property Description

Always Rebuild
build_always_rebuildBoolean

Specifies whether or not to always rebuild the project/
folder/file.

Batch Build Configurations
batch_build_configurationsStringList

The set of configurations to batch build.

Build Options Generic File Name
build_generic_options_file_nameProjFileName

The file name containing the generic options.

Build Quietly
build_quietlyBoolean

Suppress the display of startup banners and
information messages.

Dependency File Name
build_dependency_file_nameFileName

The file name to contain the dependencies.

Enable Unused Symbol Removal
build_remove_unused_symbolsBoolean

Enable the removal of unused symbols from the
executable.

Exclude From Build
build_exclude_from_buildBoolean

Specifies whether or not to exclude the project/folder/
file from the build.

GCC Prefix
gcc_prefixString

The string that is prepended to the gcc toolname e.g
arm-none-eabi-. The macro $(GCCPrefix) is set to this
value for external build command lines.

GCC Target
gcc_targetString

The macro $(GCCTarget) is set to this value for build
command lines.

CrossWorks for ARM Reference Manual Appendices

1448

GCC Version
gcc_versionString

The macro $(GCCVersion) is set to this value for build
command lines.

Generate Dependency File
build_generate_dependency_fileEnumeration

Generate a dependency file

Include Debug Information
build_debug_informationBoolean

Specifies whether symbolic debug information is
generated.

Inputs File
inputs_fileFileName

Specifies the inputs file to be used for Linking/
Archiving. The files listed in this file will be used rather
than the outputs of the project.

Intermediate Directory
build_intermediate_directoryDirPath

Specifies a relative path to the intermediate file
directory. This property will have macro expansion
applied to it. The macro $(IntDir) is set to this value.

Is C++ Project
is_cpp_projectEnumeration

Supply C++ include directories and libraries to the
project build.

Object File Name
build_object_file_nameFileName

Specifies a name to override the default object file
name.

Output Directory
build_output_directoryDirPath

Specifies a relative path to the output file directory.
This property will have macro expansion applied
to it. The macro $(OutDir) is set to this value. The
macro $(RootRelativeOutDir) is set relative to the Root
Output Directory if specified.

Project Can Build In Parallel
project_can_build_in_parallelEnumeration

Specifies that dependent projects can be built in
parallel. Default is No for Staging and Combining
project types, Yes for all other project types.

Project Dependencies
project_dependenciesStringList

Specifies the projects the current project depends
upon.

Project Directory
project_directoryString

Path of the project directory relative to the directory
containing the project file. The macro $(ProjectDir) is
set to the absolute path of this property.

Project Macros
macrosStringList

Specifies macro values which are expanded in
project properties and for file names in Common
configuration only. Each macro is defined as
name=value and are seperated by ;.

Project Type
project_typeEnumeration

Specifies the type of project to build. The options are
Executable, Library, Object file, Staging, Combining,
Externally Built Executable, Externally Built Library,
Externally Built Object file.

Property Groups File
property_groups_file_pathProjFileName

The file containing the property groups for this project.
This is applicable to Executable and Externally Built
Executable project types only.

Root Output Directory
build_root_output_directoryDirPath

Allows a common root output directory to be specified
that can be referenced using the $(RootOutDir) macro.

CrossWorks for ARM Reference Manual Appendices

1449

Suppress Warnings
build_suppress_warningsBoolean

Don't report warnings.

Toolchain Directory
build_toolchain_directoryDirPath

Specify the root of the toolchain directory. This
property will have macro expansion applied to it. The
macro $(ToolChainDir) is set to this value.

Treat Warnings as Errors
build_treat_warnings_as_errorsBoolean

Treat all warnings as errors.

Use External GCC
use_external_gccBoolean

The build will issue gcc commands.

Code Analyzer

Property Description

Analyze After Compile
analyze_after_compileBoolean

Run the static code analyzer after compile

Analyze Command
analyze_commandCommandLine

The command to execute for the Analyze action. This
property will have macro expansion applied to it with
the additional macros:

$(DEFINES) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(INCLUDES) contains a space seperated list of
user include directories as set in the User Include
Directories property.

Analyze Command Options C
analyze_command_c_optionsStringList

Options to supply to the analyze command for C
source files.

Analyze Command Options C++
analyze_command_cpp_optionsStringList

Options to supply to the analyze command for C++
source files.

Clang Tidy Checks C
clang_tidy_checks_cStringList

Checks to supply to clang-tidy for C source files.

Clang Tidy Checks C++
clang_tidy_checks_cppStringList

Checks to supply to clang-tidy for C++ source files.

Code Generation

Property Description

ARM Advanced SIMD Auto Vectorize
arm_advanced_SIMD_auto_vectorizeBoolean

Enable automatic code generation for Advanced SIMD.

https://clang.llvm.org/extra/clang-tidy
https://clang.llvm.org/extra/clang-tidy

CrossWorks for ARM Reference Manual Appendices

1450

ARM Advanced SIMD Type
arm_advanced_SIMD_typeEnumeration

Specifies the Advanced SIMD type to generate code
for. The options are:

NEON - Cortex-A based processors

ARM Architecture
arm_architectureEnumeration

Specifies the version of the instruction set to generate
code for. The options are:

v4T - ARM7TDMI and ARM920T processors
v5TE - ARM9E, Feroceon and XScale processors
v6 - ARM11 processors
v6M - Cortex-M0/M1 processors
v7M - Cortex-M3 processors
v7EM - Cortex-M4/M7 processors
v7R - Cortex-R4/R5/R8 processors
v7A - Cortex-A5/A7/A8/A9/A17 processors
v8R - Cortex-R52 processors
v8A - Cortex-A32/A35/A53/A55/A57/A72/A73/A75
processors
v8M_Baseline - Cortex M23 processor
v8M_Mainline - Cortex M33 processor
v8.1M_Mainline - Cortex-M55/M85 processors
None

The corresponding preprocessor definitions:

__ARM_ARCH_4T__
__ARM_ARCH_5TE__
__ARM_ARCH_6__
__ARM_ARCH_6M__
__ARM_ARCH_7M__
__ARM_ARCH_7EM__
__ARM_ARCH_7R__
__ARM_ARCH_7A__
__ARM_ARCH_8R__
__ARM_ARCH_8A__
__ARM_ARCH_8M_BASELINE__
__ARM_ARCH_8M_MAINLINE__
__ARM_ARCH_81M_MAINLINE__

are defined.

CrossWorks for ARM Reference Manual Appendices

1451

ARM Core Type
arm_core_typeEnumeration

Specifies the core to generate code for. The options
are:

ARM7TDMI, ARM7TDMI-S, ARM720T
ARM920T, ARM946E-S, ARM966E-S, ARM968E-S,
ARM926EJ-S
ARM1136J-S, ARM1136JF-S, ARM1176JZ-S,
ARM1176JZF-S
Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M23,
Cortex-M3, Cortex-M33, Cortex-M4, Cortex-M55,
Cortex-M7
Cortex-R4, Cortex-R4F, Cortex-R5, Cortex-R7,
Cortex-R8
Cortex-R52
Cortex-A5, Cortex-A7, Cortex-A8, Cortex-A9,
Cortex-A15, Cortex-A17
Cortex-A32, Cortex-A35, Cortex-A53, Cortex-A55,
Cortex-A57, Cortex-A72, Cortex-A73, Cortex-A75
XScale
None

If this property is set to None then the architecture
property is used

ARM FP ABI Type
arm_fp_abiEnumeration

Specifies the FP ABI type to generate code for. The
options are:

Soft generate calls to the C library to implement
floating point operations.
SoftFP generate VFP code to implement floating
point operations.
Hard generate VFP code to implement floating
point operations and use VFP registers to pass
floating point parameters on function calls.
None will not specify the FP ABI or the FPU.

CrossWorks for ARM Reference Manual Appendices

1452

ARM FPU Type
arm_fpu_typeEnumeration

Specifies the FPU type to generate code for. The
options are:

VFP - ARM9/ARM11 based processors
VFP9 - the same as VFP
VFPv3-D32 - Cortex-A/Cortex-R based processors
VFPv3-D16 - Cortex-A/Cortex-R based processors
VFPv4-D32 - Cortex-A/Cortex-R based processors
VFPv4-D16 - Cortex-A/Cortex-R based processors
FPv4-SP-D16 - Cortex-M4 processors
FPv5-SP-D16 - Cortex-M7/M33/R52 processors
FPv5-D16 - Cortex-M7/M55 processors
FP-ARMv8 - Cortex-A/Cortex-R processors

The corresponding preprocessor definitions:

__ARM_ARCH_VFP__
__ARM_ARCH_VFP3_D32__
__ARM_ARCH_VFP3_D16__
__ARM_ARCH_VFP4_D32__
__ARM_ARCH_VFP4_D16__
__ARM_ARCH_FPV4_SP_D16__
__ARM_ARCH_FPV5_SP_D16__
__ARM_ARCH_FPV5_D16__
__ARM_ARCH_FP_ARMv8__

are defined.

ARM/Thumb Interworking
arm_interworkEnumeration

Specifies whether ARM/Thumb interworking code
should be generated. Setting this property to No
may result in smaller code sizes when compiling for
architecture v4T.

Additional C++ Modules
gcc_additional_modulesStringList

Add additional C++ Modules to the module mapper
file of the form name=filename.

Byte Order
arm_endianEnumeration

Specify the byte order of the target processor. The
options are:

Little little endian code and data.
Big big endian code and data.
BE-8 little endian code and big endian data.
None do not specify the endian.

CM0/CM0+/CM1 Has Small Multiplier
arm_cm0_has_small_multiplierBoolean

The CM0/CM0+/CM1 core has the small multiplier.

Code Model.
arm64_code_modelEnumeration

Specify the code model to generate code for.

Data Model.
arm64_abiEnumeration

Specify the data model to generate code for.

CrossWorks for ARM Reference Manual Appendices

1453

Debugging Level
gcc_debugging_levelEnumeration

Specifies the level of debugging information to
generate. The options are:

None - no debugging information
Level 1 - backtrace and line number debugging
information
Level 2 - Level 1 and variable display debugging
information
Level 3 - Level 2 and macro display debugging
information

Disable Function Inlining
gcc_disable_function_inliningBoolean

Disable auto inlining of functions when optimization
enables this.

Dwarf Version
gcc_dwarf_versionEnumeration

Specifies the version of Dwarf debugging information
to generate.

Enable Coroutine Support
gcc_enable_coroutinesBoolean

Specifies whether coroutine support is enabled for C+
+ programs.

Enable Exception Support
cpp_enable_exceptionsEnumeration

Specifies whether exception support is enabled for C+
+ programs.

Enable Modules Support
gcc_enable_modulesBoolean

Specifies whether modules support is enabled for C++
programs.

Enable Precompiled Header File
gcc_enable_precompiled_headerBoolean

Enable use of a precompiled header file for the project.

Enable RTTI Support
cpp_enable_rttiEnumeration

Specifies whether RTTI support is enabled for C++
programs.

Enable Stack Overflow Prevention
stack_overflow_preventionBoolean

Enable Stack Overflow Prevention.
For more information read: https://wiki.segger.com/
Stack_Overflow_Prevention

Enable Use Of __cxa_atexit
gcc_use_cxa_at_exitBoolean

Enable compiler usage of __cxa_atexit.

Enumeration Size
gcc_short_enumEnumeration

Select between minimal container sized enumerations
and int sized enumerations.

FP16 Format.
arm_fp16_formatEnumeration

The format of 16-bit floating point numbers.

Generate Dwarf Debug Types
gcc_dwarf_generate_debug_typesBoolean

Generate Dwarf .debug_types section.

Generate Dwarf Pubnames
gcc_dwarf_generate_pubnamesBoolean

Generate Dwarf .debug_pubnames
and .debug_pubtypes sections.

Generate Listing File
asm_generate_listing_fileBoolean

An source/assembler listing file is generated which can
be found in the output files folder

Instruction Set
arm_instruction_setEnumeration

Specifies the instruction set to generate code for.

https://wiki.segger.com/Stack_Overflow_Prevention
https://wiki.segger.com/Stack_Overflow_Prevention

CrossWorks for ARM Reference Manual Appendices

1454

Instrument Functions
arm_instrument_functionsBoolean

Specifies whether instrumentation calls are generated
for function entry and exit.

Is C++ Module
is_cpp_moduleEnumeration

The file contains an importable C++ module unit.

Keep Link Time Optimization Intermediate Files
link_keep_lto_filesBoolean

Specifies whether to keep the link time optimization
resolution and object files.

Link Time Optimization
link_time_optimizationBoolean

Specifies whether the project should be built for
optimization at link time.

Link Time Optimization Additional Options
lto_additional_optionsStringList

Enables additional options to be supplied to the link
time optimization process

Long Calls
arm_long_callsBoolean

Specifies whether function calls are made using
absolute addresses.

Machine Outliner [clang]
clang_machine_outlinerEnumeration

Select machine outliner mode. An optimization
that reduces code size by identifying identical code
sequences across functions and replaces them with
a call to a function which contains the identical code
sequence.

Math Errno
arm_math_errnoEnumeration

Set errno after calling math functions that are
executed with a single instruction, e.g., sqrt.

Merge Globals [clang]
clang_merge_globalsBoolean

Select whether global declarations are merged. This
may reduce code size and increase execution speed
for some applications. However, if functions are not
used in an application and are eliminated by the
linker, merged globals may increase the data size
requirement of an application.

No COMMON
gcc_no_commonEnumeration

Don't put globals in the common section

Omit Frame Pointer
gcc_omit_frame_pointerEnumeration

Specifies whether a frame pointer register is omitted if
not required.

Optimization Level
gcc_optimization_levelEnumeration

Specifies the optimization level to use. The options are:

None - don't specify an optimization level
Debug - optimize debug experience.
Level 0 - no optimization, fastest compilation and
best debug experience.
Level 1 - optimize minimally.
Level 2 - optimize more.
Level 3 - optimize even more, will take longer to
compile and may produce much larger code.
Optimize For Size
Optimize For More Size

Precompiled Header File
gcc_precompiled_headerBoolean

The precompiled header file for the project.

CrossWorks for ARM Reference Manual Appendices

1455

Relocation Model [clang]
clang_relocation_modelEnumeration

Select relocation model.

Signed Char
gcc_signed_charEnumeration

The char type is considered to be signed char.

Stack Sizes
generate_stack_sizesBoolean

Generate stack sizes section

TLS Model.
arm_tls_modelEnumeration

Thread local storage model.

Unaligned Access Support.
arm_unaligned_accessEnumeration

Unaligned word and half-words can be accessed. The
options are:

Yes enable unaligned word and half-words.
No disable unaligned word and half-words.
Auto disable unaligned word and half-word
access for v4T/v5TE/v6M/v8M_Baseline
architectures, enable for others.

Unwind Tables
arm_unwind_tablesBoolean

Generate unwind tables for C code.

Use Builtins
arm_use_builtinsEnumeration

Use built-in library functions e.g. scanf.

