CrossWorks for AVR Reference Manual

Version: 2.1.0.2013021304.17452

1997-2013 Rowley Associates Ltd.

CrossWorks for AVR Reference Manual

CrossWorks for AVR Reference Manual

Contents

Contents

Introduction 33
What is CrossWorks? 35
What we don't tell you 36
Activating your product 37
Text conventions 39
Additional resources 41
Release notes 42

CrossStudio Tutorial 49
Activating CrossWorks 51
Managing support packages 53
Creating a project 56
Managing files in a project 62
Setting project options 67
Building projects 69
Exploring projects 72
Using the debugger 81
Low-level debugging 86
Debugging externally built applications 92

CrossStudio User Guide 95
CrossStudio standard layout 96

Menu bar 97
Title bar 98
Status bar 99

CrossWorks for AVR Reference Manual

Editing workspace

Contents

101

Docking windows

102

Dashboard

103

CrossStudio help and assistance

104

Creating and managing projects

106

107

Solutions and projects

110

Creating a project

Adding existing files to a project

111

Adding new files to a project

112

Removing a file, folder, project, or project link

Project macros

113

114

Building your application

116

Creating variants using configurations

118

Project properties

120
121

Unique properties

Aggregate properties

122

Configurations and property values

123

Dependencies and build order

125

Linking and section placement

126

Using source control

128

Source control capabilities

129

Choosing your source-control provider

130

131

Connecting to the source-control system

132

Opening a project from source control

Files source-control status

133

Source-control operations

134

Adding files to source control

135

Checking files out

136

Checking files in

137

Undoing a check out

138

139

Getting the latest version

140

Showing differences between files

Merging files

141

Source-control explorer

142

Source-control properties

143

Visual SourceSafe provider

144

SourceOffSite provider

145

Subversion provider

146

CVS provider

148
150

Package management

154

Exploring your application

CrossWorks for AVR Reference Manual Contents

Project explorer 155
Source navigator window 160
Symbol browser 162
Memory usage window 167
Editing your code 170
Basic editing 171
Moving the insertion point 172
Selecting text 173
Adding text 174
Deleting text 175
Using the clipboard 176
Undo and redo 177
Drag and drop 178
Searching 179
Advanced editing 180
Indenting source code 181
Commenting out sections of code 182
Changing letter case 183
Indenting 184
Bookmarks 185
Find and Replace window 187
Clipboard-ring window 189
Regular expressions 191
Debugging windows 193
Locals window 194
Globals window 196
Watch window 198
Register window 201
Memory window 204
Breakpoints window 207
Call Stack window 211
Threads window 214
Execution Profile window 218
Trace window 219
Debug file search editor 220
Breakpoint expressions 222
Debug expressions 223
Utility windows 224
Output window 225
Properties window 226
Targets window 227

CrossWorks for AVR Reference Manual Contents

Terminal emulator window 231
Script Console window 232
Debug Immediate window 233
Downloads window 234
Latest News window 235
Memory-map editor 236
Environment options dialog 239
Building Environment Options 240
Debugging Environment Options 242
IDE Environment Options 245
Programming Language Environment Options 250
Source Control Environment Options 254
Text Editor Environment Options 256
Windows Environment Options 260
Target interfaces 263
AVR Core Simulator Target Interface 267
JTAG ICE Target Interface 268
JTAGICE mkll (Serial Port to JTAG) Target Interface 269
JTAGICE mkll (Serial Port to debugWIRE) Target Interface 270
JTAGICE mkll (Serial Port to ISP) Target Interface 271
JTAGICE mkll (Serial Port to PDI) Target Interface 272
JTAGICE mkll (USB to JTAG) Target Interface 273
JTAGICE mkll (USB to debugWIRE) Target Interface 274
JTAGICE mkll (USB to ISP) Target Interface 275
JTAGICE mkll (USB to PDI) Target Interface 276
AVRDragon (JTAG) Target Interface 277
AVRDragon (debugWIRE) Target Interface 278
AVRDragon (ISP) Target Interface 279
STK500-High Voltage Target Interface 280
STK500-ISP Target Interface 281
AVRISP Target Interface 282
AVRISP mkll Target Interface 283
Parallel Port JTAG Target Interface 284
CrossConnect JTAG Target Interface 285
Arduino Target Interface 286
Using an external AVR GCC toolchain 287
C Compiler User Guide 289
Command line options 290
-ansi (Warn about potential ANSI problems) 291
-D (Define macro symbol) 292
-g (Generate debugging information) 293

CrossWorks for AVR Reference Manual Contents

-I (Define user include directories) 294

-J (Define system include directories) 295
-mxmega (Enable XMEGA processor) 296
-m (Set AVR code memory size) 297
-msd (Treat double as float) 298
-0 (Set output file name) 299
-O (Optimize code generation) 300
-Or (Optimize register allocation) 301
-Rc (Set default code section name) 302
-Rd (Set default initialized data section name) 303
-Ri (Set default ISR section name) 304
-Rk (Set default read-only section name) 305
-Rv (Set default vector section name) 306
-Rz (Set default zeroed section name) 307
-V (Version information) 308
-w (Suppress warnings) 309
-we (Treat warnings as errors) 310
Preprocessor predefined symbols 311
Pragmas 313
#pragma codeseg 314
#pragma dataseg 315
#pragma constseg 316
#pragma zeroedseg 317
#pragma vectorseg 318
#pragma isrseg 319
#pragma vector 320
Section control 321
Section overrides 322
Absolute data object placement 323
Type-based enumerations 324
Code-space strings 325
Special functions 326
Interrupt functions 327
Monitor functions 329
Top-level functions 330
External naming convention 331
Data representation 332
Register use 333
Assembler User Guide 337
Command-line syntax 338
-D (Define macro symbol) 339

CrossWorks for AVR Reference Manual Contents
-g (Generate debugging information) 340

-1 (Define user include directories) 341

-J (Define system include directories) 342
-0 (Set output file name) 343
-Rc (Set default code section name) 344
-Rd (Set default initialized data section name) 345
-Ri (Set default ISR section name) 346
-Rk (Set default read-only section name) 347
-Rv (Set default vector section name) 348
-Rz (Set default zeroed section name) 349
-V (Version information) 350
-w (Suppress warnings) 351
-we (Treat warnings as errors) 352
Source format 353
Types 355
Built-in types 356
Array types 357
Pointer types 358
Structure types 359
Compilation units and libraries 360
Directive reference 361
ALIGN 362
BREAK 363
BSS 364
CODE 365
CONST 366
DATA 367
DB 368
DC.B 369
DC.W 370
DC.L 371
DL 372
DS.B 373
DSECT 374
DS.L 375
DS.W 376
DV 377
DW 378
ELSE 379
END 380
ENDIF 381

CrossWorks for AVR Reference Manual Contents

EQU 382
EVEN 383
EXPORT 384
FILL 385
IF 386
IMPORT 387
INCLUDE 388
INCLUDEBIN 389
INIT 390
ISR 391
KEEP 392
PSECT 393
RMB 394
RML 395
RMW 396
RODATA 397
ROOT 398
RSEG 399
SET 400
TEXT 401
USECT 402
VECTORS 403
ZDATA 404
Expressions 405
Labels 407
Operators 408
! 409
$ 410
+ 411
- 412
* 413
/ 414
% 415
A 416
& 417
&& 418
== 419
1= 420
< 421
<= 422
<< 423

CrossWorks for AVR Reference Manual Contents

> 424
>= 425
>> 426

| 427

I 428
ASHR 429
DEFINED 430
ENDOF 431
EQ 432
GE 433
GT 434
HBYTE 435
HIGH 436
HWORD 437
LAND 438
LBYTE 439
LE 440
LNOT 441
LOR 442
LT 443
LHALF 444
Low 445
LWORD 446
NE 447
OR 448
SHL 449
SHR 450
SIZEOF 451
STARTOF 452
THIS 453
UHALF 454
XOR 455
Macros 456
C Library User Guide 459
Floating point 460
Single and double precision 461
Multithreading 463
Thread safety in the CrossWorks library 464
Implementing mutual exclusion in the C library 465
Input and output 466
Customizing putchar 467

10

CrossWorks for AVR Reference Manual Contents

Complete API reference 472
<assert.h> 474
__assert 475
assert 476
<cross_studio_io.h> 477
debug_abort 480
debug_break 481
debug_clearerr 482
debug_enabled 483
debug_exit 484
debug_fclose 485
debug_feof 486
debug_ferror 487
debug_fflush 488
debug_fgetc 489
debug_fgetpos 490
debug_fgets 491
debug_filesize 492
debug_fopen 493
debug_fprintf 494
debug_fprintf_c 495
debug_fputc 496
debug_fputs 497
debug_fread 498
debug_freopen 499
debug_fscanf 500
debug_fscanf_c 501
debug_fseek 502
debug_fsetpos 503
debug_ftell 504
debug_fwrite 505
debug_getargs 506
debug_getch 507
debug_getchar 508
debug_getd 509
debug_getenv 510
debug_getf 511
debug_geti 512
debug_getl 513
debug_getll 514

debug_gets 515

11

CrossWorks for AVR Reference Manual Contents

debug_getu 516
debug_getul 517
debug_getull 518
debug_kbhit 519
debug_loadsymbols 520
debug_perror 521
debug_printf 522
debug_printf_c 523
debug_putchar 524
debug_puts 525
debug_remove 526
debug_rename 527
debug_rewind 528
debug_runtime_error 529
debug_scanf 530
debug_scanf ¢ 531
debug_system 532
debug_time 533
debug_tmpfile 534
debug_tmpnam 535
debug_ungetc 536
debug_unloadsymbols 537
debug_vfprintf 538
debug_vfscanf 539
debug_vprintf 540
debug_vscanf 541
<cruntime.h> 542
_ float32_add 548
_ float32_add_1 549
__float32_add_asgn 550
__float32_div 551
__float32_div_asgn 552
_ float32_eq 553
_ float32_eq_0 554
_ float32_lIt 555
__float32_It_0 556
_ float32_mul 557
__float32_mul_asgn 558
_ float32_neg 559
_ float32_sqr 560
_ float32_sub 561

12

CrossWorks for AVR Reference Manual Contents

__float32_sub_asgn 562
_ float32_to_float64 563
__float32_to_int16 564
__ float32_to_int32 565
__ float32_to_int64 566
_ float32_to_uint16 567
_ float32_to_uint32 568
__float32_to_uint64 569
__ float64_add 570
__ float64_add_1 571
__float64_add_asgn 572
_ float64_div 573
__float64_div_asgn 574
_ float64_eq 575
_ float64_eq_0 576
__float64 It 577
_ floaté4 It 0 578
_ float64_mul 579
__float64_mul_asgn 580
__float64_neg 581
_ float64_sqr 582
__ float64_sub 583
__float64_sub_asgn 584
_ float64_to_float32 585
__int16_asr 586
__int16_asr_asgn 587
__int16_div 588
__int16_div_asgn 589
__int16_lsl 590
__int16_lIsl_asgn 591
__int16_lsr 592
__int16_lsr_asgn 593
__int16_mod 594
__int16_mod_asgn 595
__int16_mul 596
__int16_mul_8x8 597
__int16_mul_asgn 598
__int16_to_float32 599
__int16_to_float64 600
__int32_asr 601
__int32_asr_asgn 602