Vector Extension
arm_v81M_mve_typeEnumeration

Specifies the vector extension type to generate code
for. The options are:

MVE - integer instructions
MVE.FP - integer and single precision floating-
point instructions

Wide Character Size
gcc_wchar_sizeEnumeration

Select between standard 32-bit or shorter 16-bit size
for wide characters and wchar_t.

v7A/v7R Has Integer Divide Instructions
arm_v7_has_divide_instructionsBoolean

The v7A architecture has integer divide instructions
in both ARM and Thumb instruction sets. The v7R
architecture has integer divide instructions in the ARM
instruction set. The v7R architecture always has integer
divide instructions in the Thumb instruction set.

v8.1M Has PACBTI Instructions
arm_v81M_has_pacbtiBoolean

The v8.1M architecture has PACBTI instructions.

v8A Has CRC Instructions
arm_v8A_has_crcBoolean

The v8A architecture has CRC instructions.

v8A Has Crypto Instructions
arm_v8A_has_cryptoBoolean

The v8A architecture has crypto instructions.

v8M Has CMSE Instructions
arm_v8M_has_cmseBoolean

The v8M architecture has CMSE instructions.

v8M Has DSP Instructions
arm_v8M_has_dspBoolean

The v8M architecture has DSP instructions.

CrossWorks for ARM Reference Manual Appendices

1456

Combining

Property Description

Combine Command
combine_commandCommandLine

The command to execute. This property will have
macro expansion applied to it with the macro
$(CombiningOutputFilePath) set to the output
filepath of the combine command and the macro
$(CombiningRelInputPaths) is set to the (project
relative) names of all of the files in the project.

Combine Command Working Directory
combine_command_wdString

The working directory in which the combine command
is run. This property will have macro expansion applied
to it.

Output File Path
combine_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
combine_set_readonlyEnumeration

Set the output file to read only or read/write.

Compiler

Property Description

Additional C Compiler Only Options
c_only_additional_optionsStringList

Enables additional options to be supplied to the
C compiler only. This property will have macro
expansion applied to it.

Additional C Compiler Only Options From File
c_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C
compiler only from a file. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options
cpp_only_additional_optionsStringList

Enables additional options to be supplied to the
C++ compiler only. This property will have macro
expansion applied to it.

Additional C++ Compiler Only Options From File
cpp_only_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C++
compiler only from a file. This property will have macro
expansion applied to it.

Additional C/C++ Assembler Options
c_asm_additional_optionsStringList

Enables additional options to be supplied to the
assembler when used by the C/C++ compiler. This
property will have macro expansion applied to it.

Additional C/C++ Compiler Options
c_additional_optionsStringList

Enables additional options to be supplied to the C/C+
+ compiler. This property will have macro expansion
applied to it.

Additional C/C++ Compiler Options From File
c_additional_options_from_fileProjFileName

Enables additional options to be supplied to the C/C
++ compiler from a file. This property will have macro
expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1457

Backup Additional C Compiler Only Options
c_only_additional_options_backupString

Value of additional C compiler options prior to generic
options processing

Backup Additional C++ Compiler Only Options
cpp_only_additional_options_backupString

Value of additional C++ compiler options prior to
generic options processing

Backup Additional Compiler Options
c_additional_options_backupString

Value of additional compiler options prior to generic
options processing

C Language Standard
gcc_c_language_standardEnumeration

Specifies the language standard to use when
compiling C files. The options are:

None - don't specify a language standard
c89/gnu89
c90/gnu90
c99/gnu99
c11/gnu11
c17/gnu17

C++ Language Standard
gcc_cplusplus_language_standardEnumeration

Specifies the language standard to use when
compiling C files. The options are:

None - don't specify a language standard
c++98/gnu++98
c++11/gnu++11
c++14/gnu++14
c++20/gnu++20
c++17/gnu++17

Color Diagnostics
compiler_color_diagnosticsEnumeration

Specifies whether to enable color diagnostic output.

Compile C Files As C++
c_files_are_cppBoolean

Compile files that have the .c extension with the C++
compiler.

Compiler
arm_compiler_variantEnumeration

Specifies which compiler to use.

Compiler Has -Oz
gcc_has_Oz_optimization_levelBoolean

The compiler support the -Oz optization level.

Enable All Warnings
gcc_enable_all_warningsBoolean

Enables all the warnings about constructions that
some users consider questionable, and that are easy
to avoid (or modify to prevent the warning), even in
conjunction with macros.

Enable All Warnings C Compiler Only Command Line
Options
gcc_c_only_all_warnings_command_line_optionsStringList

The command line options supplied to the C compiler
when Enable All Warnings is enabled.

Enable All Warnings C++ Compiler Only Command
Line Options
gcc_cpp_only_all_warnings_command_line_optionsStringList

The command line options supplied to the C++
compiler when Enable All Warnings is enabled.

Enable All Warnings Command Line Options
gcc_all_warnings_command_line_optionsStringList

The command line options supplied to the compiler
when Enable All Warnings is enabled.

CrossWorks for ARM Reference Manual Appendices

1458

Enforce ANSI Checking
c_enforce_ansi_checkingBoolean

Perform additional checks for ensure strict
conformance to the selected ISO (ANSI) C or C++
standard.

Enforce ANSI Checking C Command Line Options
gcc_c_only_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the C compiler
when Enforce ANSI Checking is enabled.

Enforce ANSI Checking C++ Command Line Options
gcc_cpp_only_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the C++
compiler when Enforce ANSI Checking is enabled.

Enforce ANSI Checking Command Line Options
gcc_enforce_ansi_checking_command_line_optionsStringList

The command line options supplied to the compiler
when Enforce ANSI Checking is enabled.

GNU Version [clang]
clang_gnu_versionEnumeration

Specifies value of __GNU__ and related macros

Keep Assembly Source
arm_keep_assemblyBoolean

Specifies whether assembly code generated by the
compiler is kept.

Keep Preprocessor Output
arm_keep_preprocessor_outputBoolean

Specifies whether preprocessor output generated by
the compiler is kept.

Show Caret
compiler_diagnostics_show_caretEnumeration

Specifies whether caret is displayed in compiler
diagnostics.

Supply Absolute File Path
arm_supply_absolute_file_pathBoolean

Specifies whether absolute file paths are supplied to
the compiler.

Supply Execution Character Set
compiler_supply_editor_execute_charsetBoolean

Specifies whether to supply the editor file encoding as
the execution character set.

Supply Input Character Set
compiler_supply_editor_input_charsetBoolean

Specifies whether to supply the editor file encoding as
the input character set.

Use Compiler Driver
use_compiler_driverBoolean

The build will issue cc commands.

External Build

Property Description

CrossWorks for ARM Reference Manual Appendices

1459

Archive Command
external_archive_commandCommandLine

The command line to archive object files. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Library File Name property
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(Objects) a space seperated list of files to archive,
generated from the source files of the project OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to archive
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link

Assemble Command
external_assemble_commandCommandLine

The command line to assemble an assembly source
file. This property will have macro expansion applied
to it with the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(AsmOptions) contains a space seperated list
of options as set in the Additional Assembler
Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

Build Command
external_build_commandCommandLine

The command line to build the executable e.g. make.
This property will have macro expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1460

C Compile Command
external_c_compile_commandCommandLine

The command line to compile a C source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(COnlyOptions) contains a space seperated list
of options as set in the C Additional C Compiler
Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property.
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

CrossWorks for ARM Reference Manual Appendices

1461

C++ Compile Command
external_cpp_compile_commandCommandLine

The command line to compile a C++ source file. This
property will have macro expansion applied to it with
the additional macros:

$(TargetPath) contains the full file name of the
Object File Name property.
$(RelTargePath) contains the project directory
relative file name of the Object File Name
property.
$(COptions) contains a space seperated list of
options as set in the C Additional C/C++ Compiler
Options property.
$(CppOnlyOptions) contains a space seperated
list of options as set in the C Additional C++
Compiler Only Options property.
$(DependencyPath) contains the filename of
the .d file that is required to be output by the
compilation for dependency support.
$(RelDependencyPath) contains the relative
filename of the .d file that is required to be output
by the compilation for dependency support.
$(Defines) contains a space seperated list
of preprocessor definitions as set in the
Preprocessor Definitions property
$(Undefines) contains a space seperated list
of preprocessor undefinitions as set in the
Preprocessor Definitions property.
$(Includes) contains a space seperated list of
user include directories as set in the User Include
Directories property.
$(IncludeFiles) contains a space seperated list of
include files as set in the Include Files property.

CrossWorks for ARM Reference Manual Appendices

1462

C++ Link Command
external_cpp_link_commandCommandLine

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.
$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.
$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link
$(LinkerScriptPath) contains the full file name of
the Linker Script File property.
$(RelLinkerScriptPath) contains the project
directory relative file name of the Linker Script
File property.
$(MapPath) contains the full file name of the
required map file.
$(RelMapPath) contains the project directory
relative file name of the required map file.

Clean Command
external_clean_commandCommandLine

The command line to clean the executable e.g. make
clean. This property will have macro expansion applied
to it.

CrossWorks for ARM Reference Manual Appendices

1463

Link Command
external_link_commandCommandLine

The command line to link an executable. This property
will have macro expansion applied to it with the
additional macros:

$(TargetPath) contains the full file name of the
Executable File Name property.
$(RelTargePath) contains the project directory
relative file name of the Executable File Name
property.
$(LinkOptions) contains a space seperated list of
options as set in the Additional Linker Options
property.
$(Objects) a space seperated list of files to link,
generated from the source files of the project and
the outputs of any dependent projects OR.
$(ObjectsFilePath) contains the full file name of
the file containing the list of files to link
$(RelObjectsFilePath) contains the project
directory relative file name of the file containing
the list of files to link
$(LinkerScriptPath) contains the full file name of
the Linker Script File property.
$(RelLinkerScriptPath) contains the project
directory relative file name of the Linker Script
File property.
$(MapPath) contains the full file name of the
required map file.
$(RelMapPath) contains the project directory
relative file name of the required map file.

Objects File
external_objects_file_nameCommandLine

The name of the file containing the list of files to
archive or link, generated from the source files of
the project.This property will have macro expansion
applied to it. The macro $(ObjectsFilePath) is set to this
value.

File

Property Description

File Encoding
file_codecEnumeration

Specifies the encoding to use when reading and
writing the file.

CrossWorks for ARM Reference Manual Appendices

1464

File Name
file_nameString

The name of the file. This property will have global
macro expansion applied to it. The following macros
are set based on the value: $(InputDir) relative
directory of file, $(InputName) file name without
directory or extension, $(InputFileName) file name,
$(InputExt) file name extension, $(InputPath) absolute
path to the file name, $(RelInputPath) relative path
from project directory to the file name.

File Open Action
file_open_withEnumeration

Specifies how to open the file when it is double
clicked.

File Type
file_typeEnumeration

The type of file. Default setting uses the file extension
to determine file type.

Flag
file_flagEnumeration

Flag which you can use to draw attention to important
files in your project.

Folder

Property Description

Dynamic Folder Directory
pathDirPath

Dynamic folder directory specification - ; seperated
directory names that will have global macro expansion
applied to them.

Dynamic Folder Exclude
excludeStringList

Dynamic folder exclude specification - ; seperated
wildcards.

Dynamic Folder Filter
filterString

Dynamic folder filter specification - ; seperated
wildcards.

Dynamic Folder Recurse
recurseBoolean

Dynamic folder recurse into subdirectories.

Unity Build Exclude Filter
unity_build_exclude_filterString

The filter specification to exclude from the unity build
- ; seperated wildcards.

Unity Build File Name
unity_build_file_nameFileName

The file name created that #includes all files in the
folder for the unity build.

General

Property Description

Environment Variables
environment_variablesStringList

Environment variables to set on solution load.

Inherited Configurations
inherited_configurationsStringList

The list of configurations that are inherited by this
configuration.

CrossWorks for ARM Reference Manual Appendices

1465

Library

Property Description

Debug I/O Implementation
arm_link_debugio_typeEnumeration

Specifies which Debug I/O mechanism to use for I/O
operations.
Options are:

Breakpoint: Hardware breakpoint instruction and
memory locations are used
DCC: ARM debug communication channel is used
Memory Poll: Memory locations are polled

Exclude Default Library Helper Functions
link_use_multi_threaded_librariesBoolean

Specifies whether to exclude default library helper
functions.

Include Standard Libraries
link_include_standard_librariesBoolean

Specifies whether the standard libraries should be
linked into your application.

Library ARM Architecture
arm_library_architectureEnumeration

Specifies the architecture variant of the library to link
with. The default uses the ARM Architecture value

Library File Name
build_output_file_nameFileName

Specifies a name to override the default library file
name.

Library Instruction Set
arm_library_instruction_setEnumeration

Specifies the instruction set variant of the libraries to
link with, Default will use the Instruction Set value.

Library Optimization
arm_library_optimizationEnumeration

Specifies whether to link with libraries optimized for
speed or size.

Standard Libraries Configuration Prefix
link_standard_libraries_configuration_prefixString

Specifies the prefix to prepend to the library build
configuration.

Standard Libraries Directory
link_standard_libraries_directoryString

Specifies where to find the standard libraries

Linker

Property Description

Additional Input Files
linker_additional_filesStringList

Enables additional object and library files to be
supplied to the linker.

Additional Linker Options
linker_additional_optionsStringList

Enables additional options to be supplied to the linker.

Additional Linker Options From File
linker_additional_options_from_fileProjFileName

Enables additional options to be supplied to the linker
from a file.

Additional Linker Script Generator Options
arm_additional_mkld_optionsStringList

Enables additional options to be supplied to the linker
script generator.

Additional Output File Gap Fill Value
arm_linker_additional_output_file_gap_fillString

The value to fill gaps between sections in additional
output file.

CrossWorks for ARM Reference Manual Appendices

1466

Additional Output Format
linker_output_formatEnumeration

The format used when creating an additional linked
output file.The options are:

None do not create an additional output file.
bin create a binary file.
srec create a Motorola S-Record file.
hex create an Intel Hex file.

Additional System Libraries
linker_additional_system_librariesStringList

Enables additional system libraries to be supplied to
the linker.

Allow Multiple Symbol Definition
arm_linker_allow_multiple_definitionBoolean

Do not report error if the same symbol is defined more
than once in object files/libraries.

Backup Additional Linker Options
link_additional_options_backupString

Value of additional linker options prior to generic
options processing

Breakpad Symbols Directory
linker_breakpad_symbols_directoryString

Specifies location of the breakpad symbols directory.

CMSE Import Library File
arm_linker_cmse_import_library_file_nameFileName

Specifies the name of the CMSE import library to
generate.

Check CMSE Import Library File
arm_linker_check_cmse_import_library_file_nameFileName

Specifies the name of the file to check the generated
CMSE import library with.

Check For Memory Section Overflow
arm_library_check_memory_section_overflowBoolean

Specifies whether the linker should check whether
program sections exceed their specified size.

Check For Memory Segment Overflow
arm_library_check_memory_segment_overflowBoolean

Specifies whether the linker should check whether
program sections fit in their memory segments.

Default Fill Pattern
arm_linker_script_generator_default_fill_patternString

Specifies the default pattern used to fill unspecified
regions of memory in a generated linker script. This
pattern maybe overidden by the fill attribute of a
program section in the section placement file.

Emit Relocations
arm_linker_emit_relocationsBoolean

Output relocation information into the executable.

Entry Point
gcc_entry_pointString

Specifies the entry point of the program. None will not
supply an entry point to the linker.

Gap Fill Value
arm_linker_gap_fillIntegerHex

The value to fill gaps between sections in ELF file. This
property has been deprecated, use Linker Options >
Additional Output File Gap Fill Value instead.

Generate Breakpad Symbols
linker_generate_breakpad_symbolsBoolean

Specifies whether to generate breakpad symbols from
the linked image.

Generate Linker Map File
linker_map_fileBoolean

Specifies whether to generate a linkage map file.

Indirect File Supported
linker_use_indirect_filesBoolean

Linker can use @indirect file for input files.

Keep Indirect Files
linker_keep_indirect_filesBoolean

Keep generated linker indirect files.

CrossWorks for ARM Reference Manual Appendices

1467

Keep Linker Script File
keep_linker_script_fileBoolean

Keep the generated linker script file.

Keep Symbols
linker_keep_symbolsStringList

Specifies the symbols that should be kept by the linker
even if they are not reachable.

Link Dependent Projects
link_dependent_projectsBoolean

Specifies whether to link the output of dependent
library projects.

Link Whole Archive
arm_linker_whole_archiveStringList

List the archives that require to be linked in whole.

Linker Map File Name
linker_map_file_nameFileName

The file name to contain the linkage map file.

Linker Script File
link_linker_script_fileProjFileName

The name of the manual linker script file.

Linker Search Path
arm_linker_search_pathStringList

Specify the linker script search path.

Linker Symbol Definitions
link_symbol_definitionsStringList

Specifies one or more linker symbol definitions.

Memory Map File
linker_memory_map_fileProjFileName

The name of the file containing the memory map
description.

Memory Map Macros
linker_memory_map_macrosStringList

Macro values to substitue in memory map nodes. Each
macro is defined as name=value and are seperated by
;.

Memory Segments
linker_section_placements_segmentsString

The start, access and size of named segments in the
target, these are used when no memory map file is
available.Each segment is specified by NAME RWX
HEXSTART HEXSIZE for example FLASH RX 0x08000000
0x00010000

No Enum Size Warning
arm_linker_no_enum_size_warningBoolean

Do not generate warnings when object files have
different ARM EABI enum size attributes.

No Start File
arm_linker_no_start_filesBoolean

Do not use startup files when linking.

No Wide Char Size Warning
arm_linker_no_wchar_size_warningBoolean

Do not generate warnings when object files have
different ARM EABI wide character size attributes.

Section Placement File
linker_section_placement_fileProjFileName

The name of the file containing section placement
description.

Section Placement Macros
linker_section_placement_macrosStringList

Macro values to substitue in section placement nodes -
MACRO1=value1;MACRO2=value2.

Start/End Group Required
linker_requires_start_groupBoolean

Linker requires --start-group and --end-group for input
files.

Strip Debug Information
linker_strip_debug_informationBoolean

Specifies whether debug information should be
stripped from the linked image.

CrossWorks for ARM Reference Manual Appendices

1468

Strip Symbols
gcc_strip_symbolsBoolean

Specifies whether symbols should be stripped.

Suppress Warning on Executable Stack
arm_linker_no_warn_on_executable_stackBoolean

No warning on executable stack.

Suppress Warning on Mismatch
arm_linker_no_warn_on_mismatchBoolean

No warning on mismatched object files/libraries.

Suppress Warning on RWX Segments
arm_linker_no_warn_on_rwx_segmentsBoolean

No warning on RWX segments.

Symbols File
arm_linker_symbols_filesFileName

Specify the name of a symbols file to link.

Treat Libraries As Object Files
linker_treat_libraries_as_object_filesBoolean

Specifies whether the linker treats libraries as a set of
object files.

Treat Linker Warnings as Errors
arm_linker_treat_warnings_as_errorsBoolean

Treat linker warnings as errors.

Use Manual Linker Script
link_use_linker_script_fileBoolean

Specifies whether to use a manual linker script.

Package

Property Description

Package Dependencies
package_dependenciesStringList

Specifies the packages the current project depends
upon.

Package Directory
package_directoryDirPath

Specifies the directory packages are installed to. If no
directory is specified, the default package directory is
used.

Preprocessor

Property Description

Add Property Group Options
add_property_group_includes_definesBoolean

Supply the defines and includes that are selected by
the property group.

Ignore Includes
c_ignore_includesBoolean

Ignore the include directories properties.

Include Files
c_include_filesStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Include Files Assembler Only
c_include_files_asm_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1469

Include Files C Compiler Only
c_include_files_c_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Include Files C++ Compiler Only
c_include_files_cpp_onlyStringList

Specifies the list of files to include before
preprocessing. This property will have macro
expansion applied to it.

Macro Files
c_macros_filesStringList

Specifies the list of macro files to include before
preprocessing. This property will have macro
expansion applied to it.

Macro Files Assembler Only
c_macros_files_asm_onlyStringList

Specifies the list of macro files to include before
preprocessing. This property will have macro
expansion applied to it.

Macro Files C Compiler Only
c_macros_files_c_onlyStringList

Specifies the list of macro files to include before
preprocessing. This property will have macro
expansion applied to it.

Macro Files C++ Compiler Only
c_macros_files_cpp_onlyStringList

Specifies the list of macro files to include before
preprocessing. This property will have macro
expansion applied to it.

Preprocessor Definitions
c_preprocessor_definitionsStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Definitions Assembler Only
c_preprocessor_definitions_asm_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Definitions C Compiler Only
c_preprocessor_definitions_c_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Definitions C++ Compiler Only
c_preprocessor_definitions_cpp_onlyStringList

Specifies one or more preprocessor definitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions
c_preprocessor_undefinitionsStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions Assembler Only
c_preprocessor_undefinitions_asm_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions C Compiler Only
c_preprocessor_undefinitions_c_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

Preprocessor Undefinitions C++ Compiler Only
c_preprocessor_undefinitions_cpp_onlyStringList

Specifies one or more preprocessor undefinitions. This
property will have macro expansion applied to it.

System Include Directories
c_system_include_directoriesStringList

Specifies the system include path. This property will
have macro expansion applied to it.

Undefine All Preprocessor Definitions
c_undefine_all_preprocessor_definitionsBoolean

Does not define any standard preprocessor definitions.

User Include Directories
c_user_include_directoriesStringList

Specifies the user include path. This property will have
macro expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1470

User Include Directories Assembler Only
c_user_include_directories_asm_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

User Include Directories C Compiler Only
c_user_include_directories_c_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

User Include Directories C++ Compiler Only
c_user_include_directories_cpp_onlyStringList

Specifies the user include path. This property will have
macro expansion applied to it.

Printf/Scanf

Property Description

Printf Floating Point Supported
linker_printf_fp_enabledEnumeration

Are floating point numbers supported by the printf
function group.

Printf Integer Support
linker_printf_fmt_levelEnumeration

The largest integer type supported by the printf
function group.

Printf Width/Precision Supported
linker_printf_width_precision_supportedBoolean

Enables support for width and precision specification
in the printf function group.

Scanf Classes Supported
linker_scanf_character_group_matching_enabledBoolean

Enables support for %[...] and %[^...] character class
matching in the scanf functions.

Scanf Floating Point Supported
linker_scanf_fp_enabledBoolean

Are floating point numbers supported by the scanf
function group.

Scanf Integer Support
linker_scanf_fmt_levelEnumeration

The largest integer type supported by the scanf
function group.

Wide Characters Supported
linker_printf_wchar_enabledBoolean

Are wide characters supported by the printf function
group.

Project

Property Description

Flag
project_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Runtime Memory Area

Property Description

Heap Size
arm_linker_heap_sizeIntegerRange

The size of the heap in bytes. The size must be a
multiple of 8. The preprocessor define __HEAP_SIZE__
is set to this value.

CrossWorks for ARM Reference Manual Appendices

1471

Main Stack Size
arm_linker_stack_sizeIntegerRange

The size of the main stack in bytes. The size must be a
multiple of 8.

Process Stack Size
arm_linker_process_stack_sizeIntegerRange

The size of the process stack in bytes. The size must be
a multiple of 8.

Stack Size (Abort Mode)
arm_linker_abt_stack_sizeIntegerRange

The size of the Abort mode stack in bytes. The size
must be a multiple of 8.

Stack Size (FIQ Mode)
arm_linker_fiq_stack_sizeIntegerRange

The size of the FIQ mode stack in bytes. The size must
be a multiple of 8.

Stack Size (IRQ Mode)
arm_linker_irq_stack_sizeIntegerRange

The size of the IRQ mode stack in bytes. The size must
be a multiple of 8.

Stack Size (Supervisor Mode)
arm_linker_svc_stack_sizeIntegerRange

The size of the Supervisor mode stack in bytes. The size
must be a multiple of 8.

Stack Size (Undefined Mode)
arm_linker_und_stack_sizeIntegerRange

The size of the Undefined mode stack in bytes. The size
must be a multiple of 8.

Section

Property Description

Code Section Name
default_code_sectionString

Specifies the default name to use for the program code
section.

Constant Section Name
default_const_sectionString

Specifies the default name to use for the read-only
constant section.

Data Section Name
default_data_sectionString

Specifies the default name to use for the initialized,
writable data section.

ISR Section Name
default_isr_sectionString

Specifies the default name to use for the ISR code.

Vector Section Name
default_vector_sectionString

Specifies the default name to use for the interrupt
vector section.

Zeroed Section Name
default_zeroed_sectionString

Specifies the default name to use for the zero-
initialized, writable data section.

Solution

Property Description

Flag
solution_flagEnumeration

Flag which you can use to draw attention to important
projects in your solution.

Properties Filter
properties_filterStringList

The names of project properties that can be displayed
at the solution

CrossWorks for ARM Reference Manual Appendices

1472

Source Code

Property Description

Additional Code Completion Compiler Options
code_completion_optionsStringList

Additional source indexing and code completion
compiler options.

Inhibit Source Indexing
project_inhibit_indexingBoolean

Disable source indexing and code completion for files/
folders/projects that would normally be indexed (C/C+
+ files in executable and library projects).

Source Code Control Directory
source_code_control_directoryDirPath

Source code control directory root.

Staging

Property Description

Output File Path
stage_output_filepathString

The output file path the stage command will create.
This property will have macro expansion applied to it.

Set To Read-only
stage_set_readonlyEnumeration

Set the output file permissions to read only or read/
write.

Stage Command
stage_commandCommandLine

The command to execute. This property will have
macro expansion applied to it with the additional
$(StageOutputFilePath) macro set to the output
filepath of the stage command.

Stage Command Working Directory
stage_command_wdString

The working directory in which the stage command is
run. This property will have macro expansion applied
to it.

Stage Project Command
stage_post_build_commandCommandLine

The command to execute after staging commands
have executed. This property will have macro
expansion applied to it.

Stage Project Command Working Directory
stage_post_build_command_wdString

The working directory where the post build command
runs. This property will have macro expansion applied
to it.

User Build Step

Property Description

Link Patch Command
linker_patch_build_commandCommandLine

A command to run after the link but prior to additional
binary file generation. This property will have
macro expansion applied to it with the additional
$(TargetPath) macro set to the output filepath of the
linker command.

CrossWorks for ARM Reference Manual Appendices

1473

Link Patch Working Directory
linker_patch_build_command_wdDirPath

The working directory where the link patch command
is run. This property will have macro expansion applied
to it.

Post-Archive Command
archive_post_build_commandCommandLine

A command to run after the archive command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the archive command.

Post-Archive Working Directory
archive_post_build_command_wdDirPath

The working directory where the post-archive
command is run. This property will have macro
expansion applied to it.

Post-Build Command
post_build_commandCommandLine

The command to execute after a project build. This
property will have macro expansion applied to it.

Post-Build Command Control
post_build_command_controlEnumeration

Controls when the post-build command is run, either
Always Run or when Run When Build Has Occurred.

Post-Build Command Working Directory
post_build_command_wdString

The working directory in which the post-build
command is run. This property will have macro
expansion applied to it.

Post-Compile Command
compile_post_build_commandCommandLine

A command to run after the compile command has
completed. This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the compiler command.

Post-Compile Working Directory
compile_post_build_command_wdDirPath

The working directory where the post-compile
command is run. This property will have macro
expansion applied to it.

Post-Link Command
linker_post_build_commandCommandLine

A command to run after the link command has
completed.This property will have macro expansion
applied to it with the additional $(TargetPath) macro
set to the output filepath of the linker command and
$(PostLinkOutputFilePath) set to the value of the
output filepath of the post link command.

Post-Link Output File
linker_post_build_command_output_fileString

The name of the file created by the post-link
command. This property will have macro expansion
applied to it.

Post-Link Working Directory
linker_post_build_command_wdDirPath

The working directory where the post-link command is
run. This property will have macro expansion applied
to it.

Pre-Build Command
pre_build_commandCommandLine

The command to execute before a project build. This
property will have macro expansion applied to it.

Pre-Build Command Control
pre_build_command_controlEnumeration

Controls when the pre-build command is run, either
Always Run or when Run When Build Required.

Pre-Build Command Working Directory
pre_build_command_wdString

The working directory in which the pre-build
command is run. This property will have macro
expansion applied to it.

CrossWorks for ARM Reference Manual Appendices

1474

Pre-Compile Command
compile_pre_build_commandCommandLine

A command to run before the compile command. This
property will have macro expansion applied to it.

Pre-Compile Command Output File Path
compile_pre_build_command_output_file_nameString

The pre-compile generated file name. This property
will have macro expansion applied to it.

Pre-Compile Working Directory
compile_pre_build_command_wdDirPath

The working directory where the pre-compile
command is run. This property will have macro
expansion applied to it.

Pre-Link Command
linker_pre_build_commandCommandLine

A command to run before the link command. This
property will have macro expansion applied to it.

Pre-Link Working Directory
linker_pre_build_command_wdDirPath

The working directory where the pre-link command is
run. This property will have macro expansion applied
to it.

CrossWorks for ARM Reference Manual Appendices

1475

Debug Options

Debugger

Property Description

Alternative LDR Disassembly
debug_alternative_ldr_disBoolean

Show alternative disassembly of ldr*/vldr instructions

CPU Register File
debug_cpu_registers_fileProjFileName

The name of the file containing CPU register
definitions.

Command Arguments
debug_command_argumentsString

The command arguments passed to the executable.
This property will have macro expansion applied to it.

Debug Additional Configurations
debug_additional_configurationsStringList

The debugger will load and debug the specified
additional configurations.

Debug Additional Projects
debug_dependent_projectsStringList

The debugger will load (if not already loaded by
Load Additional Projects) and debug the specified
additional projects.

Debug Project Name
debug_project_nameString

The name of the project used by the debugger when
debugging multiple projects

Debug Symbols File[0]
external_debug_symbols_file_nameProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[1]
external_debug_symbols_file_name1ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[2]
external_debug_symbols_file_name2ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols File[3]
external_debug_symbols_file_name3ProjFileName

The name of the debug symbols file. This property will
have macro expansion applied to it. If it is not defined
then the main load file is used.