13

CrossWorks for AVR Reference Manual Contents

__int32_div 603
__int32_div_asgn 604
_int32_Isl 605
__int32_Isl_asgn 606
__int32_lsr 607
__int32_lIsr_asgn 608
__int32_mod 609
__int32_mod_asgn 610
__int32_mul 611
__int32_mul_16x16 612
__int32_mul_asgn 613
__int32_to_float32 614
__int32_to_float64 615
__int64_asr 616
__int64_asr_asgn 617
__int64_div 618
__int64_div_asgn 619
__int64_lIsl 620
__int64_lIsl_asgn 621
__int64_lsr 622
__int64_lsr_asgn 623
__int64_mod 624
__int64_mod_asgn 625
__int6é4_mul 626
__int64_mul_32x32 627
__int64_mul_asgn 628
__int64_to_float32 629
__int64_to_float64 630
__uint16_div 631
__uint16_div_asgn 632
__uint16_mod 633
__uint16_mod_asgn 634
__uint16_mul_8x8 635
__uint16_to_float32 636
__uint16_to_float64 637
__uint32_div 638
__uint32_div_asgn 639
__uint32_mod 640
__uint32_mod_asgn 641
__uint32_mul_16x16 642
__uint32_to_float32 643

14

CrossWorks for AVR Reference Manual Contents

__uint32_to_float64 644
__uint64_div 645
__uint64_div_asgn 646
__uint64_mod 647
__uint64_mod_asgn 648
__uint64_mul_32x32 649
__uint64_to_float32 650
__uint64_to_float64 651
<ctype.h> 652
isalnum 653
isalpha 654
isblank 655
iscntrl 656
isdigit 657
isgraph 658
islower 659
isprint 660
ispunct 661
isspace 662
isupper 663
isxdigit 664
tolower 665
toupper 666
<errno.h> 667
EDOM 668
EILSEQ 669
ERANGE 670
__errno 671
errno 672
<float.h> 673
DBL_DIG 674
DBL_EPSILON 675
DBL_MANT_DIG 676
DBL_MAX 677
DBL_MAX_10_EXP 678
DBL_MAX_EXP 679
DBL_MIN 680
DBL_MIN_10_EXP 681
DBL_MIN_EXP 682
DECIMAL_DIG 683
FLT_DIG 684

15

CrossWorks for AVR Reference Manual Contents

FLT_EPSILON 685
FLT_EVAL_METHOD 686
FLT_MANT_DIG 687
FLT_MAX 688
FLT_MAX_10_EXP 689
FLT_MAX_EXP 690
FLT_MIN 691
FLT_MIN_10_EXP 692
FLT_MIN_EXP 693
FLT_RADIX 694
FLT_ROUNDS 695
<ina90.h> 696
_BREAK 697
_CLI 698
_NoOP 699
_OPC 700
_SEI 701
_SLEEP 702
_WDR 703
disable_interrupt 704
enable_interrupt 705
<inavr.h> 706
__bic_SR_register 707
__bis_SR_register 708
__breakpoint 709
__delay_cycles 710
__disable_interrupt 711
__enable_interrupt 712
__insert_opcode 713
__ho_operation 714
__restore_interrupt 715
__save_interrupt 716
__sleep 717
__swap_bytes 718
__swap_bytes_long 719
__swap_nibbles 720
__swap_words 721
__watchdog_reset 722
<is0646.h> 723
and 724
and_eq 725

16

CrossWorks for AVR Reference Manual Contents

bitand 726
bitor 727
compl 728
not 729
not_eq 730
or 731
or_eq 732
xor 733
xor_eq 734
<limits.h> 735
CHAR_BIT 736
CHAR_MAX 737
CHAR_MIN 738
INT_MAX 739
INT_MIN 740
LLONG_MAX 741
LLONG_MIN 742
LONG_MAX 743
LONG_MIN 744
SCHAR_MAX 745
SCHAR_MIN 746
SHRT_MAX 747
SHRT_MIN 748
UCHAR_MAX 749
UINT_MAX 750
ULLONG_MAX 751
ULONG_MAX 752
USHRT_MAX 753
<locale.h> 754
Iconv 755
localeconv 757
setlocale 758
<math.h> 759
acos 762
acosf 763
acosh 764
acoshf 765
asin 766
asinf 767
asinh 768
asinhf 769

17

CrossWorks for AVR Reference Manual Contents

atan 770
atan2 771
atan2f 772
atanf 773
atanh 774
atanhf 775
cbrt 776
cbrtf 777
ceil 778
ceilf 779
cos 780
cosf 781
cosh 782
coshf 783
exp 784
expf 785
fabs 786
fabsf 787
floor 788
floorf 789
fmax 790
fmaxf 791
fmin 792
fminf 793
fmod 794
fmodf 795
fpclassify 796
frexp 797
frexpf 798
hypot 799
hypotf 800
isfinite 801
isinf 802
isnan 803
isnormal 804
Idexp 805
Idexpf 806
log 807
log10 808
log10f 809
logf 810

18

CrossWorks for AVR Reference Manual Contents

modf 811
modff 812
pow 813
powf 814
scalbn 815
scalbnf 816
signbit 817
sin 818
sinf 819
sinh 820
sinhf 821
sqrt 822
sqrtf 823
tan 824
tanf 825
tanh 826
tanhf 827
<pgmspace.h> 828
memcmp_P 829
memcpy_P 830
printf_P 831
puts_P 832
scanf_P 833
snprintf_P 834
sprintf_P 835
sscanf_P 836
strcat_P 837
strcmp_P 838
strcpy_P 839
strlen_P 840
strncmp_P 841
strncpy_P 842
vprintf_P 843
vscanf_P 844
vsnprintf_P 845
vsprintf_P 846
vsscanf_P 847
<setjmp.h> 848
longjmp 849
setjmp 850
<stdarg.h> 851

19

CrossWorks for AVR Reference Manual Contents

va_arg 852
va_copy 853
va_end 854
va_start 855
<stddef.h> 856
NULL 857
offsetof 858
ptrdiff_t 859
size_t 860
wchar_t 861
<stdio.h> 862
getchar 863
gets 864
printf 865
putchar 870
puts 871
scanf 872
snprintf 876
sprintf 877
sscanf 878
vprintf 879
vscanf 880
vsnprintf 881
vsprintf 882
vsscanf 883
<stdio_c.h> 884
printf_c 885
puts_c 886
scanf_c 887
snprintf_c 888
sprintf_c 889
sscanf_c 890
vprintf_c 891
vscanf_c 892
vsnprintf_c 893
vsprintf_c 894
vsscanf_c 895
<stdlib.h> 896
EXIT_FAILURE 898
EXIT_SUCCESS 899
RAND_MAX 900

20

CrossWorks for AVR Reference Manual Contents

abs 901
atexit 902
atof 903
atoi 904
atol 905
atoll 906
bsearch 907
calloc 908
div 909
div_t 910
exit 911
free 912
itoa 913
labs 914
Idiv 915
Idiv_t 916
llabs 917
lidiv 918
lidiv_t 919
litoa 920
Itoa 921
malloc 922
qsort 923
rand 924
realloc 925
srand 926
strtod 927
strtof 928
strtol 929
strtoll 931
strtoul 933
strtoull 935
ulltoa 936
ultoa 937
utoa 938
<string.h> 939
memccpy 941
memchr 942
memcmp 943
memcpy 944
memmove 945

21

CrossWorks for AVR Reference Manual Contents

mempcpy 946
memset 947
strcasecmp 948
strcasestr 949
strcat 950
strchr 951
stremp 952
strcpy 953
strcspn 954
strdup 955
strerror 956
stricat 957
stricpy 958
strlen 959
strncasecmp 960
strncasestr 961
strncat 962
strnchr 963
strncmp 964
strncpy 965
strndup 966
strnlen 967
strnstr 968
strpbrk 969
strrchr 970
strsep 971
strspn 972
strstr 973
strtok 974
strtok_r 975
<string_c.h> 976
memcmp_c 977
memcpy_c 978
strcat_c 979
stremp_c 980
strcpy_c 981
strlen_c 982
strncmp_c 983
strncpy_c 984
<time.h> 985
asctime 986

22

CrossWorks for AVR Reference Manual Contents

asctime_r 987
clock_t 988
ctime 989
ctime_r 990
difftime 991
gmtime 992
gmtime_r 993
localtime 994
localtime_r 995
mktime 996
strftime 997
time_t 999
tm 1000
<wchar.h> 1001
WCHAR_MAX 1003
WCHAR_MIN 1004
WEOF 1005
wchar_t 861
wcscat 1006
wcschr 1007
wcesemp 1008
wcscpy 1009
wcesespn 1010
wcsdup 1011
wcslen 1012
wcsncat 1013
wcesnchr 1014
wceshemp 1015
wcesncpy 1016
wcsnlen 1017
wcsnstr 1018
wcspbrk 1019
wcesrchr 1020
wcesspn 1021
wcsstr 1022
wcstok 1023
wcstok_r 1024
wint_t 1025
wmemccpy 1026
wmemchr 1027
wmemcmp 1028

23

CrossWorks for AVR Reference Manual Contents

wmemcpy 1029
wmemmove 1030
wmempcpy 1031
wmemset 1032
wstrsep 1033
Tasking Library User Guide 1035
Overview 1036
Tasks 1038
Event sets 1041
Semaphores 1045
Mutexes 1047
Message queues 1049
Byte queues 1052
Timers and interrupts 1055
Global interrupts control 1056
Timer support 1057
Interrupt service routines 1058
Memory areas 1059
Task scheduling example 1061
AVR implementation details 1063
CTL Revisions 1064
Complete API reference 1067
<ctl.h> 1068
CTL_BYTE_QUEUE_t 1071
CTL_ERROR_CODE _t 1072
CTL_EVENT_SET_t 1073
CTL_EVENT_WAIT_TYPE_t 1074
CTL_MEMORY_AREA__t 1075
CTL_MESSAGE_QUEUE_t 1076
CTL_MUTEX_t 1077
CTL_SEMAPHORE_t 1078
CTL_STATE_t 1079
CTL_TASK_t 1080
CTL_TIMEOUT _t 1081
CTL_TIME_t 1082
ctl_byte_queue_init 1083
ctl_byte_queue_num_free 1084
ctl_byte_queue_num_used 1085
ctl_byte_queue_post 1086
ctl_byte_queue_post_multi 1087
ctl_byte_queue_post_multi_nb 1088

24

CrossWorks for AVR Reference Manual Contents

ctl_byte_queue_post_nb 1089
ctl_byte_queue_receive 1090
ctl_byte_queue_receive_multi 1091
ctl_byte_queue_receive_multi_nb 1092
ctl_byte_queue_receive_nb 1093
ctl_byte_queue_setup_events 1094
ctl_current_time 1095
ctl_events_init 1096
ctl_events_pulse 1097
ctl_events_set_clear 1098
ctl_events_wait 1099
ctl_get_current_time 1100
ctl_global_interrupts_disable 1101
ctl_global_interrupts_enable 1102
ctl_global_interrupts_set 1103
ctl_handle_error 1104
ctl_increment_tick_from_isr 1105
ctl_interrupt_count 1106
ctl_last_schedule_time 1107
ctl_memory_area_allocate 1108
ctl_memory_area_free 1109
ctl_memory_area_init 1110
ctl_memory_area_setup_events 1111
ctl_message_queue_init 1112
ctl_message_queue_num_free 1113
ctl_message_queue_num_used 1114
ctl_message_queue_post 1115
ctl_message_queue_post_multi 1116
ctl_message_queue_post_multi_nb 1117
ctl_message_queue_post_nb 1118
ctl_message_queue_receive 1119
ctl_message_queue_receive_multi 1120
ctl_message_queue_receive_multi_nb 1121
ctl_message_queue_receive_nb 1122
ctl_message_queue_setup_events 1123
ctl_mutex_init 1124
ctl_mutex_lock 1125
ctl_mutex_unlock 1126
ctl_reschedule_on_last_isr_exit 1127
ctl_semaphore_init 1128
ctl_semaphore_signal 1129

25

CrossWorks for AVR Reference Manual Contents

ctl_semaphore_wait 1130
ctl_task_die 1131
ctl_task_executing 1132
ctl_task_init 1133
ctl_task_list 1134
ctl_task_remove 1135
ctl_task_reschedule 1136
ctl_task_restore 1137
ctl_task_run 1138
ctl_task_set_priority 1139
ctl_task_switch_callout 1140
ctl_time_increment 1141
ctl_timeout_wait 1142
ctl_timeslice_period 1143
Utilities Reference 1145
Compiler driver 1146
File naming conventions 1147
Command-line options 1148
-ansi (Warn about potential ANSI problems) 1149
-ar (Archive output) 1150
-c (Compile to object code, do not link) 1151
-d (Define linker symbol) 1152
-D (Define macro symbol) 1153
-E (Preprocess) 1154
-F (Set output format) 1155
-g (Generate debugging information) 1156
-help (Display help information) 1157
-io (Select I/O library implementation) 1158
-I (Define user include directories) 1159
-I- (Exclude standard include directories) 1160
-J (Define system include directories) 1161
-K (Keep linker symbol) 1162
-L (Set library directory path) 1163
-I- (Do not link standard libraries) 1164
-mboot (Generate boot loader code) 1165
-msize (Set code size) 1166
-mmpy (Generate multiplier instructions) 1167
-mxmega (Generate xmega code) 1168
-make (Make-style build) 1169
-M (Display linkage map) 1170
-n (Dry run, no execution) 1171

26

CrossWorks for AVR Reference Manual Contents

-nostderr (No stderr output) 1172
-0 (Set output file name) 1173
-O (Optimize output) 1174
-printf (Select printf capability) 1175
-R (Set section name) 1176
-scanf (Select scanf capability) 1177
-sd (Treat double as float) 1178
-v (Verbose execution) 1179
-w (Suppress warnings) 1180
-we (Treat warnings as errors) 1181
-Wa (Pass option to tool) 1182
-x (Specify file types) 1183
-y (Use project template) 1184
-z (Set project property) 1185
Compiler driver 1186
File naming conventions 1187
Command-line options 1188
-ansi (Warn about potential ANSI problems) 1189
-ar (Archive output) 1190
-c (Compile to object code, do not link) 1191
-g (Generate debugging information) 1192
-D (Define macro symbol) 1193
-F (Set output format) 1194
-h (Display help information) 1195
-1 (Define user include directories) 1196
-J (Define system include directories) 1197
-K (Keep linker symbol) 1198
-I (Link library) 1199
-L (Set library directory path) 1200
-I- (Exclude standard include directories) 1201
-I- (Do not link standard libraries) 1202
-m (Machine-level options) 1203
-M (Display linkage map) 1204
-n (Dry run, no execution) 1205
-0 (Set output file name) 1206
-O (Optimize output) 1207
-R (Set section name) 1208
-s- (Exclude standard startup code) 1209
-v (Verbose execution) 1210
-V (Display version) 1211
-w (Suppress warnings) 1212

27

CrossWorks for AVR Reference Manual Contents

-we (Treat warnings as errors) 1213
-Wa (Pass option to assembler) 1214
-Wc (Pass option to compiler) 1215
-WI (Pass option to linker) 1216
Linker 1217
Command line syntax 1218
Command line options 1219
-D (Define linker symbol) 1220
-F (Set output format) 1221
-g (Propagate debugging information) 1222
-K (Keep linker symbol) 1223
-I- (Do not link standard libraries) 1224

-I (Link library) 1225
-L (Set library directory path) 1226
-M (Display linkage map) 1227
-m8k (Generate for 8K part) 1228
-m128k (Generate for 128K part) 1229
-m8m (Generate for 8M part) 1230
-0 (Set output file name) 1231
-Obl (Enable block locality optimization) 1232
-Ocm (Enable code motion optimization) 1233
-Oxc (Enable code factoring optimization) 1234
-Oxcp (Set code factoring passes) 1235
-Oxcx (Enable extreme code factoring optimization) 1236
-Oph (Enable peephole optimization) 1237
-0xj (Cross jumping optimization) 1238
-Osf (Enable subroutine flattening optimizations) 1239
-Ojc (Enable jump chaining optimization) 1240
-Ojt (Enable jump threading optimization) 1241
-Ojt (Enable jump threading optimization) 1242
-T (Locate sections) 1243
-we (Treat warnings as errors) 1244
-w (Suppress warnings) 1245
-v (Verbose execution) 1246
-V (Display version) 1247
Hex extractor 1248
Command line options 1249
-W (Set bus width) 1250
-T (Extract named section) 1251
-F (Set output format) 1252
-0 (Set output prefix) 1253

28

CrossWorks for AVR Reference Manual

Contents

1254

-V (Display version)

Librarian

1255

-c (Create archive)

1256

-r (Add or replace archive member)

1257

-d (Delete archive members)

1258

-t (List archive members)

1259

CrossBuild

1260

Building with a CrossStudio project file

1261

Building without a CrossStudio project file

1263

Command-line options

1264

-batch (Batch build)

1265

-config (Select build configuration)

1266
1267

-clean (Remove output files)

-define (Define macro)

1268

-echo (Show command lines)

1269

-file (Build a named file)

1270

-packagesdir (Specify packages directory)

1271

1272

-project (Specify project to build)

1273

-property (Set project property)
-rebuild (Always rebuild)

1274

-show (Dry run, don't execute)

1275

-solution (Specify solution to build)

1276

-studiodir (Specify CrossStudio directory)

1277

1278

-template (Specify project template)
-type (Specify project type)

1279

-verbose (Show build information)

1280

CrossLoad

1281

Command line debugging

1283

Managing breakpoints

1284

1287

Displaying state
Locating the current context

1289

Controlling execution

1291

Command-line options

1292

-break (Stop execution at symbol)

1293

-config (Specify build configuration)

1294

1295

-debug (Enter command line debugging)

-eraseall (Erase all flash memory)

1296

-filetype (Specify load file type)

1297

-help (Display help)

1298

-listfiletypes (Display supported load file types)

1299

-listprops (Display target properties)

1300

29

CrossWorks for AVR Reference Manual Contents

-listtargets (Display supported target interfaces) 1301
-loadaddress (Set load address) 1302
-loader (Specify loader configuration) 1303
-nodifferential (Inhibit differential download) 1304
-nodisconnect (Inhibit target disconnection) 1305
-nodownload (Inhibit download) 1306
-noverify (Inhibit verification) 1307
-packagesdir (Specify package directory) 1308
-project (Specify project name) 1309
-quiet (Be silent) 1310
-script (Execute debug script) 1311
-serve (Run semihosting server) 1312
-setprop (Set target interface property) 1313
-solution (Specify solution file) 1314
-studiodir (Specify Studio directory) 1315
-target (Specify target interface) 1316
-verbose (Display additional status) 1317
CrossScript 1318
Command-line options 1319
-define (Define global variable) 1320
-help (Show usage) 1321
-load (Load script file) 1322
-define (Verbose output) 1323
CrossScript classes 1324
Example uses 1325
Embed 1326
Header file generator 1327
Using the header generator 1328
Command line options 1330
-regbaseoffsets (Use offsets from peripheral base) 1331
-nobitfields (Inhibit bitfield macros) 1332
Package generator 1333
Appendices 1335
Technical 1336
File formats 1336
Memory Map file format 1337
Section Placement file format 1339
Project file format 1340
Project Templates file format 1341
Property Groups file format 1343
Package Description file format 1345

30

CrossWorks for AVR Reference Manual Contents

External Tools file format 1349
Property categories 1352
General Build Properties 1352
Combining Project Properties 1354
Compilation Properties 1355
Debugging Properties 1359
Externally Built Executable Project Properties 1361
File and Folder Properties 1362
Library Project Properties 1364
Executable Project Properties 1365
Staging Project Properties 1368
Macros 1369
System Macros 1369
Build Macros 1371
Script classes 1373
BinaryfFile 1373
CWSys 1374
Debug 1375
WScript 1377

31

CrossWorks for AVR Reference Manual Contents

32

CrossWorks for AVR Reference Manual Introduction

Introduction

This guide is divided into a number of sections:

Introduction
Covers installing CrossWorks on your machine and verifying that it operates correctly, followed by a brief
guide to the operation of the CrossStudio integrated development environment, debugger, and other
software supplied in the CrossWorks package.

CrossStudio Tutorial
Describes how to get started with CrossStudio and runs through all the steps from creating a project to
debugging it on hardware.

CrossStudio User Guide
Contains information on how to use the CrossStudio development environment to manage your projects,
build, and debug your applications.

C Compiler User Guide
Contains documentation for the C compiler, including syntax and usage details and a description of
extensions provided by CrossWorks.

Tasking Library User Guide
Contains documentation on using the CrossWorks tasking library to write multi-threaded applications.

C Library User Guide
Contains documentation for the functions in the standard C library supplied in CrossWorks.

33

CrossWorks for AVR Reference Manual Introduction

Assembler User Guide
Contains detailed documentation covering how to use the assembler, the assembler notation, macros, and

other assembler features.

34

CrossWorks for AVR Reference Manual Introduction

What is CrossWorks?

CrossWorks for AVR is a complete C development system for Atmel AVR 8-bit microcontrollers that runs on
Windows, Mac OS, Linux, and Solaris.

C compiler

CrossWorks Cis a faithful implementation of the ANSI and ISO standards for the programming language C. We
have added some extensions that enhance usability in a microcontroller environment.

CrossWorks C Library

CrossWorks for AVR has its own royalty-free ANSI and ISO C compliant C library that has been specifically
designed for use within embedded systems.

CrossStudio IDE

CrossWorks for AVR is a streamlined integrated development environment for building, testing, and deploying

your applications. CrossStudio provides:

* Source Code Editor: A powerful source code editor with multi-level undo and redo, makes editing your
code a breeze.

* Project System: A complete project system organizes your source code and build rules.

* Build System: With a single key press you can build all your applications in a solution, ready for them to be
loaded onto a target microcontroller.