Debug Symbols Load Address[0]
external_debug_symbols_load_addressString

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[1]
external_debug_symbols_load_address1String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[2]
external_debug_symbols_load_address2String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Symbols Load Address[3]
external_debug_symbols_load_address3String

The (code) address to be added to the debug symbol
(code) addresses.

Debug Terminal Log File
debug_terminal_log_fileUnknown

A file to write the output from the debug terminal to.

CrossWorks for ARM Reference Manual Appendices

1476

Default debugIO implementation
arm_debugIO_ImplementationEnumeration

The default debugIO implementation used by the
debugger if symbols are unavailable.

Display DCC data
arm_display_DCCBoolean

The debugger will display data that is written to the
DCC when debugIO is not used.

Entry Point Symbol
debug_entry_point_symbolString

Debugger will start execution at symbol if defined.

Flash Software Breakpoints
arm_target_read_only_software_breakpointsEnumeration

Specifies how software breakpoints set in read-only
(Flash) memory are handled. Options are Disabled
(no software breakpoints used), Permanent (software
breakpoints are set permanently on download), and
Dynamic (software breakpoints are set and cleared as
required).

Has Hypervisor Mode
arm_has_hypervisor_modeBoolean

Show hypervisor mode registers

Has Monitor Mode
arm_has_monitor_modeBoolean

Show monitor mode registers

Has Vector Catch
arm_has_vector_catchBoolean

Vector catching is supported

Ignore .debug_aranges Section
debug_ignore_debug_arangesBoolean

The debugger will not use the .debug_aranges section.

Ignore .debug_frame Section
debug_ignore_debug_frameBoolean

The debugger will not use the .debug_frame section.

Initial Breakpoint
debug_initial_breakpointString

The initial breakpoint to set

Initial Breakpoint Is Set
debug_initial_breakpoint_set_optionEnumeration

Specify when the initial breakpoint should be set

Leave Target Running
debug_leave_target_runningBoolean

Debugger will leave the target running on debug stop.

Load Additional Projects
debug_load_additional_projectsStringList

The debugger will load the outputs of the specified
additional projects.

Memory Upload Page Size
debug_memory_upload_page_sizeInteger

The aligned page size the debugger uses when
uploading address ranges.

RAM Software Breakpoints
arm_target_read_write_software_breakpointsEnumeration

Specifies software breakpoints set in read-write
memory are handled. Options are Disabled (no
software breakpoints used), Permanent (software
breakpoints are set permanently on download), and
Dynamic (software breakpoints are set and cleared as
required).

RTT Control Block Address
debug_RTTCBString

The symbol or 0x prefixed address of the RTT control
block.

RTT Enable
debug_enable_RTTBoolean

If enabled the debugger will service RTT input/output
in the debug terminal.

CrossWorks for ARM Reference Manual Appendices

1477

Register Definition File
debug_register_definition_fileProjFileName

The name of the file containing register definitions.

Register Definition File Type
debug_register_definition_file_typeEnumeration

The type of the file containing register definitions.

Reserved Member Name
reservedMember_nameString

The struct reserved member name. Struct members
that contain the (case insensitive) string will not be
displayed.

Restrict Memory Access
debug_restrict_memory_accessBoolean

If enabled the debugger will only display variables and
backtrace in the address ranges of the memory map or
the sections in the elf file.

Start Address
external_start_addressString

The address to start the externally built executable
running from.

Start From Entry Point Symbol
debug_start_from_entry_point_symbolEnumeration

If Yes the debugger will start execution from the entry
point symbol. If No the debugger will start execution
from the target specific location. If Don't the debugger
will not start execution.

Starting Stack Pointer Value
debug_stack_pointer_startString

The symbol or 0x prefixed value to set the stack
pointer on start debugging.

Startup Completion Point
debug_startup_completion_pointStringList

Specifies the point in the program where startup is
complete. Software breakpoints and debugIO will be
enabled after this point has been reached.

Target Device
arm_target_device_nameString

The name of the device to connect to. The macro
$(Target) is substituted with the Target Processor
project property value.

Thread Maximum
debug_threads_maxIntegerRange

The maximum number of threads to display.

Threads Script File
debug_threads_scriptProjFileName

The threads script used by the debugger.

Type Interpretation File
debug_type_fileFileName

Specifies the type interpretation file to use.

Working Directory
debug_working_directoryDirPath

The working directory for a debug session. This
property will have macro expansion applied to it.

JTAG Chain

Property Description

JTAG Data Bits After
arm_linker_jtag_pad_post_drIntegerRange

Specifies the number of bits to pad the JTAG data
register after the target.

JTAG Data Bits Before
arm_linker_jtag_pad_pre_drIntegerRange

Specifies the number of bits to pad the JTAG data
register before the target.

CrossWorks for ARM Reference Manual Appendices

1478

JTAG Instruction Bits After
arm_linker_jtag_pad_post_irIntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction after
the target.

JTAG Instruction Bits Before
arm_linker_jtag_pad_pre_irIntegerRange

Specifies the number of bits to pad the JTAG
instruction register with the BYPASS instruction before
the target.

Loader

Property Description

Additional Load File Address[0]
debug_additional_load_file_addressString

The address to load the additional load file.

Additional Load File Address[1]
debug_additional_load_file_address1String

The address to load the additional load file.

Additional Load File Address[2]
debug_additional_load_file_address2String

The address to load the additional load file.

Additional Load File Address[3]
debug_additional_load_file_address3String

The address to load the additional load file.

Additional Load File Type[0]
debug_additional_load_file_typeEnumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[1]
debug_additional_load_file_type1Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[2]
debug_additional_load_file_type2Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File Type[3]
debug_additional_load_file_type3Enumeration

The file type of the additional load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

Additional Load File[0]
debug_additional_load_fileProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[1]
debug_additional_load_file1ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[2]
debug_additional_load_file2ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Additional Load File[3]
debug_additional_load_file3ProjFileName

Additional file to load on debug load. This property will
have macro expansion applied to it.

Load ELF Address Limit
debug_load_file_offset_limitString

Restrict the Load ELF Offset.The Load ELF Offset will
not be added to addresses greater than or equal to this
address.

CrossWorks for ARM Reference Manual Appendices

1479

Load ELF Offset
debug_load_file_offsetString

The offset to add to the load addresses of the ELF
programs.This offset is added to any absolute
relocations of symbols (whose address is less than
Load ELF Offset Limit) if the load file contains
relocation sections.

Load ELF Sections
debug_load_sectionsEnumeration

The debugger will load ELF sections rather than ELF
programs.

Load File
external_build_file_nameProjFileName

The name of the main load file. This property will have
macro expansion applied to it. If it is not defined then
the output filepath of the linker command is used.

Load File Address
external_load_addressString

The address to download the main load file to.

Load File Type
external_load_file_typeEnumeration

The file type of the main load file. The options are
Detect, elf, bin, ihex, hex, tihex, srec.

No Load Sections
target_loader_no_load_sectionsStringList

Names of (loadable) program sections or names of
memory segments not to load.

Simulator

Property Description

Max Instructions
arm_simulator_max_instructionsString

Maximum number of instructions to execute before
simulator is stopped.

Memory Simulation File
arm_simulator_memory_simulation_filenameProjFileName

Specifies the dll that simulates the memory system.
This property will have macro expansion applied to it.
If not specified then the default memory simulation
will be used.

Memory Simulation Parameter
arm_simulator_memory_simulation_parameterString

Parameter passed to the memory simulation.
This property will have macro expansion applied
to it.The format of this is specific to the memory
simulation. The default memory simulation
takes a list of ROM|RAM;START;SIZE for example
ROM;0x0;0x10000;RAM;0x20000000;0x1000 or a list of
[name] RX|RWX 'hex start address', 'hex size in bytes',
'default hex word value' for example RX 00000000,
10000000, FFFFFFFF;RWX 10000000, 10000000,
CDCDCDCD.

Memory Simulation Parameter Macros
arm_simulator_memory_simulation_parameter_macrosStringList

Macros to apply to the parameter passed to the
memory simulation on creation. If null then the macro
MemorySegments is set to the value of the address
ranges specified by the project.

Stop On Branch .
arm_simulator_stop_on_branch_dotBoolean

Stop when the simulator executes a b . instruction.

CrossWorks for ARM Reference Manual Appendices

1480

Stop On Memory Error
arm_simulator_stop_on_read_writeEnumeration

Specifies the simulator behaviour when a memory
error occurs.

Trace Buffer Size
arm_simulator_num_trace_entriesInteger

The number of trace entries to store.

Target Control

Property Description

ARM Debug Interface
arm_target_debug_interface_typeEnumeration

Specifies the type of debug interface the target has.
The options are:

Default - Select debug interface based on CPU
core type
ARM7TDI - ARM7TDMI/ARM7TDMI-S/ARM720T
ARM9TDI - ARM920T/ARM946E-S/ARM966E-S/
ARM968E-S/ARM926EJ-S
ARM11 - ARM1136J-S/ARM1136JF-S/ARM1176JZ-
S/ARM1176JZF-S
XScale - PXA25x
XScale7BitIR - PXA27x
ADIv5 - Cortex-A/Cortex-M/Cortex-R
Feroceon - Marvell ARM9E
ADIv6 - SoC-600

Check Load Sections Fit Target Description
target_check_load_sections_fitBoolean

Specifies whether load sections in the program match
the memory segments described in the memory map.

Connect With Reset
arm_target_connect_with_resetBoolean

Hold the target in hardware reset on connect and
stops the target. This requires the nSRST signal to be
connected and the target debug hardware to work
when in reset.

Coprocessor Instruction Execution Address
arm_target_coprocessor_execute_addressString

Specifies the address of read/write memory that the
debugger can use to execute coprocessor instructions.

Debug Handler File Path
arm_target_debug_handler_file_pathProjFileName

The file path to the debug handler to use, this entry
should be blank if no debug handler is required. This
property will have macro expansion applied to it.

Debug Handler Load Address
arm_target_debug_handler_load_addressString

The address to load the debug handler.

Do Not Use bkpt Instruction
arm_target_do_not_use_bkptBoolean

Specifies that the bkpt instructions should not be
used when setting software breakpoints on ARM
architectures that support the instruction.

Identify Target
arm_target_identifyBoolean

Identify the target on connect.

Monitor Mode Debug
arm_target_monitor_mode_debugBoolean

Specifies whether the debug handler is a monitor
mode debug handler.

CrossWorks for ARM Reference Manual Appendices

1481

Monitor Mode Memory
arm_target_monitor_mode_memoryBoolean

Specifies whether to use monitor mode memory
accesses.

Processor Stop Timeout
arm_target_processor_stop_timeoutIntegerRange

The timeout period for stopping the processor in
milliseconds.

Restrict Memory Accesses
arm_target_restrict_memory_accessesBoolean

Specifies whether memory accesses should be
restricted to known memory segments and their
associated access attributes.

Stop CPU Using DBGRQ
arm_target_stop_cpu_using_dbgrqBoolean

Specifies whether the CPU should be stopped by
asserting DBGRQ rather than by using breakpoints.

Target Interface Clock Speed
arm_target_interface_speedIntegerRange

The maximum JTAG/SWD clock frequency in Hz.

Target Interface Type
arm_target_interface_typeEnumeration

Specifies the type of interface the target has. The
options are:

Default - Select target interface type based on
CPU core type and SWO usage
JTAG - Use JTAG interface
SWD - Use SWD interface

Use Debug Handler
arm_target_use_debug_handlerEnumeration

Specifies whether to use a debug handler.

Target Loader

Property Description

Applicable Loader Configurations
arm_target_loader_applicable_loadersStringList

The set of target loader configurations that are
applicable

Can Erase All
arm_target_loader_can_erase_allBoolean

Loader can erase all of memory

Can Erase Range
arm_target_loader_can_erase_rangeBoolean

Loader can erase a range of memory

Can Lock All
arm_target_loader_can_lock_allBoolean

Loader can lock all of memory

Can Lock Range
arm_target_loader_can_lock_rangeBoolean

Loader can lock a range of memory

Can Only Download After Erase
arm_target_loader_can_only_download_after_eraseBoolean

Loader can only download after erase

Can Only Verify With Download
arm_target_loader_can_only_verify_with_downloadBoolean

Loader can only verify with download

Can Peek
arm_target_loader_can_peekBoolean

Loader can peek memory

CrossWorks for ARM Reference Manual Appendices

1482

Can UnLock All
arm_target_loader_can_unlock_allBoolean

Loader can unlock all of memory

Can UnLock Range
arm_target_loader_can_unlock_rangeBoolean

Loader can unlock a range of memory

Erase All
target_loader_erase_allEnumeration

If set to Yes, all of the FLASH memory on the target will
be erased prior to downloading the application. If set
to No, only the areas of FLASH containing the program
being downloaded will be erased. If set to Default the
behaviour is target specific.

Erase All Timeout
arm_target_loader_erase_all_timeoutIntegerRange

The timeout period for an erase all operation in
milliseconds.

First Loader Program Section
arm_target_loader_first_program_sectionString

The loader's first program section. This parameter
is only required if the program being downloaded
overwrites the loader.

Last Loader Program Section
arm_target_loader_last_program_sectionString

The loader's last program section. This parameter
is only required if the program being downloaded
overwrites the loader.

Loader Configurations
arm_target_loader_default_loaderStringList

The target loader configuration(s) to use

Loader File Path
arm_target_flash_loader_file_pathProjFileName

The file path to the loader, this entry should be blank if
no loader program is required. This property will have
macro expansion applied to it.

Loader Parameter
arm_target_loader_parameterString

The parameter to pass to the loader on startup.

Loader RAM Size
arm_target_flash_loader_load_sizeString

The size of the RAM region used by the loader. This is
required for FLM and STLDR loader types.

Loader RAM Start
arm_target_flash_loader_load_offsetString

The start of the RAM region used by the loader. This is
required for FLM and STLDR loader types.

Loader Timeout
arm_target_loader_operation_timeoutIntegerRange

The timeout period for loader operations in
milliseconds.

Loader Type
arm_target_loader_typeEnumeration

The type of loader to use.

Reset After Download
arm_target_loader_reset_after_downloadBoolean

Specifies whether the target should be reset after a
program has been downloaded by a loader.

Target Script

Property Description

Attach Script
target_attach_scriptJavaScript

The script that is executed when the target is attached
to.

CrossWorks for ARM Reference Manual Appendices

1483

Connect Script
target_connect_scriptJavaScript

The script that is executed when the target is
connected to.

Debug Begin Script
target_debug_begin_scriptJavaScript

The script that is executed when the debugger begins
a debug session.

Debug End Script
target_debug_end_scriptJavaScript

The script that is executed when the debugger ends a
debug session.

Debug Interface Reset Script
target_debug_interface_reset_scriptJavaScript

The script that is executed to reset the debug interface.
If not specified the default debug interface reset will
be carried out instead.

Disconnect Script
target_disconnect_scriptJavaScript

The script that is executed when the target is
disconnected from.