» Debugger and Flash Programming: You can download your programs directly into Flash and debug them
seamlessly from within the IDE using a wide range of target interfaces.

* Help system: The built-in help system provides context-sensitive help and a complete reference to the
CrossStudio IDE and tools.

» Core Simulator: As well as providing cross-compilation technology, CrossWorks provides a PC-based
fully functional simulation of the target microcontroller core so you can debug parts of your application
without waiting for hardware.

* Utilities: A set of tools for generating output files in multiple formats and a command line facility for
flashing your applications onto the target board provide the final stage of the software development
system.

35

CrossWorks for AVR Reference Manual Introduction

What we don't tell you

This documentation does not attempt to teach the C or assembly language programming; rather, you should
seek out one of the many introductory texts available. And similarly the documentation doesn't cover the AVR

architecture or microcontroller application development in any great depth.

We also assume that you're fairly familiar with the operating system of the host computer being used.

C programming guides
These are must-have books for any C programmer:

* Kernighan, B.W. and Ritchie, D.M., The C Programming Language (2nd edition, 1988). Prentice-Hall,
Englewood Cliffs, NJ, USA. ISBN 0-13-110362-8.
The original C bible, updated to cover the essentials of ANCI C (1990 version).

» Harbison, S.P. and Steele, G.L., C: A Reference Manual (second edition, 1987). Prentice-Hall, Englewood
Cliffs, NJ, USA. ISBN 0-13-109802-0.
A nice reference guide to C, including a useful amount of information on ANSI C. Co-authored by Guy

Steele, a noted language expert.

ANSI C reference

If you're serious about C programming, you may want to have the ISO standard on hand:

* ISO/IEC 9899:1990, C Standard and ISO/IEC 9899:1999, C Standard. The standard is available from your
national standards body or directly from ISO at http://www.iso.ch/.

36

http://www.iso.ch/

CrossWorks for AVR Reference Manual Introduction

Activating your product

Each copy of CrossWorks must be licensed and registered before it can be used. Each time you purchase a
CrossWorks license, you, as a single user, can use CrossWorks on the computers you need to develop and deploy
your application. This covers the usual scenario of using both a laptop and desktop and, optionally, a laboratory

computer.

Evaluating CrossWorks

If you are evaluating CrossWorks on your computer, you must activate it. To activate your software for

evaluation, follow these instructions:

* Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.
¢ Run the CrossStudio application.

* Choose Tools > License Manager.

* Click "Evaluate CrossWorks". If you have a default mailer, click the By Mail button.

» Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.

* If you don't have a default mailer, select the text underneath "Activation request”.

* Send the registration key to the e-mail address license@rowley.co.uk.
By return you will receive an activation key. To activate CrossWorks for evaluation, do the following:

* Run the CrossStudio application.
* Choose Tools > License Manager.
Click Activate CrossWorks.

» Type in or paste the returned activation key into the dialog and click Install License.

If you need more time to evaluate CrossWorks, simply request a new evaluation key when the issued one expires

or is about to expire.

After purchasing CrossWorks

When you purchase CrossStudio, either directly from ourselves or through a distributor, you will be issued a

Product Key which uniquely identifies your purchase

To permanently activate your software:

* Install CrossWorks on your computer using the CrossWorks installer and accept the license agreement.
* Run the CrossStudio application.
* Choose Tools > License Manager.

* If you have a default mailer, click the By Mail button.

37

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for AVR Reference Manual Introduction

* Using e-mail, send the registration key to the e-mail address license@rowley.co.uk.
* If you don't have a default mailer, select the text underneath "Activation request”.

* Send the registration key to the e-mail address license@rowley.co.uk.
By return you will receive an activation key. Then, complete the activation process:

* Run the CrossStudio application.
* Choose Tools > License Manager.
Click Activate CrossWorks.

» Type in or paste the returned activation key into the dialog and click Install License.

As CrossWorks is licensed per developer, you can install the software on any computer that you use such as a
desktop, laptop, and laboratory computer, but on each of these you must go through activation using your

issued product key.

38

mailto:license@rowley.co.uk
mailto:license@rowley.co.uk

CrossWorks for AVR Reference Manual Introduction

Text conventions

Menus and user interface elements

When this document refers to any user interface element, it will do so in bold font. For instance, you will often
see reference to the Project Explorer, which is taken to mean the project explorer window. Similarly, you'll see
references to the Standard toolbar which is positioned at the top of the CrossStudio window, just below the
menu bar on Windows and Linux.

When you are directed to select an item from a menu in CrossStudio, we use the form menu-name > item-name.
For instance, File > Save means that you need to click the File menu in the menu bar and then select the Save

item. This form extends to items in sub-menus, so File > Open With Binary Editor has the obvious meaning.

Keyboard accelerators

Frequently-used commands are assigned keyboard accelerators to speed up common tasks. CrossStudio uses

standard Windows and Mac OS keyboard accelerators wherever possible.

Windows, Linux, and Solaris have three key modifiers which are Ctrl, Alt, and Shift. For instance, Ctrl+Alt+P
means that you should hold down the Ctrl and Alt buttons whilst pressing the P key; and Shift+F5 means that
you should hold down the Shift key whilst pressing F5.

Mac OS has four key modifiers which are ? (command), ? (option), ? (control), and ? (shift). Generally there is a
one-to-one correspondence between the Windows modifiers and the Mac OS modifiers: Ctrlis ?, Alt is 7, and
Shift is ?. CrossStudio on Mac OS has its own set of unique key sequences using ? (control) that have no direct
Windows equivalent.

CrossStudio on Windows, Solaris, and Linux also uses key chords to expand the set of accelerators. Key chords
are key sequences composed of two or more key presses. For instance, the key chord Ctrl+T, D means that you
should type Ctrl+T followed by D; and Ctrl+K, Ctrl+Z means that you should type Ctrl+T followed by Ctrl+Z.
Mac OS does not support accelerator key chords.

Code examples and human interaction

Throughout the documentation, text printed in this typeface represents verbatim communication with the
computer: for example, pieces of C text, commands to the operating system, or responses from the computer.
In examples, text printed in this typeface is not to be used verbatim: it represents a class of items, one of which

should be used. For example, this is the format of one kind of compilation command:
hcl source-file
This means that the command consists of:

* The word hcl, typed exactly like that.

* A source-file: not the text source-file, but an item of the source-file class, for example myprog.c.

39

CrossWorks for AVR Reference Manual Introduction

Whenever commands to and responses from the computer are mixed in the same example, the commands
(i.e. the items which you enter) will be presentedi n t hi s t ypef ace.For example, here is a dialog with the
computer using the format of the compilation command given above:

c:\ crosswor ks\ exanpl es>hcl -v nyprog.c

The user types the text hcl -v myprog.c and then presses the enter key (which is assumed and is not shown); the
computer responds with the rest.

40

CrossWorks for AVR Reference Manual Introduction

Additional resources

With software as complex as CrossWorks, it's almost inevitable that you will need assistance at some point. Along
with the documentation that comes with CrossWorks for AVR, there are a variety of other resources you can use
to find out more.

CrossWorks for AVR website

 http://www.rowley.co.uk/avr/index.htm

Support

If you need some help working with CrossWorks, or if something you consider a bug, go to:
* http://rowley.zendesk.com/

You can subscribe to our RSS newsfeed here:

* http://www.rowley.co.uk/rss.xml

Suggestions

If you have any comments or suggestions regarding the software or documentation, you can make suggestions
on our UserVoice forum:

* http://rowley.uservoice.com/

Finding your way around

CrossStudio is a complex program in many ways, but we have tried to simplify it so that it's easy to use. It's very
easy to get started and CrossStudio scales well to complex multi-programmer projects that need to manage

large code bases and the inevitable software variants.

In the tutorial you were presented with a whistle-stop tour of CrossStudio to get you up and running. Here we

dig deeper into the corners of CrossStudio so you can get the best from it.

141

http://www.rowley.co.uk/avr/index.htm
http://rowley.zendesk.com/
http://www.rowley.co.uk/rss.xml
http://rowley.uservoice.com/

CrossWorks for AVR Reference Manual Introduction

Release notes

Release 2.1

Build

* Pre-compile and pre-link commands now stop build immediately if an error exit code is returned.

* Fixed an incompatibility in generation of 64-bit doubles exposed by different compilers for OS X and
Windows/Linux.

» Added ISR section, pragmas, and control

* Build system now outputs a message when build has failed and 'keep going on error' has been enabled.
Compiler
* Fixrare live register clobber on function entry.

CrossBuild

* CrossBuild no longer sends stderr output from build commands to stdout. The -nostderr option has been
added in case old behaviour is still required.

CrossLoad

Added -load and -define options to CrossLoad.

» CrossLoad can now use CrossStudio target interfaces.

* Fixed the calling of connect scripts. Private configurations can now be specified. The -config option is no
longer required if project has only one configuration.

» Added -eraseall option to crossload.

CrossStudio

» Added support for building and debugging using an external AVR GCC toolchain.

» Added property to the terminal emulator to disconnect/reconnect when the target interface is
connected/disconnected.

» Added support for starred files in Project Explorer.

» New file dialog no longer appends extension if it already exists.

* Right click on the project window shows the target and placement menus when the property groups file
is specific to a configuration.

* Linux version of license manager now uses Ethernet addresses of adapters that are not activated

* Fixed additional options from file project properties not releasing file when build is complete.

* Status bar messages can now be copied to clipboard.

* Fixed memory map file caching when downloading and not debugging.

* Fixed mis-optimization of ECMAScript IR which caused '<' to fail in some cases.

» Added new filter feature to register window.

42

CrossWorks for AVR Reference Manual Introduction

* Fixed 'Go To Included File' so that ignores comments.

» New project wizard now works correctly when PackagesDir contains Unicode characters.

* Fixed erase, lock and unlock operations.

* Fixed package manager prompting for installation directory unnecessarily when installing packages.

* Linux, Mac OS X and Solaris versions of CrossStudio no longer need to be started using an absolute path.

« Fix initial size and resize of Macro dialog

* Fixed the opening of files in CrossStudio from Mac OS X Finder.

* Fixed 'Allow Multiple CrossStudios' environment option when set to 'No' on Mac OS X.

* Added TargetID system macro.

* Fixed potential crash in XML/HTML syntax coloring.

» Corrected target compatibility check dialog behavior.

* Added CrossStudio launcher.

* Hovering over a warning or error icon in the margin brings up diagnostic tooltip.

* Fixed DNS bug causing downloads to hang.

* Fixed Qt settings files being saved with root ownership when installer run using sudo (Unix only).

* Improved CrossStudio startup speed when many packages are installed.

» Target Connection menu can now search for targets by name; Ctrl+Shift+T is accelerator to Target
Connection menu.

» Packages now downloaded using content delivery network by default.

» Package manager update now installs missing or out of date associated packages.

* Fixed initial colour of binary diff window.

* Fixed 'Send e-mail' button in license manager (Mac OS X only).

» Added Package Dependencies project property.

* Legacy packages are now always displayed in package manager if installed.

» Package manager now defaults to upgrading dependent packages when installing a new package.

* Register group selector now scrolls if it is larger than the width of the display.