Get Part Name Script
target_get_partname_scriptJavaScript

The script that returns the part name of the connected
target.

Load Begin Script
target_load_begin_scriptJavaScript

The script that is executed when the debugger begins
a load.

Load End Script
target_load_end_scriptJavaScript

The script that is executed when the debugger ends a
load.

Loader Reset Script
target_loader_reset_scriptJavaScript

The script that is executed when the target is reset
prior to downloading a loader program. If not specified
"Reset Script" will be used instead.

Match Part Name Script
target_match_partname_scriptJavaScript

The script that matches the part name of the
connected target prior to start debugging. The macro
$(TARGET) is substituted with the Target project
property group value.

Reset Script
target_reset_scriptJavaScript

The script that is executed when the target is reset.

Run Script
target_go_scriptJavaScript

The script that is executed when the target is run.

Stop Script
target_stop_scriptJavaScript

The script that is executed when the target is stopped.

TAP Reset Script
target_TAP_reset_scriptString

The script that is executed when the TAP is reset.

Target Extras Script
target_extras_scriptJavaScript

The script that is executed to supply extra menu
entries in the targets window context menu.

Target Script File
target_script_fileFileName

The target script file, the contents of this file are
prepended to script project properties before they are
executed.

Target Trace
Property Description

CrossWorks for ARM Reference Manual Appendices

1484

ETM Global Timestamping Enable
arm_target_etm_global_timestamping_enableBoolean

Enable the ETM global timestamping if supported.

ETM TraceID
arm_target_etm_trace_idIntegerRange

Specifies the traceID of the ETM - zero disables usage.

ITM Stimulus Port To Display
arm_target_itm_stimulus_port_displayIntegerRange

Specifies the ITM Stimulus port to display in the debug
terminal -1 disables this

ITM Stimulus Ports Enable
arm_target_itm_stimulus_port_enableIntegerHex

Specifies the ITM Stimulus ports to enable.

ITM Stimulus Ports Privilege
arm_target_itm_stimulus_port_privilegeIntegerHex

Specifies the ITM Stimulus ports to enable.

ITM Timestamping
arm_target_itm_timestamping_enableEnumeration

Specifies ITM timestamping. The options are:

Disable - disable timestamping
Local - use the local timestamp clock
Global - use the global timestamp clock

ITM TraceID
arm_target_itm_trace_idIntegerRange

Specifies the traceID of the ITM - zero disables usage.

ITM/DWT Data Trace PC
arm_target_dwt_data_trace_PCBoolean

Specifies whether to trace the PC on data trace.

ITM/DWT PC Sampling
arm_target_dwt_PC_sampling_enableEnumeration

Specifies the DWT PC sampling rate.

ITM/DWT Trace Exceptions
arm_target_dwt_trace_exceptionsBoolean

Specifies whether to trace exception entry and return.

MTB RAM Address
arm_target_mtb_ram_addressIntegerHex

Specifies the MTB RAM Address - note that this must
be aligned to the MTB RAM size.

MTB RAM Size
arm_target_mtb_ram_sizeEnumeration

Specifies the MTB RAM size in bytes.

SWO Baud Rate
arm_target_trace_SWO_speedIntegerRange

Specifies the baud rate of the SWO - zero selects auto
detection.

Trace Clock Speed
arm_target_trace_clock_speedIntegerRange

The speed of the trace clock. This is usually the same as
the CPU clock and is used to program the prescaler for
the SWO

Trace Initialize Script
target_trace_initialize_scriptJavaScript

The script that is executed to initialize the target
trace hardware. When executed this script has the
macro $(TraceInterfaceType) expanded with value
of the Trace Interface Type property, typically it is
EnableTrace("$(TraceInterfaceType)").

CrossWorks for ARM Reference Manual Appendices

1485

Trace Interface Type
arm_target_trace_interface_typeEnumeration

Specifies the type of trace interface the target has. The
options are:

SWO - Use asynchronous SWO trace interface.
TracePort - Use synchronous parallel trace
interface.
ETB - Use on-chip embedded trace buffer.
MTB - Use on-chip MTB - Cortex-M0+ only.
PC Sampling - sample the PC.
None

Trace Port Size
arm_target_trace_port_sizeEnumeration

Specifies the trace port size the target has. The options
are:

1-bit
2-bit
4-bit
8-bit
16-bit
24-bit
32-bit

CrossWorks for ARM Reference Manual Appendices

1486

System Macros

System Macro Values
Property Description

$(Date)
$(Date)String

Day Month Year e.g. 21 June 2011.

$(DateDay)
$(DateDay)String

Day e.g. 21.

$(DateMonth)
$(DateMonth)String

Month e.g. 01 to 12.

$(DateYear)
$(DateYear)String

Year e.g. 2011.

$(DesktopDir)
$(DesktopDir)String

Path to users desktop directory.

$(DocumentsDir)
$(DocumentsDir)String

Path to users documents directory.

$(HomeDir)
$(HomeDir)String

Path to users home directory.

$(HostArch)
$(HostArch)String

The CPU architecture that CrossStudio is running on
e.g. x86.

$(HostArchClass)
$(HostArchClass)String

The class of CPU architecture that CrossStudio is
running on e.g. intel, arm.

$(HostDLL)
$(HostDLL)String

The file extension for dynamic link libraries on the CPU
that CrossStudio is running on e.g. .dll.

$(HostDLLExt)
$(HostDLLExt)String

The file extension for dynamic link libraries used by
the operating system that CrossStudio is running on
e.g. .dll, .so, .dylib.

$(HostEXE)
$(HostEXE)String

The file extension for executables on the CPU that
CrossStudio is running on e.g. .exe.

$(HostOS)
$(HostOS)String

The name of the operating system that CrossStudio is
running on e.g. win.

$(Micro)
$(Micro)String

The CrossStudio target e.g. ARM.

$(PackagesDir)
$(PackagesDir)String

Path to the users packages directory.

$(Platform)
$(Platform)String

The target platform.

$(ProductNameShort)
$(ProductNameShort)String

The product name.

CrossWorks for ARM Reference Manual Appendices

1487

$(SamplesDir)
$(SamplesDir)String

Path to the samples subdirectory of the packages
directory.

$(StudioArchiveFileExt)
$(StudioArchiveFileExt)String

The filename extension of a studio archive file.

$(StudioBuildToolExeName)
$(StudioBuildToolExeName)String

The filename of the build tool executable.

$(StudioBuildToolName)
$(StudioBuildToolName)String

The name of the build tool executable.

$(StudioDir)
$(StudioDir)String

The install directory of the product.

$(StudioExeName)
$(StudioExeName)String

The filename of the studio executable.

$(StudioMajorVersion)
$(StudioMajorVersion)String

The major release version of software.

$(StudioMinorVersion)
$(StudioMinorVersion)String

The minor release version of software.

$(StudioName)
$(StudioName)String

The full name of studio.

$(StudioNameShort)
$(StudioNameShort)String

The short name of studio.

$(StudioPackageFileExt)
$(StudioPackageFileExt)String

The filename extension of a studio package file.

$(StudioProjectFileExt)
$(StudioProjectFileExt)String

The filename extension of a studio project file.

$(StudioRevision)
$(StudioRevision)String

The release revision of software.

$(StudioScriptToolExeName)
$(StudioScriptToolExeName)String

The filename of the script tool executable.

$(StudioScriptToolName)
$(StudioScriptToolName)String

The name of the script tool executable.

$(StudioSessionFileExt)
$(StudioSessionFileExt)String

The filename extension of a studio session file.

$(StudioSimulatorExeName)
$(StudioSimulatorExeName)String

The filename of the simulator executable.

$(StudioSimulatorName)
$(StudioSimulatorName)String

The name of the simulator executable.

$(StudioUserDir)
$(StudioUserDir)String

The directory containing the user data.

$(TargetID)
$(TargetID)String

ID number representing the CrossStudio target.

CrossWorks for ARM Reference Manual Appendices

1488

$(TargetsDir)
$(TargetsDir)String

Path to the targets subdirectory of the packages
directory.

$(Time)
$(Time)String

Hour:Minutes:Seconds e.g. 15:34:03.

$(TimeHour)
$(TimeHour)String

Hour e.g. 15.

$(TimeMinute)
$(TimeMinute)String

Minute e.g. 34.

$(TimeSecond)
$(TimeSecond)String

Seconds e.g. 03.

$(UnixTime)
$(UnixTime)String

Seconds since 00:00, Jan 1 1970 UTC

CrossWorks for ARM Reference Manual Appendices

1489

Build Macros

(Build Macro Values)

Property Description

$(AR)
$(AR)String

The path to the binutils ar command.

$(AS)
$(AS)String

The path to the binutils as command.

$(Arch)
$(Arch)String

The lower case value of the ARM Architecture project
property.

$(AsmOptions)
$(AsmOptions)String

A space seperated list of assembler options for the
external assemble command.

$(CC)
$(CC)String

The path to the cc command.

$(CC1)
$(CC1)String

The path to the gcc cc1 command.

$(CCPP)
$(CCPP)String

The path to the cc command.

$(CLANG)
$(CLANG)String

The path to the clang command.

$(CLANGTIDY)
$(CLANGTIDY)String

The path to the clang-tidy command.

$(COnlyOptions)
$(COnlyOptions)String

A space seperated list of compiler options for the
external c compile command.

$(COptions)
$(COptions)String

A space seperated list of compiler options for the
external c and c++ compile commands.

$(CombiningOutputFilePath)
$(CombiningOutputFilePath)String

The full path of the output file of the combining
command.

$(CombiningRelInputPaths)
$(CombiningRelInputPaths)String

The relative inputs to the combining command.

$(Configuration)
$(Configuration)String

The build configuration e.g. ARM Flash Debug.

$(CoreType)
$(CoreType)String

The lower case value of the ARM Core Type project
property.

$(Defines)
$(Defines)String

The preprocessor defines property value for the
external compile command.

$(DependencyPath)
$(DependencyPath)String

The path of the dependency file for the external
compile command.

CrossWorks for ARM Reference Manual Appendices

1490

$(EXE)
$(EXE)String

The default file extension for an executable file
including the dot e.g. .elf.

$(Endian)
$(Endian)String

The lower case value of the Byte Order project
property.

$(FPABI)
$(FPABI)String

The value of the ARM FP ABI Type project property.

$(FPU)
$(FPU)String

The lower case value of the ARM FPU Type project
property.

$(FPU2)
$(FPU2)String

Alternative value of the ARM FPU Type project
property.

$(FPU3)
$(FPU3)String

Alternative value of the ARM FPU Type project
property.

$(FolderName)
$(FolderName)String

The folder name of the containing folder.

$(FolderPath)
$(FolderPath)String

The folder path of the containing folders.

$(GCC)
$(GCC)String

The path to the gcc command.

$(GCCPrefix)
$(GCCPrefix)String

The macro-expanded value of the GCC Prefix project
property.

$(GCCTarget)
$(GCCTarget)String

The macro-expanded value of the GCC Target project
property.

$(GCCVersion)
$(GCCVersion)String

The macro-expanded value of the GCC Version project
property.

$(GPLUSPLUS)
$(GPLUSPLUS)String

The path to the g++ command.

$(IncludeFiles)
$(IncludeFiles)String

The user includes property value for the external
compile command.

$(Includes)
$(Includes)String

The user directories property value for the external
compile command.

$(InputDir)
$(InputDir)String

The absolute directory of the input file.

$(InputExt)
$(InputExt)String

The extension of an input file not including the dot e.g
cpp.

$(InputFileName)
$(InputFileName)String

The name of an input file relative to the project
directory.

$(InputName)
$(InputName)String

The name of an input file relative to the project
directory without the extension.

$(InputPath)
$(InputPath)String

The absolute name of an input file including the
extension.

CrossWorks for ARM Reference Manual Appendices

1491

$(IntDir)
$(IntDir)String

The macro-expanded value of the Intermediate
Directory project property.

$(LD)
$(LD)String

The path to the binutils ld command.

$(LIB)
$(LIB)String

The default file extension for a library file including the
dot e.g. .lib.

$(LIBLTO)
$(LIBLTO)String

The path to the LTO dll.

$(LTO1)
$(LTO1)String

The path to the gcc lto1 command.

$(LibArch)
$(LibArch)String

The library architecture.

$(LibEndianExt)
$(LibEndianExt)String

The endian specific library extension.

$(LibExt)
$(LibExt)String

The architecture and build specific library extension.

$(LinkLibraries)
$(LinkLibraries)String

The value of the Standard Libraries Directory project
property.

$(LinkOptions)
$(LinkOptions)String

A space seperated list of compiler options for the
external link command.

$(LinkerScriptPath)
$(LinkerScriptPath)String

The full path of the linker script file for the link
command.

$(MacroFiles)
$(MacroFiles)String

The user macros property value for the external
compile command.

$(MapPath)
$(MapPath)String

The full path of the map file of the external link
command.

$(MemorySegments)
$(MemorySegments)String

The value of the Memory Segments property supplied
to pre/post link command.

$(OBJ)
$(OBJ)String

The default file extension for an object file including
the dot e.g. .o.

$(OBJCOPY)
$(OBJCOPY)String

The path to the binutils objcopy command.

$(OBJDUMP)
$(OBJDUMP)String

The path to the binutils objdump command.

$(Objects)
$(Objects)String

A space seperated list of files for the external archive or
link command.

$(ObjectsFilePath)
$(ObjectsFilePath)String

The full path containing the files for the external
archive or link command.

$(OutDir)
$(OutDir)String

The macro-expanded value of the Output Directory
project property.

CrossWorks for ARM Reference Manual Appendices

1492

$(PackageExt)
$(PackageExt)String

The file extension of a package file e.g. hzq.

$(PostLinkOutputFilePath)
$(PostLinkOutputFilePath)String

The full path of the output file of the post link
command.

$(ProjectDir)
$(ProjectDir)String

The absolute value of the Project Directory project
property of the current proje ct. If this isn't set then the
directory containing the solution file.

$(ProjectName)
$(ProjectName)String

The project name of the current project.

$(ProjectNodeName)
$(ProjectNodeName)String

The name of the selected project node.

$(RANLIB)
$(RANLIB)String

The path to the binutils ranlib command.

$(RelDependencyPath)
$(RelDependencyPath)String

The relative path of the dependency file for the
external compile command.

$(RelInputDir)
$(RelInputDir)String

The relative path to the directory containing the input
file from the project directory or dot if not relative.

$(RelInputPath)
$(RelInputPath)String

The relative path to the input file from the project
directory or the full path if not relative.

$(RelLinkerScriptPath)
$(RelLinkerScriptPath)String

The relative path of the linker script file for the link
command.

$(RelMapPath)
$(RelMapPath)String

The relative path of the map file of the external link
command.

$(RelObjectsFilePath)
$(RelObjectsFilePath)String

The relative path containing the files for the external
archive or link command.

$(RelTargetPath)
$(RelTargetPath)String

The project directory relative path of the output file of
the link or compile command.

$(RootOutDir)
$(RootOutDir)String

The macro-expanded value of the Root Output
Directory project property.

$(RootRelativeOutDir)
$(RootRelativeOutDir)String

The relative path to get from the path specified by
the Output Directory project property to the path
specified by the Root Output Directory project
property.