* Fixed rename box artefact when closing a register group (Incident #3852)

* Help > Contents window is now categorized.

* Fixed font dialog not updating sample text (Incident #5474)

* Fixed open on-error location of text files using 1ISO-8859 encoding (Incident #5798)

* Fixed slow population of Source Navigator list view (Incident #5911)

¢ Defer history window refresh if the window is not visible.

* Using Crtl+Wheel to zoom the HTML browser now works in the same way as Internet Explorer and
Chrome.

» Changes to the project through the Project Manager dialog are now reflected to the Project Explorer
when settings are shown under the node. (Incident #5829)

* Fixed column size problems in Project Manager when changing views. (Incident #4965)

* Better handling of codec selection when files are loaded and saved. (Incident #5798)

* Fixed crash when using 'File > Open CrossStudio' to open folders on Mac OS X.

» Code editor now marks file as modified if inconsistent line endings have been corrected.

* Find in files now uses 'Look in files matching' field when doing a solution/project search.

43

CrossWorks for AVR Reference Manual Introduction

Fixed issue when auto-documenting structures where const and volatile qualifiers on members were
sometimes discarded.

Removed capability to auto-load of last project on IDE startup.

Added Reload to Project Explorer toolbar and Project menu to reload the last project, if no project loaded,
or the current project.

Added Reload to Browser window to reload the source HTML.

Debug

Added support for Arduino/Wiring target interfaces.

Moved Erase All and No Load Sections target properties to be debug project properties.

Added debug project properties that specify the initial breakpoint settings. The environment equivalents
are now the default values for these project properties.

Added support in debugger for 0b numbers on expressions.

Library

CTL

Fixed problem printing very large long longs requiring 19 decimal digits. Fixed problem with incorrect
sign-extension for some library configurations.

Fixed __vfprintf which sometimes over-eagerly swaps to floating format when usingin %g.

sprintf and friends print -inf for negative infinity.

Fixed printing zero in %u and other integer formats using width/precision unsupported mode (incident
#4944)

Fixed definition of UINT8_C in stdint.h.

Fixed mktime when presented with out-of-bounds member values (incident #2722)

Fixed wchar_t to unsigned. (Incident #5979)

Fix bug in realloc() when reducing the size of an existing allocation. (Incident #6006)

Added runtime support for 32-bit x 32-bit to 64-bit long long multiplication.

Fixed rescheduling from ctl_byte/message_queue_post when notempty event flag is used.

Succesfully calling ctl_events_wait(), ctl_mutex_lock(), ctl_semaphore_wait() will return immediately i.e.
not cause a reschedule.

ISR's now run on their own stacks.

CTL - fixed priority restore on mutex unlock when higher priority waiting task has timed out.

Miscellaneous

Added -x option to mkpkg.
Register and bitfield definitions in the memory map can now include descriptions.
Added BinaryFile script class.

44

CrossWorks for AVR Reference Manual Introduction

Release 2.0.4

* Added Auto Surround editor configuration option to enable or disable automatically surrounding text
when there is an active selection.
* Added Auto Comment editor configuration option to enable or disable automatically swapping the line
comments when there is an active selection.
* Enhancements to the threads window
o Sentinel USB tokens now work under Linux (Ubuntu 8.04 and 10.04 tested with Sentinel USB Daemon
v7.5.2).
o The filename of the threads script need not be fixed as threads.js it can now be specified using the
Threads Script file type property.
o The threads script can specify the set of displayed columns.
o Can be sorted by clicking on a column.
o Gives a better indication of the selected thread.
o The threads script can be written so that the register state of a thread is retrieved when the thread is
selected.
o The threads script has access to the Targetinterface object.
* Save Solution As.. now reloads the saved solution.
* File > Open now opens file browser in a sensible place.
» Reworked some alert notification dialogs.
* Documentation for a subset of header files now generated automatically by internal tools.
* Improvements in License Manager dialog on Mac OS.
* Fixed lock up on Mac OS version when file is modified externally.
* Fixed code editor jumping to start of file when Outline window is active.
* Device identify now uses the target processor property to differentiate devices that have the same jtagid/
signature.
* Support for debugging debugWIRE bootloader executables.
» Target window "Erase All" action greyed out for debugWIRE targets.
 Target property "Erase All" not shown for debugWIRE and ISP targets.
* Fixed start debugging with Step Into when debuglO is used.
* Fixed breakpoint on main when startup completion breakpoint is used.
* Fixed debugger data memory access on devices which have a gap between 10 registers and SRAM.
* Fixed project properties update in the project window when target/placement changed by project
explorer menu.
» Added Arduino target interface.

» On windows hosts serial port name target interface properties can be right clicked to select the COM port.

Release 2.0.3

* Fixed windows libusb0 installation problem:s.

45

CrossWorks for AVR Reference Manual Introduction

» Added debug_enabled() function that returns true if the application is being debugged.

Release 2.0.2

» Removed Disconnect(Disable DebugWire) target menu entry - the ISP interface can now be used to
disable DebugWIRE.
* Added support for JTAG programming and debugging of JTAG MEGA and XMEGA devices using:
o PCParallel Port to AVR/MAXQ 10 pin JTAG.
o PCParallel Port to ARM 20 pin JTAG.
o CrossConnect for ARM 20 pin JTAG.
Note that the 20 pin connectors require a convertor board/cable to connect to a standard AVR 10 pin
JTAG header.
* Removed programming menu entries from the project explorer.
» Support for __eeprom qualifier on XMEGA devices.
» Support for data breakpoints on XMEGA devices.
 Support for aligned powers of two data range breakpoints on JTAG MEGA devices.
» Added linker and crt0.asm support for building bootloader executables.
» JTAGICEmkII/AVRDragon JTAG and PDI target interfaces now support the "Erase All" property.
» JTAGICEmkII/AVRDragon target interfaces now use hardware breakpoint support for stepping functions.
* Target interfaces now have a "No Load Sections" property to stop named sections being loaded.
* On windows hosts the functions in libusb0.dIl are now accessed by symbol names which should enable
newer versions of libusb0 to be used.
* Fixed decimal display in registers window.
* File names in projects can now have embedded periods, e.g. "foo.bar.c".
* New File dialog now supports embedded periods in file names.
* Fixed editor crash when editing doxygen style comments.
» Debug actions are now available on the disassembly window toolbar.
* Additional assembler/compiler/linker options properties can now be held in a file referenced by new
project properties.
* Added debug_load_symbols/debug_unload_symbols functions to enable debugging of dynamically
loaded applications.
» Disassembler now displays data sections as hex (rather than trying to disassemble).
e Terminal emulator can (and does) set DTR signal on connect.
» Terminal emulator supports ansi clear display sequence and \r.
» On windows hosts the terminal emulator port property can be right clicked to select the list of available
COM ports.
» Added -docgen option to cpphtml tool to enable html to be generated from structured comments.

46

http://www.olimex.com/dev/maxq-jtag.html
http://www.olimex.com/dev/arm-jtag.html
http://www.rowley.co.uk/arm/CrossConnect.htm

CrossWorks for AVR Reference Manual Introduction

Release 2.0.1

» Corrected assembly code executable project template's startup code.
» Added option to disable spell checker

* Added option to disable paste on middle mouse button click and made it default to off.

Release 2.0

Start over.

Known Problems

47

CrossWorks for AVR Reference Manual Introduction

48

CrossWorks for AVR Reference Manual CrossStudio Tutorial

CrossStudio Tutorial

In this tutorial, we will take you through activating your copy of CrossWorks; installing support packages; and
creating, compiling, and debugging a simple application using the built-in simulator.
Note

If you're viewing this tutorial from within the CrossWorks help Browser window, you may find it more
convenient to view using an external web browser so you can still see the entire CrossWorks window. To do so,

simply right-click on the help content in the CrossWorks Browser and choose Open in External Browser.

In this section

Activating CrossWorks
Describes how to activate your copy of CrossWorks by obtaining and installing an activation key for

evaluation.

Managing support packages
Describes how to download, install, and view CPU-support and board-support packages.

Creating a project
Describes how to start a project, select your target processor, and other common options.

Managing files in a project
Describes how to add existing and new files to a project and how to remove items from a project.

Setting project options
Describes how to set options on project items and how inheritance works for project settings.

49

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Building projects
Describes how to build a project, correct compilation and linkage errors, and find out how big your
applications are.

Exploring projects
Describes how to use the Project Explorer and Symbol Browser to learn how much memory your project
takes and how to navigate among the files that make up the project.

Using the debugger

Describes the debugger and how to find and fix problems at a high level when executing your application.

Low-level debugging
Describes how to use debugger features to debug your program at the machine level by watching registers
and tracing instructions.

Debugging externally built applications
Describes how to use the debugger to debug externally built applications.

50

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Activating CrossWorks

Each copy of CrossWorks must be registered and activated before it will build projects or download and debug
applications. In this tutorial, we are going to use CrossStudio's License Manager dialog to request an evaluation

activation key and, after the key is received, to activate CrossWorks.

If you have already activated your copy of CrossWorks, you can skip this page.

License Manager @

Manage your product licenses and activations

Installed licenses: If you wish to evaluate CrossWorks,
Product License Status request an activation key:
[Using Clipbnard] [By Mail]

If you have a product key, request
an activation key:

[UsingCIipbnard][By Mail]

When you have an activation key:

[Activate Product]

When you're done with a license:

[Remove License]

Requesting an evaluation activation key (with a default e-mail client)

To receive an evaluation activation key that is valid for 30 days:

* Choose Tools > License Manager.
* Click the Evaluate CrossWorks option.
» Choose whether to lock the license to your computer's MAC address or to your system's primary disk.

51

CrossWorks for AVR Reference Manual CrossStudio Tutorial

» Send the e-mail containing the registration key to license@rowley.co.uk. If your development system
does not have a default e-mail client, copy the activation request and paste it into an e-mail to this

address.

Choosing which hardware to lock to is a matter of personal choice. If you lock to your primary disk and then
replace that disk drive, reformat it, or upgrade the operating system, CrossWorks may need to be reactivated.
If you lock to a network adapter and the network adapter fails and is replaced, then CrossWorks will require

reactivation.

When we receive your registration key we will send an activation key back to your e-mail's reply address. You

then will use the activation key to unlock and activate CrossWorks.

Activating CrossWorks
When you receive your activation key from us, you can activate CrossWorks as follows:

* Choose Tools > License Manager.

¢ Click the Activate CrossWorks option.

* Enter the activation key you have received from us.

* Click Install License.

* The new activation should now be visible in the list of Installed licenses. Click Close to close the License

Manager window.

Note

If you request an activation key outside office hours, there may be a delay processing the registration. If this is
the case, you can continue the tutorial until you reach the Building projects section—you will need to activate

CrossWorks before you can build.

52

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Managing support packages

Before a project can be created, a CPU-support or board-support package suitable for the device you are
targeting must be installed. A support package is a single, compressed file that can contain project templates,
system files, example projects, and documentation for a particular target.

In this tutorial, we are going to use CrossStudio's Package Manager to download, install, and use the Atmel AVR
CPU Support Package.

If you have already installed this support package, you can skip this page.