$(STRIP)
$(STRIP)String

The path to the binutils strip command.

$(SolutionDir)
$(SolutionDir)String

The absolute path of the directory containing the
solution file.

$(SolutionExt)
$(SolutionExt)String

The extension of the solution file without the dot.

$(SolutionFileName)
$(SolutionFileName)String

The filename of the solution file.

CrossWorks for ARM Reference Manual Appendices

1493

$(SolutionName)
$(SolutionName)String

The basename of the solution file.

$(SolutionPath)
$(SolutionPath)String

The absolute path of the solution file.

$(StageOutputFilePath)
$(StageOutputFilePath)String

The full path of the output file of the stage command.

$(TargetPath)
$(TargetPath)String

The full path of the output file of the link or compile
command.

$(ToolChainDir)
$(ToolChainDir)String

The macro-expanded value of the Tool Chain
Directory project property.

$(Undefines)
$(Undefines)String

The preprocessor undefines property value for the
external compile command.

CrossWorks for ARM Reference Manual Appendices

1494

BinaryFile
The following table lists the BinaryFile object's member functions.

BinaryFile.crc32(offset, length) returns the CRC-32 checksum of an address range length bytes long, starting
at offset. This function computes a CRC-32 checksum on a block of data using the standard CRC-32 polynomial
(0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't reflect the input or the
output and the result is inverted.

BinaryFile.length() returns the length of the binary file in bytes.

BinaryFile.load(path) loads binary file from path.

BinaryFile.loadAppend(path) loads binary file from path and appends it to the binary image.

BinaryFile.peekBytes(offset, length) returns byte array containing length bytes peeked from offset.

BinaryFile.peekUint32(offset, littleEndian) returns a 32-bit word peeked from offset. The littleEndian argument
specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be big endian.

BinaryFile.pokeBytes(offset, byteArray) poke byte array byteArray to offset.

BinaryFile.pokeUint32(offset, value, littleEndian) poke a value to 32-bit word located at offset. The littleEndian
argument specifies the endianness of the access, if true or undefined it will be little endian, otherwise it will be
big endian.

BinaryFile.resize(length, fill) resizes the binary image to length bytes. If the operation extends the size, the
binary image will be padded with bytes of value fill.

BinaryFile.save(path) saves binary file to path.

BinaryFile.saveRange(path, offset, length) saves part of the binary file to path. The offset argument specifies
the byte offset to start from. The length argument specifies the maximum number of bytes that should be
saved.

CrossWorks for ARM Reference Manual Appendices

1495

CWSys
The following table lists the CWSys object's member functions.

CWSys.appendStringToFile(path, string) appends string to the end of the file path.

CWSys.copyFile(srcPath, destPath) copies file srcPath to destPath.

CWSys.crc32(array) returns the CRC-32 checksum of the byte array array. This function computes a CRC-32
checksum on a block of data using the standard CRC-32 polynomial (0x04C11DB7) with an initial value of
0xFFFFFFFF. Note that this implementation doesn't reflect the input or the output and the result is inverted.

CWSys.fileExists(path) returns true if file path exists.

CWSys.fileSize(path) return the number of bytes in file path.

CWSys.getRunStderr() returns the stderr output from the last CWSys.run() call.

CWSys.getRunStdout() returns the stdout output from the last CWSys.run() call.

CWSys.makeDirectory(path) create the directory path.

CWSys.packU32(array, offset, number, le) packs number into the array at offset.

CWSys.popup(text, caption) prompt the user with text and return true for yes and false for no.

CWSys.readByteArrayFromFile(path) returns the byte array contained in the file path.

CWSys.readStringFromFile(path) returns the string contained in the file path.

CWSys.removeDirectory(path) remove the directory path.

CWSys.removeFile(path) deletes file path.

CWSys.renameFile(oldPath, newPath) renames file oldPath to be newPath.

CWSys.run(cmd, wait) runs command line cmd optionally waits for it to complete if wait is true.

CWSys.unpackU32(array, offset, le) returns the number unpacked from the array at offset.

CWSys.writeByteArrayToFile(path, array) creates a file path containing the byte array array.

CWSys.writeStringToFile(path, string) creates a file path containing string.

CrossWorks for ARM Reference Manual Appendices

1496

Debug
The following table lists the Debug object's member functions.

Debug.breakexpr(expression, count, hardware) set a breakpoint on expression, with optional ignore count
and use hardware parameters. Return the, none zero, allocated breakpoint number.

Debug.breakline(filename, linenumber, temporary, count, hardware) set a breakpoint on filename and
linenumber, with optional temporary, ignore count and use hardware parameters. Return the, none zero,
allocated breakpoint number.

Debug.breaknow() break execution now.

Debug.deletebreak(number) delete the specified breakpoint or all breakpoints if zero is supplied.

Debug.disassembly(source, labels, before, after) set debugger mode to disassembly mode. Optionally specify
source and labels to be displayed and the number of bytes to disassemble before and after the located program
counter.

Debug.echo(s) display string.

Debug.enableexception(exception, enable) enable break on exception.

Debug.evaluate(expression) evaluates debug expression and returns it as a JavaScript value.

Debug.getfilename() return located filename.

Debug.getlineumber() return located linenumber.

Debug.go() continue execution.

Debug.locate(frame) locate the debugger to the optional frame context.

Debug.locatepc(pc) locate the debugger to the specified pc.

Debug.locateregisters(registers) locate the debugger to the specified register context.

Debug.print(expression, fmt) evaluate and display debugexpression using optional fmt. Supported formats are
b binary, c character, d decimal, e scientific float, f decimal float, g scientific or decimal float, i signed decimal, o
octal, p pointer value, s null terminated string, u unsigned decimal, x hexadecimal.

Debug.printglobals() display global variables.

Debug.printlocals() display local variables.

Debug.quit() stop debugging.

Debug.setprintarray(elements) set the maximum number of array elements for printing variables.

Debug.setprintradix(radix) set the default radix for printing variables.

Debug.setprintstring(c) set the default to print character pointers as strings.

Debug.showbreak(number) show information on the specified breakpoint or all breakpoints if zero is
supplied.

Debug.showexceptions() show the exceptions.

Debug.source(before, after) set debugger mode to source mode. Optionally specify the number of source
lines to display before and after the location.

Debug.stepinto() step an instruction or a statement.

CrossWorks for ARM Reference Manual Appendices

1497

Debug.stepout() continue execution and break on return from current function.

Debug.stepover() step an instruction or a statement stepping over function calls.

Debug.stopped() return stopped state.

Debug.wait(ms) wait ms millseconds for a breakpoint and return the number of the breakpoint that hit.

Debug.where() display call stack.

CrossWorks for ARM Reference Manual Appendices

1498

ElfFile
The following table lists the ElfFile object's member functions.

ElfFile.crc32(address, length, virtualNotPhysical, padding, programNotSection) returns the CRC-32
checksum of an address range length bytes long, located at address. If virtualNotPhysical is true or undefined,
address is a virtual address otherwise it is a physical address. If padding is defined, it specifies the byte value
used to fill gaps in the program. If programNotSection is true or undefined, data is read using program headers
rather than section headers. This function computes a CRC-32 checksum on a block of data using the standard
CRC-32 polynomial (0x04C11DB7) with an initial value of 0xFFFFFFFF. Note that this implementation doesn't
reflect the input or the output and the result is inverted.

ElfFile.findProgram(address) returns an object with start, the data and the size to allocate of the Elf program
that contains address.

ElfFile.getEntryPoint() returns the entry point in the ELF file.

ElfFile.getSection(name) returns an object with start and the data of the Elf section corresponding to the
name.

ElfFile.isLittleEndian() returns true if the Elf file has numbers encoded as little endian.

ElfFile.load(path) loads Elf file from path.

ElfFile.peekBytes(address, length, virtualNotPhysical, padding, programNotSection) returns byte array
containing length bytes peeked from address. If virtualNotPhysical is true or undefined, address is a virtual
address otherwise it is a physical address. If padding is defined, it specifies the byte value used to fill gaps in
the program. If programNotSection is true or undefined, data is read using program headers rather than section
headers.

ElfFile.peekUint32(address, virtualNotPhysical) returns a 32-bit word peeked from address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeBytes(address, byteArray, virtualNotPhysical) poke byte array byteArray to address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.pokeUint32(address, value, virtualNotPhysical) poke a value to 32-bit word located at address. If
virtualNotPhysical is true or undefined, address is a virtual address otherwise it is a physical address.

ElfFile.save(path) saves Elf file to path.

ElfFile.symbolValue(symbol) returns the value of symbol in Elf file.

CrossWorks for ARM Reference Manual Appendices

1499

TargetInterface
The following table lists the TargetInterface object's member functions.

TargetInterface.beginDebugAccess() puts the target into debug state if it is not already in order to
carry out a number of debug operations. The idea behind beginDebugAccess and endDebugAccess is
to minimize the number of times the target enters and exits debug state when carrying out a number of
debug operations. Target interface functions that require the target to be in debug state (such as peek and
poke) also use beginDebugAccess and endDebugAccess to get the target into the correct state. A nesting
count is maintained, incremented by beginDebugAccess and decremented by endDebugAccess. The initial
processor state is recorded on the first nested call to beginDebugAccess and this state is restored when the
final endDebugAccess is called causing the count to return to it initial state.

TargetInterface.commReadWord() returns a word from the ARM7/ARM9 debug comms channel.

TargetInterface.commWriteWord(word) writes a word to the ARM7/ARM9 debug comms channel.

TargetInterface.crc32(address, length) reads a block of bytes from target memory starting at address for
length bytes, generates a crc32 on the block of bytes and returns it.

TargetInterface.cycleTCK(n) provide n TCK clock cycles.

TargetInterface.delay(ms) waits for ms milliseconds

TargetInterface.downloadDebugHandler() downloads the debug handler as specified by the Debug Handler
File Path/Load Address project properties and uses the debug handler for the target connection.

TargetInterface.endDebugAccess(alwaysRun) restores the target run state recorded at the first nested call to
beginDebugAccess. See beginDebugAccess for more information. If alwaysRun is non-zero the processor will
exit debug state on the last nested call to endDebugAccess.

TargetInterface.eraseBytes(address,length) erases a length block of target memory starting at address.

TargetInterface.error(message) terminates execution of the script and outputs a target interface error
message to the target log.

TargetInterface.executeFunction(address, parameter, timeout) calls a function at address with the parameter
and returns the function result. The timeout is in milliseconds.

TargetInterface.executeMRC(opcode) interprets/executes the opcode assuming it to be an MRC instruction
and returns the value of the specified coprocessor register.

TargetInterface.executeMCR(opcode, value) interprets/executes the opcode assuming it to be an MCR
instruction that writes value to the specified coprocessor register.

TargetInterface.expandMacro(string) returns the string with macros expanded.

TargetInterface.fillScanChain(bool, lsb, msb) sets bits from lsb (least significant bit) to msb (most significant
bit) in internal buffer to bool value.

TargetInterface.findByte(address, length, byte) returns the index of the byte in the specified target memory
range.

TargetInterface.findNotByte(address, length, byte) returns the index of the byte that isn't in the specified
target memory range.

CrossWorks for ARM Reference Manual Appendices

1500

TargetInterface.getDebugRegister(address) returns the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.getICEBreakerRegister(r) returns the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.getProjectProperty(savename) returns the value of the savename project property.

TargetInterface.getRegister(registername) returns the value of the register, register is a string specifying the
register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr, r8_fiq,
r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt, spsr_abt,
r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

TargetInterface.getTDO() return the TDO signal.

TargetInterface.getTargetProperty(savename) returns the value of the savename target property.

TargetInterface.go() allows the target to run.

TargetInterface.idcode() returns the JTAG idcode of the target.

TargetInterface.implementation() returns a string defining the target interface implementation.

TargetInterface.isStopped() returns true if the target is stopped.

TargetInterface.message(message) outputs a target interface message to the target log.

TargetInterface.packScanChain(data, lsb, msb) packs data from lsb (least significant bit) to msb (most
significant bit) into internal buffer.

TargetInterface.peekBinary(address, length, filename) reads a block of bytes from target memory starting at
address for length bytes and writes them to filename.

TargetInterface.peekByte(address) reads a byte of target memory from address and returns it.

TargetInterface.peekBytes(address, length) reads a block of bytes from target memory starting at address for
length bytes and returns the result as an array containing the bytes read.

TargetInterface.peekMultUint16(address, length) reads length unsigned 16-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekMultUint32(address, length) reads length unsigned 32-bit integers from target memory
starting at address and returns them as an array.

TargetInterface.peekUint16(address) reads a 16-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekUint32(address) reads a 32-bit unsigned integer from target memory from address and
returns it.

TargetInterface.peekWord(address) reads a word as an unsigned integer from target memory from address
and returns it.

TargetInterface.pokeBinary(address, filename) reads a block of bytes from filename and writes them to target
memory starting at address.

TargetInterface.pokeByte(address, data) writes the byte data to address in target memory.

TargetInterface.pokeBytes(address, data) writes the array data containing 8-bit data to target memory at
address.

CrossWorks for ARM Reference Manual Appendices

1501

TargetInterface.pokeMultUint16(address, data) writes the array data containing 16-bit data to target memory
at address.

TargetInterface.pokeMultUint32(address, data) writes the array data containing 32-bit data to target memory
at address.

TargetInterface.pokeUint16(address, data) writes data as a 16-bit value to address in target memory.

TargetInterface.pokeUint32(address, data) writes data as a 32-bit value to address in target memory.

TargetInterface.pokeWord(address, data) writes data as a word value to address in target memory.

TargetInterface.readBinary(filename) reads a block of bytes from filename and returns them in an array.

TargetInterface.reset() resets the target, optionally executes the reset script and lets the target run.

TargetInterface.resetAndStop(delay) resets the target by cycling nSRST and then stops the target. delay is the
number of milliseconds to hold the target in reset.

TargetInterface.resetAndStopAtZero(delay) sets a breakpoint on the instruction at address zero execution,
resets the target by cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to
hold the target in reset.

TargetInterface.resetDebugInterface() resets the target interface (not the target).

TargetInterface.runFromAddress(address, timeout) start the target executing at address and waits for a
breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runFromToAddress(from, to, timeout) start the target executing at address from and waits for
the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.runTestIdle() moves the target JTAG state machine into Run-Test/Idle state

TargetInterface.runToAddress(address, timeout) sets a breakpoint at address, starts the target executing and
waits for the breakpoint to be hit. The timeout is in milliseconds.

TargetInterface.scanDR(length, count) scans length bits from the internal buffer into the data register and
puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.scanIR(length, count) scans length bits from the internal buffer into the instruction register
and puts the result into the internal buffer (count specifies the number of times the function is done).

TargetInterface.selectDevice(irPre, irPost, drPre, drPost) sets the instruction and data register (number of
devices) pre and post bits.

TargetInterface.setDBGRQ(v) sets/clears the DBGRQ bit of the ARM7/ARM9 debug control register.

CrossWorks for ARM Reference Manual Appendices

1502

TargetInterface.setDebugInterfaceProperty("reset_debug_interface_enabled", bool) turn on/off the reset of
the debug interface.
TargetInterface.setDebugInterfaceProperty("has_etm", bool) set the ARM7/ARM9 property to enable use of
the ETM.
TargetInterface.setDebugInterfaceProperty("reset_delay", N) set the XScale reset delay property to N.
TargetInterface.setDebugInterfaceProperty("post_reset_delay", N) set the XScale post reset delay property to
N.
TargetInterface.setDebugInterfaceProperty("post_reset_cycles", N) set the XScale post reset cycles property
to N.
TargetInterface.setDebugInterfaceProperty("post_ldic_cycles", N) set the XScale ldic cycles property to N.
TargetInterface.setDebugInterfaceProperty("sync_exception_vectors", bool) turn on/off the XScale sync
exception vectors property.
TargetInterface.setDebugInterfaceProperty("peek_flash_workaround", bool) turn on/off the ARMv6M/
ARMv7M peek flash memory workaround debug property.
TargetInterface.setDebugInterfaceProperty("adiv5_fast_delay_cycles", N) set the ADIv5 fast delay cycles
property to N (FTDI2232 target interfaces only).
TargetInterface.setDebugInterfaceProperty("use_adiv5_AHB", N, [start, size]) set the ARMv7A/ARMv7R debug
property to turn on/off usage of the ADIv5 AHB MEM-AP for 1+2+4 data sized accesses on the optional address
range specified by start and size.
TargetInterface.setDebugInterfaceProperty("use_adiv5_APB", start, size) set the ARMv7M debug property to
turn on usage of the ADIv5 APB MEM-AP for word sized data accesses in the address range specified by start
and size.
TargetInterface.setDebugInterfaceProperty("set_adiv5_AHB_ap_num", N, [clearCSWbits, setCSWbits]) specify
the ADIv5 AHB AP number to use and optional CSW bits to clear and set.
TargetInterface.setDebugInterfaceProperty("set_adiv5_APB_ap_num", N) specify the ADIv5 APB AP number
to use.
TargetInterface.setDebugInterfaceProperty("max_ap_num", N) set the ADIv5 debug property to limit the
number of AP's to detect to N.
TargetInterface.setDebugInterfaceProperty("component_base", N) set the ADIv5 debug property that
specifies the base address N of the CoreSight debug component.

TargetInterface.setDebugRegister(address, value) set the value of the ADIv5 debug register denoted by
address. Address has the nibble sized access point number starting at bit 24 and the register number in the
bottom byte.

TargetInterface.setDeviceTypeProperty(type) sets the target interface's Device Type property string to type.
This would typically be used by a Connect Script to override the default Device Type property and provide a
custom description of the connected target.

TargetInterface.setICEBreakerBreakpoint(n, address, addressMask, data, dataMask, control, controlMask)
sets the ARM7/ARM9 watchpoint n registers.

TargetInterface.setICEBreakerRegister(r, value) set the value of the ARM7/ARM9/ARM11/CortexA/CortexR
debug register r.

TargetInterface.setMaximumJTAGFrequency(hz) allows the maximum TCK frequency of the currently
connected JTAG interface to be set dynamically. The speed setting will only apply for the current connection
session, if you reconnect the setting will revert to the speed specfied by the target interface properties. Calls to
this function will be ignored if adaptive clocking is being used.

TargetInterface.setNSRST(v) sets/clears the NSRST signal.

CrossWorks for ARM Reference Manual Appendices

1503

TargetInterface.setNTRST(v) sets/clears the NTRST signal.

TargetInterface.setRegister(registername, value) sets the register to the value, register is a string specifying
the register to get and must be one of r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, sp, lr, pc, cpsr,
r8_fiq, r9_fiq, r10_fiq, r11_fiq, r12_fiq, r13_fiq, r14_fiq, spsr_fiq, r13_svc, r14_svc, spsr_svc, r13_abt, r14_abt,
spsr_abt, r13_irq, r14_irq, spsr_irq, r13_und, r14_und, spsr_und.

TargetInterface.setTDI(v) clear/set TDI signal.

TargetInterface.setTMS(v) clear/set TMS signal.

TargetInterface.setTargetProperty(savename) set the value of the savename target property.

TargetInterface.stop() stops the target.

TargetInterface.stopAndReset(delay) sets a breakpoint on any instruction execution, resets the target by
cycling nSRST and waits for the breakpoint to be hit. delay is the number of milliseconds to hold the device in
reset.

TargetInterface.trst() resets the target interface (not the target).

TargetInterface.type() returns a string defining the target interface type.

TargetInterface.unpackScanChain(lsb, msb) unpacks data from lsb (least significant bit) to msb (most
significant bit) from internal buffer and returns the result.

TargetInterface.waitForDebugState(timeout) waits for the target to stop or the timeout in milliseconds.

TargetInterface.writeBinary(array, filename) write the bytes in array to filename.

CrossWorks for ARM Reference Manual Appendices

1504

WScript
The following table lists the WScript object's member functions.

WScript.Echo(s) echos string s to the output terminal.

	Contents
	Introduction
	What is CrossWorks?
	What we don't tell you
	Activating your product
	Text conventions
	Additional resources
	Release notes

	CrossStudio Tutorial
	Activating CrossWorks
	Managing support packages
	Creating a project
	Managing files in a project
	Setting project options
	Building projects
	Exploring projects
	Using the debugger
	Low-level debugging
	Debugging externally built applications

	CrossStudio User Guide
	CrossStudio standard layout
	Menu bar
	Title bar
	Status bar
	Editing workspace
	Docking windows
	Dashboard

	CrossStudio help and assistance
	Creating and managing projects
	Solutions and projects
	Creating a project
	Adding existing files to a project
	Adding new files to a project
	Removing a file, folder, project, or project link

	Building your application
	Creating variants using configurations
	Project properties
	Configurations and property values
	Project macros
	Dependencies and build order
	Precompile Header File support
	Linking and section placement

	Using source control
	Source control capabilities
	Configuring source-control providers
	Connecting to the source-control system
	File source-control status
	Source-control operations
	Adding files to source control
	Updating files
	Committing files
	Reverting files
	Locking files
	Unlocking files
	Removing files from source control
	Showing differences between files
	Source-control properties
	Subversion provider
	CVS provider

	Package management
	Exploring your application
	Project explorer
	Source navigator window
	References window
	Symbol browser window
	Stack usage window
	Memory usage window
	Bookmarks window
	Code Outline Window
	Analyzing Source Code

	Editing your code
	Basic editing
	Moving the insertion point
	Adding text
	Deleting text
	Using the clipboard
	Undo and redo
	Drag and drop
	Searching

	Advanced editing
	Indenting source code
	Commenting out sections of code
	Adjusting letter case

	Using bookmarks
	Find and Replace window
	Clipboard Ring window
	Mouse-click accelerators
	Regular expressions

	Debugging windows
	Locals window
	Globals window
	Watch window
	Register window
	Memory window
	Breakpoints window
	Call Stack window
	Threads window
	Execution Profile window
	Execution Trace window
	Debug file search editor
	Debug Terminal window
	Debug Immediate window

	Breakpoint expressions
	Debug expressions
	Utility windows
	Output window
	Properties window
	Targets window
	Terminal emulator window
	Script Console window
	Downloads window
	Latest News window

	Command-line options
	-D (Define macro)
	-noclang (Disable Clang support)
	-noload (Disable loading of last project)
	-packagesdir (Specify packages directory)
	-permit-multiple-studio-instances (Permit multiple studio instances)
	-rootuserdir (Set the root user data directory)
	-save-settings-off (Disable saving of environment settings)
	-set-setting (Set environment setting)
	-templatesfile (Set project templates path)

	Uninstalling CrossWorks for ARM
	Uninstalling from Windows
	Uninstalling from macOS
	Uninstalling from Linux

	ARM target support
	Target startup code
	Startup code
	Section Placement
	Project configurations
	Target script file
	Program loading
	Debug Capabilities
	Trace Capabilities

	Target interfaces
	ARM Simulator target interface
	Amontec JTAGkey Target Interface
	CMSIS-DAP Target Interface
	CrossConnect Target Interface
	Generic FT2232 Target Interface
	Generic Target Interface
	Olimex ARM-USB-OCD Target Interface
	Kinetis OSJTAG Target Interface
	P&E UNIT Interface DLL Target Interface
	Segger J-Link Target Interface
	Stellaris ICDI Target Interface
	ST-LINK Target Interface
	ST-LINK/V2 Target Interface
	Macraigor Wiggler (20 and 14 pin) Target Interface

	Using an external ARM GCC toolchain
	C Library User Guide
	Floating point

	Multithreading
	Thread safety in the CrossWorks library
	Implementing mutual exclusion in the C library

	Input and output
	Customizing putchar

	Locales
	Unicode, ISO 10646, and wide characters
	Multi-byte characters
	The standard C and POSIX locales
	Additional locales in source form
	Installing a locale
	Setting a locale directly

	Complete API reference
	<assert.h>
	__assert
	assert

	<complex.h>
	cabs
	cabsf
	cacos
	cacosf
	cacosh
	cacoshf
	carg
	cargf
	casin
	casinf
	casinh
	casinhf
	catan
	catanf
	catanh
	catanhf
	ccos
	ccosf
	ccosh
	ccoshf
	cexp
	cexpf
	cimag
	cimagf
	clog
	clogf
	conj
	conjf
	cpow
	cpowf
	cproj
	cprojf
	creal
	crealf
	csin
	csinf
	csinh
	csinhf
	csqrt
	csqrtf
	ctan
	ctanf
	ctanh
	ctanhf

	<ctype.h>
	isalnum
	isalnum_l
	isalpha
	isalpha_l
	isblank
	isblank_l
	iscntrl
	iscntrl_l
	isdigit
	isdigit_l
	isgraph
	isgraph_l
	islower
	islower_l
	isprint
	isprint_l
	ispunct
	ispunct_l
	isspace
	isspace_l
	isupper
	isupper_l
	isxdigit
	isxdigit_l
	tolower
	tolower_l
	toupper
	toupper_l

	<debugio.h>
	debug_abort
	debug_break
	debug_clearerr
	debug_clock
	debug_enabled
	debug_evaluate
	debug_exit
	debug_fclose
	debug_feof
	debug_ferror
	debug_fflush
	debug_fgetc
	debug_fgetpos
	debug_fgets
	debug_filesize
	debug_fopen
	debug_fprintf
	debug_fprintf_c
	debug_fputc
	debug_fputs
	debug_fread
	debug_freopen
	debug_fscanf
	debug_fscanf_c
	debug_fseek
	debug_fsetpos
	debug_ftell
	debug_fwrite
	debug_getargs
	debug_getch
	debug_getchar
	debug_getd
	debug_getenv
	debug_getf
	debug_geti
	debug_getl
	debug_getll
	debug_gets
	debug_getu
	debug_getul
	debug_getull
	debug_kbhit
	debug_loadsymbols
	debug_perror
	debug_printf
	debug_printf_c
	debug_putchar
	debug_puts
	debug_remove
	debug_rename
	debug_rewind
	debug_runtime_error
	debug_scanf
	debug_scanf_c
	debug_system
	debug_time
	debug_tmpfile
	debug_tmpnam
	debug_ungetc
	debug_unloadsymbols
	debug_vfprintf
	debug_vfscanf
	debug_vprintf
	debug_vscanf

	<errno.h>
	EDOM
	EILSEQ
	EINVAL
	ENOMEM
	ERANGE
	errno

	<float.h>
	DBL_DIG
	DBL_EPSILON
	DBL_MANT_DIG
	DBL_MAX
	DBL_MAX_10_EXP
	DBL_MAX_EXP
	DBL_MIN
	DBL_MIN_10_EXP
	DBL_MIN_EXP
	DECIMAL_DIG
	FLT_DIG
	FLT_EPSILON
	FLT_EVAL_METHOD
	FLT_MANT_DIG
	FLT_MAX
	FLT_MAX_10_EXP
	FLT_MAX_EXP
	FLT_MIN
	FLT_MIN_10_EXP
	FLT_MIN_EXP
	FLT_RADIX
	FLT_ROUNDS

	<intrinsics.h>
	__breakpoint
	__cdp
	__cdp2
	__clrex
	__clz
	__dbg
	__disable_fiq
	__disable_interrupt
	__disable_irq
	__dmb
	__dsb
	__enable_fiq
	__enable_interrupt
	__enable_irq
	__fabs
	__fabsf
	__fma
	__fmaf
	__get_APSR
	__get_BASEPRI
	__get_CONTROL
	__get_CPSR
	__get_FAULTMASK
	__get_PRIMASK
	__isb
	__ldc
	__ldc2
	__ldc2_noidx
	__ldc2l
	__ldc2l_noidx
	__ldc_noidx
	__ldcl
	__ldcl_noidx
	__ldrbt
	__ldrex
	__ldrexb
	__ldrexd
	__ldrexh
	__ldrht
	__ldrsbt
	__ldrsht
	__ldrt
	__mcr
	__mcr2
	__mcrr
	__mcrr2
	__mrc
	__mrc2
	__mrrc
	__mrrc2
	__nop
	__pld
	__pli
	__qadd
	__qadd16
	__qadd8
	__qasx
	__qdadd
	__qdbl
	__qdsub
	__qflag
	__qsax
	__qsub
	__qsub16
	__qsub8
	__rbit
	__rev
	__rev16
	__revsh
	__rintn
	__rintnf
	__sadd16
	__sadd8
	__sasx
	__sel
	__set_APSR
	__set_BASEPRI
	__set_CONTROL
	__set_CPSR
	__set_FAULTMASK
	__set_PRIMASK
	__sev
	__shadd16
	__shadd8
	__shasx
	__shsax
	__shsub16
	__shsub8
	__smlabb
	__smlabt
	__smlad
	__smladx
	__smlalbb
	__smlalbt
	__smlald
	__smlaldx
	__smlaltb
	__smlaltt
	__smlatb
	__smlatt
	__smlawb
	__smlawt
	__smlsd
	__smlsdx
	__smlsld
	__smlsldx
	__smuad
	__smuadx
	__smulbb
	__smulbt
	__smultb
	__smultt
	__smulwb
	__smulwt
	__smusd
	__smusdx
	__sqrt
	__sqrtf
	__ssat
	__ssat16
	__ssax
	__ssub16
	__ssub8
	__stc
	__stc2
	__stc2l
	__stc_noidx
	__stcl
	__strbt
	__strex
	__strexb
	__strexd
	__strexh
	__strht
	__strt
	__swp
	__swpb
	__sxtab16
	__sxtb16
	__uadd16
	__uadd8
	__uasx
	__uhadd16
	__uhadd8
	__uhasx
	__uhsax
	__uhsub16
	__uhsub8
	__uqadd16
	__uqadd8
	__uqasx
	__uqsax
	__uqsub16
	__uqsub8
	__usad8
	__usad8a
	__usat
	__usat16
	__usax
	__usub8
	__uxtab16
	__uxtb16
	__wfe
	__wfi
	__yield