Downloading and installing a support package

To download and install a support package:

* Choose Tools > Manage Packages.

* Select the Atmel AVR CPU Support Package entry.

* (To select more packages to download and install at the same time, you can control-click the additional
packages.)

53

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Package Manager =

Select Packages

| search Packages -

Title Type Status Action
Atmel AVR CPU Support Package CPU Support Package Mot Installed Mo Action

Package Information

Description This package contains project templates and system files for the Atmel AVR.
Latest Version 11

Author Rowley Associates Ltd

Package Version History
11
Move project templates into package,

10

Initial Release. =

* Right-click the selected package and choose to Install Selected Packages.

Title Type Status Action

Atmel AVR CPU Support Package CPU Support Package Mot Installed Mo Action
Install Selected Packages

Select All Packages
Refresh Package List

Manual Install

* Click the Next button and you will be presented with a list of actions the package manager is going to
carry out.

* Click Next again to download and install the support package.

* Upon successful completion, you will see a list of the newly installed packages. Click Finish.

Viewing installed support packages

To view the installed support packages:

54

CrossWorks for AVR Reference Manual CrossStudio Tutorial

* Choose Tools > Show Installed Packages to list the support packages you have installed on your system.
You should see the name of the Atmel AVR CPU Support Package you just installed.

 Click Atmel AVR CPU Support Package to view the support package page in the CrossStudio
Browser window. This page provides more information about the support package and links to any

documentation, example projects, and system files that may be included in the package.

55

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Creating a project
To start developing an application, first create a new project. To create a new project:

* Choose File > New Project or press Ctrl+Shift+N

The New Project dialog appears. This dialog displays the set of project types (Categories) and project templates.

i

New Project (B[]
Select new project template
Categories: Project Templates:
+ Standard . . -
Combining Project + (Standard Projects) Rowley Associates
Executable
Externally Built Execut @ A boot loader executable for BOOTSZ 00 and IVSEL. i
Library
Object file A C executable.
Staging Project
@ An assembly code executable.
@ A CrossWorks Tasking Library Project.
| A boot loader executable for BOOTSZ 11. -
Mame: |Tutcuria| |
Location: |C:'~.CrossWorks Projects\Tutaorial |
Next] ’ Finish] ’ Cancel]

We'll create a project to develop our application in C:

1. In the Categories pane, select the Standard > Executable

2. From the list in the Project Templates pane, select the A C executable

3. Inthe Name text field, type Tut or i al to assign that as the new project's name.

4. You can use the Location text field or the Browse button to locate where you want to save the project in
your local file system.

5. Click Next.

56

CrossWorks for AVR Reference Manual

CrossStudio Tutorial

i

Mew Project

@ Choose common project settings

Properties:
Property Setting
* Code Generation Options
Target Processor ATmegal2s =
Treat 'double’ as float’ Yes
* Linker Options
Additional Cutput Format Mone
Call 5tack Size 1&
Data Stack Size 123
* Printf/Scanf Options
Printf Floating Point Supported Mo
Printf Integer Support int
Printf Width/Precision Supported | Yes
Scanf Classes Supported Mo
Scanf Floating Point Supported Mo
Scanf Integer Support int
Target Processor
Select a set of target options
Next] [Finish] [Cancel

Here you can customize the project by altering a number of common project properties, such as an additional

file format to be output when the application is linked and what library support to include if you use printf and

scanf. After the project is created, you can change these settings in the Project Explorer as needed.

1. You can double-click a project property or its value to display either a drop-down menu of potential, valid

values or a text field in which you can type arbitrary values. For our tutorial, the default values are fine.

2. Click Next to display a list of the files CrossStudio will add to this project be default. You can uncheck any

file you plan to add manually or that you know will not be needed.

57

CrossWorks for AVR Reference Manual

CrossStudio Tutorial

i

Mew Project

@ Select files to add to project

O Project files
main.c

Files:
File name Path
O Links to system files
crtd.asm S(studioDirsroertd.asm

section_placement.xml 5{5tudioDir)targets'section_placement.xml

ChCrossWorks Projects\Tutorialmain.c

| | Finisn || cancel

The Links to system files group shows the links to CrossStudio system files that will be created in the project.

Because these files are links, the default behavior is that they will be shared with other projects—so modifying

one will affect all projects containing similar links. To prevent accidental modification, these files are created

as read-only. Should you wish to modify a shared file without affecting other projects, first import it into the

project. (Importing a shared file will be demonstrated later in this tutorial.) See Creating and managing projects

for more information on project links.

The Project files pane shows the files that will be copied into the project. Because these files are copied to the

project directory, they can be modified without affecting any other project.

If you uncheck an item, that file is not linked to, or created in, the project. We will leave all items checked for the

moment.

1. Click Next to view the default configurations that will be added to the project. Again, you can uncheck

any you know will not be needed but, for this tutorial, we will leave the defaults unchanged.

58

CrossWorks for AVR Reference Manual CrossStudio Tutorial

i

New Project (5] [l
@ Select configurations to add to project
Configurations:

AVR Debug
AVE Release

Finish] [Cancel

Here you can specify the default configurations that will be added to the project. See Creating and managing

projects for more information on project configurations.
1. Click Finish to complete the new project's creation.
The Project Explorer shows the overall structure of your project. To invoke it, do one of the following:
* Choose View > Project Explorer.
—or—
* Type Ctrl+Alt+P.

This is what our project looks like in the Project Explorer:

59

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Project Explorer Il | x
!:IA‘JR Debug ~'\E & ¥
Project ltems C_ode Data

7| Solution Tutorial

+ E_] Solution Properties

- [T] Project Tutorial
+ E_] Project Properties
= a Source Files

+ Q main.c

= 'E System Files

+ ﬁ crid.asm

+ section_placement.xml

The project name is shown in bold to indicate it is the active project (and, in our case, the only project). If you
have more than one project, you can set the active project by using the drop-down box on the Build tool bar or
by right-clicking the desired project's name in the Project Explorer to display the shortcut menu with the Set as
Active Project command.

The files are arranged into two groups; click the + symbol next to the project name to reveal them:

* Source Files contains the main source files for your application, typically header files, C files, and
assembly code files. You may want to add files with other extensions or documentation files in HTML
format, for instance.

» System Files contains links to source files that are not part of the project but are required when the
project is built and run. In this case, the system files are: cr t 0. asm— the C run-time startup, written in
assembly code

section_pl acenment . xm — informs the linker how to arrange program sections in memory

Files stored outside the project's home directory (with a small purple shortcut indicator at the bottom left of the
icon, as above.

These folders have nothing to do with directories on disk, they are simply a means to group related files in the

Project Explorer. You can create new folders and specify filters for them based on the project files' extensions;

60

CrossWorks for AVR Reference Manual CrossStudio Tutorial

thereafter, when you add a new file to the project, it will be shown in the Project Explorer folder whose filter

matches the new file's extension.

61

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Managing files in a project

We'll now set up the example project with some files that demonstrate features of the CrossStudio IDE. For this,
we will add one pre-prepared file and one new file to the project.

Adding an existing file to a project
To add one of the existing tutorial files to the project:

* Choose Project > Add Existing File.
—or—

* In the Project Explorer, right-click the Tutorial project node.
* Choose Add Existing File from the shortcut menu.

In response, CrossStudio displays a standard file-locator dialog. Use it to navigate to the CrossStudio installation
directory, then to the t ut ori al folder, where you should select the f act . c file.

o~

¥ Add Existing Items [2=]

@Qvl . # tutorial - | 4 | | Search o |

‘ Organize + o= Views ~ [New Folder

Mame Dater;odif... Type Size
B factc T mMain.c

C File File
116 bytes 220 bytes

File name: fact.c - [CSnurce Files (*.c) T]

(oo Y] [Coes]

62

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Click Open to add the file to the project. The Project Explorer will list f act . ¢ in the Project Items' Source Files
folder, with a shortcut arrow because the file is not in the project's home directory. Rather than edit the file in the
tutorial directory, we'll put a copy of it into the project's home directory:

* In the Project Explorer, right-click the f act . ¢ node.

* From the pop-up menu, click Import.

The shortcut arrow disappears from the f act . ¢ node, indicating that our working version of that file is now in

our Tutorial project's home directory.

We can open a file for editing by double-clicking the node in the Project Explorer. For example, double-clicking
f act. c opensitin the code editor:

/' Browser f fact.c H
= ChvProjectshTutorialhfact.c

1 ¥/ crossworks Tutorial

int fact{int n)

{
if (n <= 1)
return 1;
glse

return facti{n-1} * n;

Removing a file from a project

We don't need the mai n. ¢ file that was added to the project by the new-project wizard, so we will remove it.

Do one of the following:

* Select mai n. ¢ in the Project Explorer.
» Choose Edit > Delete or press Del.

—Or—

* In the Project Explorer, right-click mai n. c.

* From the shortcut menu, click Remove.

63

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Adding a new file to a project

Our project isn't complete, because f act . ¢ is only part of an application. To our project we'll add a new C file

that will contain the main() function. To add a new file to the project, do the following:
¢ Choose File > New to open the New File dialog.

—or—
* On the Project Explorer tool bar, click the Add New File button.

—or—

* In the Project Explorer, right-click the Tutorial node.
* Choose Add New File from the shortcut menu.

e Type Ctrl+N.
The New File dialog appears.

* In the Categories pane, select C C++ to indicate the general type of file.
* In the Templates pane, select the C File (.c) option to further specify the kind of file we will be adding.
* In the Name edit box, type mai n.

The dialog box will now look like this:

64

CrossWorks for AVR Reference Manual CrossStudio Tutorial

NewFile [l
Categaories: Templates:
i1 Assembly
i1 Miscellaneous - e)
C++ File Header File
[.cpp) (.h)

| Creates a C source file.

= Create a new file not linked to a project f* Add a new file to the current project

MName: |mair1 |

Location: | ChZrossWaorks Projects\Tutorial |

Click OK to add the new file. Because nai n. c already exists on disk, you will be asked whether you wish to
overwrite the file:

F 4 Warning e

' The file "ChCrossWorks Projects\Tutorialmain.c” already exists.
E Do you want to overwrite "ChCrossWorks Projects\Tutorialmain.c?

Yes | | Mo

Click Yes to overwrite the file and continue with the tutorial.

CrossStudio opens the new file in the code editor. Rather than type the program from scratch, we'll add it from a

file stored on disk. With the new, empty mai n. ¢ in the foreground:

* Choose Edit > Insert File or press Ctrl+K, Ctrl+I.

* Using the resulting file-selection dialog, navigate to the t ut ori al directory.

65

CrossWorks for AVR Reference Manual CrossStudio Tutorial

* Select the mai n. c file.
* Click OK.

Your mai n. c file should now look like this:

/ Dashboard }/fa::t.c }‘/ mair.c

8 = C\CrossWorks Projects\Tutorial\main.c

A crosshiorks Tutorial
#include <cross_studio lo.hs

#ifndef DEFIME_ME
#error DEFINE_ME undefined
#endif

void factorial({int)};
18

int main{woid)

{
int i;
for (1 =2; 1 < 18; ++1)

debug_printf{"Factorial of %4 is Zdwn", i, factorial{i}}

return 2;

i
18 |

Next, we'll set up some project options.