	<iso646.h>
	and
	and_eq
	bitand
	bitor
	compl
	not
	not_eq
	or
	or_eq
	xor
	xor_eq

	<itm.h>
	ITM_base
	ITM_channel_enabled
	ITM_send_byte
	ITM_send_half_word
	ITM_send_pc
	ITM_send_word

	<libarm.h>
	libarm_dcc_read
	libarm_dcc_write
	libarm_disable_fiq
	libarm_disable_irq
	libarm_disable_irq_fiq
	libarm_enable_fiq
	libarm_enable_irq
	libarm_enable_irq_fiq
	libarm_get_cpsr
	libarm_isr_disable_irq
	libarm_isr_enable_irq
	libarm_mmu_flat_initialise_level_1_table
	libarm_mmu_flat_initialise_level_2_small_page_table
	libarm_mmu_flat_set_level_1_cacheable_region
	libarm_mmu_flat_set_level_2_small_page_cacheable_region
	libarm_restore_irq_fiq
	libarm_run_dcc_port_server
	libarm_set_cpsr
	libarm_set_fiq
	libarm_set_irq

	<limits.h>
	CHAR_BIT
	CHAR_MAX
	CHAR_MIN
	INT_MAX
	INT_MIN
	LLONG_MAX
	LLONG_MIN
	LONG_MAX
	LONG_MIN
	MB_LEN_MAX
	SCHAR_MAX
	SCHAR_MIN
	SHRT_MAX
	SHRT_MIN
	UCHAR_MAX
	UINT_MAX
	ULLONG_MAX
	ULONG_MAX
	USHRT_MAX

	<locale.h>
	lconv
	localeconv
	setlocale

	<math.h>
	acos
	acosf
	acosh
	acoshf
	asin
	asinf
	asinh
	asinhf
	atan
	atan2
	atan2f
	atanf
	atanh
	atanhf
	cbrt
	cbrtf
	ceil
	ceilf
	copysign
	copysignf
	cos
	cosf
	cosh
	coshf
	erf
	erfc
	erfcf
	erff
	exp
	exp2
	exp2f
	expf
	expm1
	expm1f
	fabs
	fabsf
	fdim
	fdimf
	floor
	floorf
	fma
	fmaf
	fmax
	fmaxf
	fmin
	fminf
	fmod
	fmodf
	fpclassify
	frexp
	frexpf
	hypot
	hypotf
	ilogb
	ilogbf
	isfinite
	isgreater
	isgreaterequal
	isinf
	isless
	islessequal
	islessgreater
	isnan
	isnormal
	isunordered
	ldexp
	ldexpf
	lgamma
	lgammaf
	llrint
	llrintf
	llround
	llroundf
	log
	log10
	log10f
	log1p
	log1pf
	log2
	log2f
	logb
	logbf
	logf
	lrint
	lrintf
	lround
	lroundf
	modf
	modff
	nearbyint
	nearbyintf
	nextafter
	nextafterf
	pow
	powf
	remainder
	remainderf
	remquo
	remquof
	rint
	rintf
	round
	roundf
	scalbln
	scalblnf
	scalbn
	scalbnf
	signbit
	sin
	sinf
	sinh
	sinhf
	sqrt
	sqrtf
	tan
	tanf
	tanh
	tanhf
	tgamma
	tgammaf
	trunc
	truncf

	<setjmp.h>
	longjmp
	setjmp

	<stdarg.h>
	va_arg
	va_copy
	va_end
	va_start

	<stddef.h>
	NULL
	max_align_t
	offsetof
	ptrdiff_t
	size_t

	<stdio.h>
	getchar
	gets
	printf
	putchar
	puts
	scanf
	snprintf
	sprintf
	sscanf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	<stdlib.h>
	EXIT_FAILURE
	EXIT_SUCCESS
	MB_CUR_MAX
	RAND_MAX
	abs
	atexit
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	div_t
	exit
	free
	itoa
	labs
	ldiv
	ldiv_t
	llabs
	lldiv
	lldiv_t
	lltoa
	ltoa
	malloc
	mblen
	mblen_l
	mbstowcs
	mbstowcs_l
	mbtowc
	mbtowc_l
	qsort
	rand
	realloc
	srand
	strtod
	strtof
	strtol
	strtoll
	strtoul
	strtoull
	ulltoa
	ultoa
	utoa

	<string.h>
	memccpy
	memchr
	memcmp
	memcpy
	memcpy_fast
	memmove
	mempcpy
	memset
	strcasecmp
	strcasestr
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strdup
	strerror
	strlcat
	strlcpy
	strlen
	strncasecmp
	strncasestr
	strncat
	strnchr
	strncmp
	strncpy
	strndup
	strnlen
	strnstr
	strpbrk
	strrchr
	strsep
	strspn
	strstr
	strtok
	strtok_r

	<time.h>
	asctime
	asctime_r
	clock_t
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time_t
	tm

	<wchar.h>
	WCHAR_MAX
	WCHAR_MIN
	WEOF
	btowc
	btowc_l
	mbrlen
	mbrlen_l
	mbrtowc
	mbrtowc_l
	mbsrtowcs
	mbsrtowcs_l
	msbinit
	wchar_t
	wcrtomb
	wcrtomb_l
	wcscat
	wcschr
	wcscmp
	wcscpy
	wcscspn
	wcsdup
	wcslen
	wcsncat
	wcsnchr
	wcsncmp
	wcsncpy
	wcsnlen
	wcsnstr
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wcstok_r
	wctob
	wctob_l
	wint_t
	wmemccpy
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmempcpy
	wmemset
	wstrsep

	<wctype.h>
	iswalnum
	iswalnum_l
	iswalpha
	iswalpha_l
	iswblank
	iswblank_l
	iswcntrl
	iswcntrl_l
	iswctype
	iswctype_l
	iswdigit
	iswdigit_l
	iswgraph
	iswgraph_l
	iswlower
	iswlower_l
	iswprint
	iswprint_l
	iswpunct
	iswpunct_l
	iswspace
	iswspace_l
	iswupper
	iswupper_l
	iswxdigit
	iswxdigit_l
	towctrans
	towctrans_l
	towlower
	towlower_l
	towupper
	towupper_l
	wctrans
	wctrans_l
	wctype

	<xlocale.h>
	duplocale
	freelocale
	localeconv_l
	newlocale

	C++ Library User Guide
	Standard template library
	Subset API reference
	<new> - memory allocation
	operator delete
	operator new
	set_new_handler

	LIBMEM User Guide
	Using the LIBMEM library
	Light version of LIBMEM
	Writing LIBMEM drivers
	LIBMEM loader library
	Complete API reference
	<libmem.h>
	LIBMEM_ADDRESS_IN_RANGE
	LIBMEM_ADDRESS_IS_ALIGNED
	LIBMEM_ALIGNED_ADDRESS
	LIBMEM_CFI_CMDSET_AMD_EXTENDED
	LIBMEM_CFI_CMDSET_AMD_STANDARD
	LIBMEM_CFI_CMDSET_INTEL_EXTENDED
	LIBMEM_CFI_CMDSET_INTEL_STANDARD
	LIBMEM_CFI_CMDSET_MITSUBISHI_EXTENDED
	LIBMEM_CFI_CMDSET_MITSUBISHI_STANDARD
	LIBMEM_CFI_CMDSET_NONE
	LIBMEM_CFI_CMDSET_RESERVED
	LIBMEM_CFI_CMDSET_SST_PAGE_WRITE
	LIBMEM_CFI_CMDSET_WINBOND_STANDARD
	LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_DIRECT_WRITES
	LIBMEM_DRIVER_PAGED_WRITE_OPTION_DISABLE_PAGE_PRELOAD
	LIBMEM_INLINE
	LIBMEM_KB
	LIBMEM_MB
	LIBMEM_RANGE_OCCLUDES_RANGE
	LIBMEM_RANGE_OVERLAPS_RANGE
	LIBMEM_RANGE_WITHIN_RANGE
	LIBMEM_STATUS_CFI_ERROR
	LIBMEM_STATUS_ERROR
	LIBMEM_STATUS_GEOMETRY_REGION_OVERFLOW
	LIBMEM_STATUS_INVALID_DEVICE
	LIBMEM_STATUS_INVALID_PARAMETER
	LIBMEM_STATUS_INVALID_RANGE
	LIBMEM_STATUS_INVALID_WIDTH
	LIBMEM_STATUS_LOCKED
	LIBMEM_STATUS_NOT_IMPLEMENTED
	LIBMEM_STATUS_NO_DRIVER
	LIBMEM_STATUS_SUCCESS
	LIBMEM_STATUS_TIMEOUT
	LIBMEM_VERSION_NUMBER
	_libmem_driver_functions_t
	_libmem_driver_handle_t
	_libmem_driver_paged_write_ctrlblk_t
	_libmem_ext_driver_functions_t
	_libmem_flash_info_t
	_libmem_geometry_t
	_libmem_sector_info_t
	libmem_busy_handler_fn
	libmem_busy_handler_fn_t
	libmem_cfi_get_info
	libmem_crc32
	libmem_crc32_direct
	libmem_driver_crc32_fn_t
	libmem_driver_erase_fn_t
	libmem_driver_fill_fn_t
	libmem_driver_flush_fn_t
	libmem_driver_inrange_fn_t
	libmem_driver_lock_fn_t
	libmem_driver_page_write_fn_t
	libmem_driver_paged_write
	libmem_driver_paged_write_fill
	libmem_driver_paged_write_flush
	libmem_driver_paged_write_init
	libmem_driver_read_fn_t
	libmem_driver_unlock_fn_t
	libmem_driver_write_fn_t
	libmem_drivers
	libmem_enable_timeouts
	libmem_erase
	libmem_erase_all
	libmem_fill
	libmem_flush
	libmem_foreach_driver
	libmem_foreach_driver_fn_t
	libmem_foreach_sector
	libmem_foreach_sector_fn_t
	libmem_foreach_sector_in_range
	libmem_foreach_sector_in_range_ex
	libmem_get_driver
	libmem_get_driver_sector_size
	libmem_get_geometry_size
	libmem_get_number_of_regions
	libmem_get_number_of_sectors
	libmem_get_sector_info
	libmem_get_sector_number
	libmem_get_sector_size
	libmem_get_ticks
	libmem_get_ticks_fn
	libmem_get_ticks_fn_t
	libmem_lock
	libmem_lock_all
	libmem_read
	libmem_register_am29f200b_driver
	libmem_register_am29f200t_driver
	libmem_register_am29f400bb_driver
	libmem_register_am29f400bt_driver
	libmem_register_am29fxxx_driver
	libmem_register_am29lv010b_driver
	libmem_register_cfi_0001_16_driver
	libmem_register_cfi_0001_8_driver
	libmem_register_cfi_0002_16_driver
	libmem_register_cfi_0002_8_driver
	libmem_register_cfi_0003_16_driver
	libmem_register_cfi_0003_8_driver
	libmem_register_cfi_amd_driver
	libmem_register_cfi_driver
	libmem_register_cfi_intel_driver
	libmem_register_driver
	libmem_register_ram_driver
	libmem_register_sst39xFx00A_16_driver
	libmem_register_st_m28w320cb_driver
	libmem_register_st_m28w320ct_driver
	libmem_set_busy_handler
	libmem_ticks_per_second
	libmem_unlock
	libmem_unlock_all
	libmem_write

	<libmem_loader.h>
	LIBMEM_LOADER_VERSION_NUMBER
	LIBMEM_RPC_LOADER_FLAG_PARAM
	LIBMEM_RPC_LOADER_FLAG_PRESERVE_STATE
	LIBMEM_RPC_LOADER_MAGIC_NUMBER
	LIBMEM_RPC_LOADER_OPTION_HOST_ERASE
	LIBMEM_RPC_LOADER_OPTION_HOST_WRITE
	libmem_rpc_loader_exit
	libmem_rpc_loader_start
	libmem_rpc_loader_start_ex

	Utilities Reference
	Command-Line Compiler
	File Naming
	Compilation
	Linking
	Target Selection
	Advanced
	Options

	Command-Line Project Builder
	Building with a CrossStudio project file
	Building without a CrossStudio project file
	Command-line options
	-batch (Batch build)
	-config (Select build configuration)
	-clean (Remove output files)
	-D (Define macro)
	-echo (Show command lines)
	-file (Build a named file)
	-packagesdir (Specify packages directory)
	-project (Specify project to build)
	-property (Set project property)
	-rebuild (Always rebuild)
	-show (Dry run, don't execute)
	-solution (Specify solution to build)
	-studiodir (Specify CrossStudio directory)
	-template (Specify project template)
	-time (Time the build)
	-threadnum (Specify number of build threads)
	-type (Specify project type)
	-verbose (Show build information)

	Command-Line Simulator
	Example
	Usage

	Command-Line Project Download and Debug
	Command line debugging
	Managing breakpoints
	Displaying state
	Locating the current context
	Controlling execution

	Support packages
	Command-line options
	-break (Stop execution at symbol)
	-config (Specify build configuration)
	-connection (Specify connection)
	-debug (Enter command line debugging)
	-eraseall (Erase all flash memory)
	-filetype (Specify load file type)
	-help (Display help)
	-listfiletypes (Display supported load file types)
	-listprojectprops (Display all project properties)
	-listprops (Display target properties)
	-listtargets (Display supported target interfaces)
	-loadaddress (Set load address)
	-loader (Specify loader configuration)
	-nodifferential (Inhibit differential download)
	-nodisconnect (Inhibit target disconnection)
	-nodownload (Inhibit download)
	-noverify (Inhibit verification)
	-packagesdir (Specify package directory)
	-project (Specify project name)
	-quiet (Be silent)
	-reset (Reset only)
	-script (Execute debug script)
	-serve (Run semihosting server)
	-setprop (Set target interface property)
	-solution (Specify solution file)
	-studiodir (Specify Studio directory)
	-target (Specify target interface)
	-verbose (Display additional status)

	Command-Line Scripting
	Command-line options
	-define (Define global variable)
	-help (Show usage)
	-load (Load script file)
	-define (Verbose output)

	CrossScript classes
	Example uses

	Embed
	Header file generator
	Using the header generator
	Command line options
	-regbaseoffsets (Use offsets from peripheral base)
	-nobitfields (Inhibit bitfield macros)

	Linker script file generator
	Command-line options
	-check-section-overflow
	-check-segment-overflow
	-disable-missing-runin-error
	-memory-map-macros
	-no-check-unplaced-sections
	-no-ctors
	-no-dtors
	-section-placement-file
	-section-placement-macros
	-symbols

	Package generator
	Package manager

	Appendices
	Technical
	File formats
	Memory Map file format
	Section Placement file format
	Project file format
	Project Templates file format
	Property Groups file format
	Package Description file format
	External Tools file format
	Debugger Type Interpretation file format

	Environment Options
	Building Environment Options
	Debugging Environment Options
	IDE Environment Options
	Programming Language Environment Options
	Source Control Environment Options
	Text Editor Environment Options
	Windows Environment Options

	Project Options
	Code Options
	Debug Options

	Macros
	System Macros
	Build Macros

	Script classes
	BinaryFile
	CWSys
	Debug
	ElfFile
	TargetInterface
	WScript