66

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Setting project options

Up to this point, you have created a simple project. In this section, we will set some options for that project.

You can set project options on any node of a solution. That is, you can set options on a solution-wide basis, on

a project-wide basis, on a project-group basis, or on an individual-file basis. For instance, options you set on a
solution are inherited by all projects in that solution, by all groups in each of those projects, and by all files in
each of those groups. If you set an option further down in the hierarchy, that setting will be inherited by nodes
that are children of (or grandchildren of, etc.) that node. This provides a powerful way to customize and manage

your projects.

Adding a C preprocessor definition

In this instance, we will define a C preprocessor definition that will apply to the entire Tutorial project. This means
every file in the project will inherit our new definition. If, however, we were to later add other projects to the
solution, they would not inherit the definition; if we wanted that, we could set the property on the solution node
rather than the project node.

To set a C preprocessor definition on the project node:

* Right-click the Tutorial project in the Project Explorer and select Properties from the menu—the Project
Manager dialog appears.

* Click the Configuration drop-down and change to the Common configuration (it is one of the "Private
Configurations").

* Scroll down the list as necessary to click the Preprocessor Options > Preprocessor Definitions property.
Double-click the property name or value field, or click the . . . symbol to display the empty Preprocessor
Definitions window, and in that window type the definition DEFI NE_IVE.

The dialog box will now look like this:

67

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Project Manager -7
View: |Properties Properties: [All Grouping: | Categorize Configuration: E-:? Comman
Projects: Settings:
Solution ‘Tutarial’ Property Setting Inherited From In Canfiguration o~
- 7] Project ‘Tutorial’
= a Source Files * Preprocessor Options
facF.c Ignore Includes Mo .
=] main.c Preprocessor Definitions DEFINE_ME =< 7] Project Tutarial’ ?.i Common
+ D System Files Preprocessor Undefinitions

System Include Directories
Undefine All Preprocessor Definitions Mo
User Include Directories

* Printf/Scanf Options
Printf Floating Point Supported Mo |%|
Printf Integer Support int
Printf Width/Precision Supported Yes
Scanf Classes Supported Mo
Scanf Floating Point Supported Mo
Scanf Integer Support int -

Notice that, when you change between Debug and Release configurations, the code generation options
change. This dialog shows the options used when building a project (or anything in a project) in a given
configuration. Because we put the above, new definition in the Common configuration, both Debug and
Release configurations will use this setting. We could, however, set the definition to be different in Debug and

Release configurations if we wanted to pass different definitions into debug and release builds.

Now click OK to accept the changes made to the project.

Using the Properties Window

If you click on the project node, the Properties Window will show the properties of the project—all were
inherited from the solution. If you modify a property when the project node is selected, you'll find that its value
is highlighted because you have overridden the property value inherited from the solution. To restore the

inherited value of a property that was changed, right-click the property and select Use Inherited Value.

Next, we'll build the project.

68

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Building projects

Now that the project is created and set up, it's time to build it. There are some deliberate errors in the program

that we need to correct; doing that is the next step in this tutorial.

Setting the build configuration
The first thing to do is set the active build configuration you want to use:
* Select AVR Debug from the Active Configuration .

This means we are going to use a build configuration that generates code with debug information and no
optimization, so it can be debugged. If we wanted to produce production code with no debug information and
optimization enabled, we could use the AVR Release configuration. However, because we are going to use the

debugger, we shall use the AVR Debug configuration.

Building the project
To build the project:
* Choose Build > Build Tutorial.
—or—
* On the Build tool bar, click the Build Active Project button.
—or—
* TypeF7.
Alternatively, to build the Tutorial project using a shortcut menu:

* In the Project Explorer, right-click the Tutorial project node.

 Select Build from the shortcut menu.

CrossStudio starts compiling the project files, but stops after detecting an error. The Output window shows the

Transcript, which contains the errors found in the project:

69

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Cutput

Show: |Transcript - T,,.. 'T* Tasks -

| Building "Tutorial”
Completed (with errors)

= @ Compiling main.c — 2 errors
e 'void' is illegal as argument 3 to debug

- found ‘return’, expecting '

@ Build failed

Completed

Correcting compilation and linkage errors

The file mai n. ¢ contains two errors. After compilation, CrossStudio moves the cursor to the line containing
the first reported error and displays an error message in the Output window. (You can change this behavior by
modifying the Text Editor > Editing Options > Enable Popup Diagnostics environment option using the Tools
> Options dialog.)

int main{void)

{
i_"t E ﬂ type woid' is illegal as argument 3 to debug_printf | ¥
or .
15 I:!Ehug;_pr‘in'tﬂ:“Fan:t:rial of %24 is Xdwn", i, factorial(i})
return 2;
X

To correct the error, change the return type of f act or i al fromvoi dtoi nt in its prototype.

To move the cursor to the line containing the next error, type F4 or choose Search > Next Location. The cursor is
now positioned at the debug_printf statement, which is missing a terminating semicolon—add the semicolon
to the end of the line. Using F4 again reveals that we have corrected all errors.

Pressing F4 again wraps around and moves the cursor to the first error, and you can use Shift+F4 or Search >
Previous Location to move back through errors. Now that the errors are corrected, build the project again by
pressing F7. The Transcript shows there still is a problem.

70

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Cutput

Show: |Transcript | Y T [Tasks -

~# Building "Tutorial”
Completed (with errors)
Compiling main.c
Compiling fadct.c
Assembling crid.asm
Linking Tutorial.hzx — 1 error

2200

undefined symbol * factorial’

@ Build failed

Completed

The remaining error is a linkage error. Double-click f act . ¢ in the Project Explorer to open it for editing and
change the two occurrences of f act tof act ori al . Rebuild the project—this time, the project compiles
correctly:

@ Build complete
Completed

RAM FLASH Summary

‘ 4 RAM 3%
292 FLASH 28%

A summary of the memory used by the project is displayed at the end of the build log. The results for your
application may be different, so don't worry if they don't match.

In the next sections, we'll explore the characteristics of the newly built project.

71

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Exploring projects

Now that the project has no errors and builds correctly, we can turn our attention to uncovering exactly how our

application fits in memory and how to navigate around it.

Using Project Explorer features

The Project Explorer is the central focus for arranging your source code into projects, and it's a good place to
show ancillary information gathered when CrossStudio builds your applications. This section will cover features

the Project Explorer offers to give you an overview of your project.

Project code and data sizes

Developers are always interested in how much memory their applications use, especially when they are working
with small, embedded microcontrollers. The Project Explorer can display the code and data sizes for each
project and individual source file that successfully compiled. To view this information, use the Options pop-up

menu on the Project Explorer tool bar to ensure that Statistics Column is checked.

72

CrossWorks for AVR Reference Manual

Project Explorer

CrossStudio Tutorial

I | >

::5 Debug ~|| [3 @
Project Items \w | statistics Display

Solution ‘Tutorial
E_;l Solution Properties
=[] Project Tutorial
E_;l Project Properties
= E Source Files
@E fact.c
Q main.c
(L] System Files

Fead-Only Data In Code
Show Statistics Rounded

Dependencies OFf
Dependencies Under Node

Dependencies In Folder

Properties Off
Properties Under Mode
Properties In Folder

Lse Common Properties Folder

Show Cutput Files

Show Source Control Status

Synchronize Explorer With Editor

When the Statistics Column option is checked, the Project Explorer displays two additional columns, Code and

Data.

73

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Project ltems Code Data
Solution 'Tutorial
+ E_;l Solution Properties
- [T] Project Tutorial’ 2,143 28
+ E_;l Project Properties
- 'a Source Files
¥ & fact.c 80
¥] main.c 100 24
[System Files

The Code column displays the total code space required for the project. The Data column displays the total

data space required. The code and data sizes shown for each C and assembly source file are estimates, but good
ones. Because the linker removes any unreferenced code and data, and performs a number of optimizations, the
sizes for the linked project may not be the sum of the sizes of each individual file. The code and data sizes for the

project, however, are accurate. As already mentioned, your numbers may not match these exactly.

Dependencies

The Project Explorer is very versatile: not only can you display the code and data sizes for each element of a
project and for the project as a whole, you can also configure it to show the dependencies for a file. As part of
the compilation process, CrossStudio finds and records the relationships between files—that is, it finds which
files depend upon other files. CrossStudio uses these known relationships when it builds the project again, to
minimize the amount of work required to bring the project up to date.

To show the dependencies for a project, use the Options button on the Project Explorer tool bar to ensure that
either Dependencies Under Node or Dependencies In Folder is checked. Once checked, dependent files are
shown as sub-nodes of the file that depends on them.

74

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Project ltems

& Solution Tutorial

+ E_;l Solution Properties

- [T] Project Tutorial
+ E_] Project Properties
- 'E Source Files

- Q fact.c

El Dependencies
= Q main.c
= g Dependencies
@ __crossworks.h
@ cross_studio_ioh
[System Files

In this case, mai n. ¢ is dependent upon cr 0ss_st udi o_i 0. h because it includes it with an #i ncl ude
directive. Itis also dependenton __cr osswor ks. h because thatis included by cr oss_st udi o_i 0. h.You
can open the files in an editor by double-clicking them, so having dependencies turned on is an effective way of

navigating to and summarizing the files a source file includes.

Output files

It is useful to know the output files when compiling and linking the application, and CrossStudio can display this
information, too. To turn on output-file display, click the Project Explorer tool bar's Options button and verify
that Output Files Folder option is checked in the menu. Once checked, output files are shown in an Output Files

folder under the node that generates them. Click that folder's + symbol to expand the view of the output files.

75

CrossWorks for AVR Reference Manual

Project ltems

Solution Tutorial

+ E_;l Solution Properties

-1 [T] Project Tutorial
+ E_;l Project Properties
- 'a Source Files

- 'El fact.c

= g Output Files
fact.hzo

= "El main.c
= g Output Files

main.hzo

(L] system Files
= g Output Files
Tutorial.hz
Tutorial.map

CrossStudio Tutorial

In the above figure, we see that the object files f act . hzo and nai n. hzo are object files produced

by compiling their corresponding source files; the map file Tut or i al . map and the linked executable

Tut ori al . hzx are produced by the linker. As a convenience, double-clicking an object file or a linked

executable file in the Project Explorer will open an editor showing the disassembled contents of the file.

Disassembling a project or file

You can disassemble a project either by double-clicking the corresponding file in the Project Explorer, as

described above, or by using the Disassemble tool.

To disassemble a project or file:

* Right-click the appropriate project or file in the Project Explorer.

* From the shortcut menu, choose Disassemble.

CrossStudio then opens a new read-only editor showing the disassembled listing. If you change your project

and rebuild it, thereby causing a change in the object or executable file, the disassembly updates to keep the

display's contents synchronized with the file on disk.

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Using Memory Usage Window features

The Memory Usage window can be used to view a graphical summary of how memory was used in each
memory segment of a linked application.

To display the memory usage:
» Choose View > Memory Usage or press Ctrl+Alt+Z.

For the Tutorial project, the Memory Usage window shows this:

FMemory Usage m

EEPROM 0000000

4.0 KB free of 4.0 KB
INTVECFLASH 0000000

N |

B 136 bytes free of 140 bytes

Registers 0000000

| — |
B 230 bytes free of 256 bytes

FLASH 000008 ¢

G | |

[+ 127.5 KB free of 127.5 KB
IMT_SEAM 0000100

= |

b 3.8 KB free of 4.0 KB
RAM 0x000100
| |
63.7 KE free of 63.7 KB
EXT_SRAM 0x001100

39,7 KB free of 59,7 KB

From this, you can see:

* The RAM segment is located at 000100, is 63.7 KB in length, and has 63.7 KB of unused memory.
* The FLASH segment is located at 00008C, is 127.8 KB in length, and has 127.5 KB of unused memory.

77

CrossWorks for AVR Reference Manual CrossStudio Tutorial

If you expand the FLASH segment, CrossStudio will display the program sections contained within the segment:

From this, you can see that the the CODE section is located at 0000A6 and is 282 bytes in length.

Using Symbol Browser features

For a more-detailed view of how your application is laid out in memory than the Memory Usage window
provides, you can use the Symbol Browser. It allows you to navigate your application, see which data objects
and functions have been linked into your application, what their sizes are, which section they are in, and where

they are placed in memory.

To activate the Symbol Browser:

* Choose Project > Symbol Browser or press Ctrl+Alt+Y.

Drilling down into the application

The Tutorial project shows this in the Symbol Browser:

78

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Symbol Browser :cﬁ X

{l d _;,fi A Search Symbols

Mame Range Size

W (Mo section)

W CALLSTACK 000100 -00010fF 15

W CODE 0000a6-0001 bf 282

W COMST 00008 c-0000a5 26

W DATASTACK 000110-00013f 128

W IDATAD 0001900001 a5 25
W INTVEC 000000 000003 4

W UDATAD 0001a32-0001aa 2

From this, you can see that the CODE section is 282 bytes in size and is placed in memory between address
0000A6 and 0001BF, inclusive. Similarly, the zeroed data section UDATAO is 2 bytes in size and is placed between
0001A9 and 0001AA. The CONST section that holds string constants and read-only data is 26 bytes in size, and

is located between 00008C and 0000A5. To sort the sections by address, click on the column's Range header, or
click Size to sort them by their sizes.

To drill down, open the CODE node by double-clicking it: CrossStudio displays the individual functions that have
been placed in memory and their sizes:

79

CrossWorks for AVR Reference Manual

Symbol Browser 2 X
{l d _;,fi A Search Symbols
Mame Range Size
+ W [Mosection)
+ M CALLSTACK 000100-00010F 16
-] W CODE 0000a6-0001 bf 282
& _debug_printf 0001aa-0001bb 13
& _factorial 000102000123 34
&, _main 0000da
& _main 0000da-000101 40
@ __reset 000036 -0000d9 52
§ __ debug_io_lock 0001bc-0001bd 2
& __ debug_io_unlock 0001 be-0001bF 2
@ ___do_debug_operation 000136
& _ do _debug_operation 000135000129 116
$ ___intlé_mul 000124000135 18
+ W COMNST 00005 c-0000a5 26
+ M DATASTACK 000110-00015F 128
+ W IDATAD 0001920000138 25
W INTVEC 000000000003 4
+ W UDATAD 0001a2-0001aa 2

CrossStudio Tutorial

Here, we can see that main is 40 bytes in size and is placed in memory between addresses 0000DA and 000101,

inclusive, and that factorial is 34 bytes and occupies addresses 000102 through 000123. Just as in the Project

Explorer, if you double-click a function, CrossStudio moves the cursor to the line containing the definition of

that function, so you can easily use the Symbol Browser to navigate around your application.

Printing Symbol Browser contents

You can print the contents of the Symbol Browser by selecting its window and choosing Print from the File

menu, or Print Preview if you want to see what it will look like before printing. CrossStudio prints only the

columns you have selected for display, and prints items in the order displayed in the Symbol Browser, so you

can choose which columns to print and how to print symbols by configuring the Symbol Browser display.

We have touched on only some of the features the Symbol Browser offers; to learn more, refer to Symbol

Browser, where it is described in detail.

80

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Using the debugger

Our sample application, which we have just compiled and linked, is now built and ready to run. In this section,
we'll concentrate on downloading and debugging this application, and on using the features of CrossStudio to
see how it performs.

Getting set up

Before running your application, you need to select the target to run it on. Choose Target > Targets to list in the
Targets window each target interface that is defined. You will use these to connect CrossStudio to a target. For
this tutorial, you'll be debugging on the simulator, not hardware, to simplify matters.
To connect to the simulator:

» Choose Target > Connect > AVR Simulator.

* Choose View > Targets to activate the Targets window.

* In the Targets window, double-click AVR Simulator.

After connecting, the AVR Simulator target is shown in the status bar:

() ATmegal2a on AVR Simulator % 0 Cycles ig) Built OK INS)

The color of the target-status LED in the status bar changes according to what CrossStudio and the target are
doing:

* White — No target is connected.

* Yellow — Target is connected.

* Solid green — Target is free running, not under control of CrossStudio or the debugger.
 Flashing green — Target is running under control of the debugger.

» Solid red — Target is stopped at a breakpoint or because execution is paused.

* Flashing red — CrossStudio is programming the application into the target.
Double-clicking the Target Status will show the Targets window, if it is not already visible.

The core simulator target can accurately count the cycles spent executing your application, so the status bar
shows a cycle counter. If you connect a target that cannot provide performance information, the cycle counter

panel is hidden. Double-clicking the Cycle Counter panel will reset the cycle counter to zero.

81

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Setting a breakpoint

CrossStudio will run a program until it hits a breakpoint. We'll place a breakpoint on the call to debug_pri nt f
inmai n. c.To set the breakpoint, move the cursor to the line containing debug_pri nt f and Choose Debug >
Toggle Breakpoint or press F9.

Alternately, you can set a breakpoint without changing the cursor's position by clicking in the gutter of the line

to set the breakpoint on.

S Crosskiorks Tutorial
#include <cross_studio_lo.h>
#ifdef DEFINE_ME

#error DEFINE_ME undefined

gendif

int factorial{int};

int main{woid}
{
int i;
for (1 =8; 1 < 18; ++1)
§ 15 | debug_printf{"Factorial of %d is %dwn", 1, factorial{i}};
return 2;

B

The gutter displays an icon on lines where breakpoints are set. The Breakpoints window updates to show where
each breakpoint is set and whether it's set, disabled, or invalid—you can find more detailed information in the
Breakpoints window section. The breakpoints you set are stored in a session file associated with the project, so

your breakpoints are remembered if you exit and re-run CrossStudio.

Starting the application

To start the application, Choose Debug > Start or press F5.

The workspace will change from the standard Editing workspace to the Debugging workspace. You can choose
which windows to display in each of these workspaces and manage them independently. CrossStudio loads the
active project into the target and places the breakpoints you have set. During loading, the Target Log in the

Output Window shows its progress and any problems:

82

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Output & U 3
Showe |Transcript - "f‘, 1.
@ Checking “Tutorial” in configuration “"AVR Debug” 4 targets in 0.0s aK
Completed 105 targets/s —
—# Erasing "Tutorial.hox™ to AVR Simulator 0.3 KBin0.3s or
Completed 0.9 KB/s —
~# Downloading “Tutorial.hzx” to AVR Simulator 0.3 KB in 0.0s oK
Completed 12.6 KB/s —
=7 Verifying "Tutorial.hzx” on AVR Simulator 0.3 KB in 0.0s oK
Completed 15.2 KB/s —

The program stops at our breakpoint and a yellow arrow in the gutter indicates where the program is paused.

k int main{woid)
{
int 1;
* for (1 =2; 1 « 12; ++1)
[I | debug_printf("Factorial of %d is %d\n", i, factorial(i}};
* return 2;
1

Stepintothef act ori al function by selecting Debug > Step Into, by typing F11, or by clicking the Step Into
button on the Debug tool bar.

Now step to the first statement in the function by selecting Debug > Step Over, by typing F10, or by clicking the
Step Over button on the Debug tool bar.

int factorial {(int n)

r {
g 5| if (n == 1
3 return 1;
aelaa
3 return factorial (n-1) * n;

83

CrossWorks for AVR Reference Manual CrossStudio Tutorial

You can step out of a function by choosing Debug > Step Out, by typing Shift+F11, or by clicking the Step Out
button on the Debug tool bar. You can also step to a specific statement by choosing Debug > Run To Cursor. To
allow your application to run to the next breakpoint, choose Debug > Go.

Note that, when single-stepping, you may step into a function whose source code the debugger cannot locate.
In such cases, the debugger will display the instructions of the application; you can step out to get back to
source code or continue to debug at the instruction-code level. There may be cases in which the debugger

cannot display the instructions; in such cases, you will be informed of this with a dialog and you should step out.

Inspecting data

Being able to control execution isn't very helpful if you can't look at the values of variables, registers, and
peripherals. Hovering the mouse cursor over a variable will show its value as a data tip:

int factorialiint n)
r {
$ 5 if th = 1)
3

return 1;

elae

1=

3 ret

You can configure CrossStudio to display data tips in a variety of formats at the same time using the
Environment Options dialog. You can also use the Autos, Locals, Globals, Watch, and Memory windows to view

variables and memory. These windows are described in CrossStudio User Guide.

The Call Stack window shows the function calls that have been made but have not yet finished executing, that is
the list of active functions.

To display the call stack:

item Choose Debug > Call Stack or press Ctrl+Alt+S.

84

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Call Stack
B 2=

Address Fundctiomn
& 00002 _main
C» 000102 _factorial(int n=0x0000)

You can learn more about this in the Call Stack window section.

Program output

The Tutorial application uses the function debug_pri nt f to output a string to the Debug Terminal in the
Output window. The Debug Terminal appears automatically whenever something is written to it—press F5 to
continue program execution and you will notice that the Debug Terminal appears. In fact, the program runs
forever, writing the same messages over and over again. To pause the program, select Debug > Break or type

Ctrl+. (control-period).

In the next section, we'll cover low-level debugging at the machine level.

85

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Low-level debugging

This section describes how to debug your application at the register and instruction level. Debugging at a high
level is fine, but sometimes you need to look more closely into the way your program executes to track down the

causes of difficult-to-find bugs. CrossStudio provides the tools you need to do so.

Setting up again

Next, we'll run the sample application again and look at how it executes at the machine level. If you haven't done
so already, stop the program executing by typing Shift+F5, by selecting Debug > Stop, or by clicking the Stop
Debugging button on the Debug tool bar. Now, run the program until it stops at the first breakpoint again.

You can see the current processor state in the Register windows. To show the first Registers window:
* Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

The Registers window can be used to view CPU and peripheral registers. First we shall look at just the CPU

registers. To do this, use the Registers 1 window's Register Groups menu to select CPU (Word).

Registers 1

2w X Xy Xy X Ex W — B 2
CPU [Byte)

v | CPU Word)

Your registers window will look something like this:

86

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Registers 1
"’ X, My g Xy dmo —"E",:;'f:,n
Mame YValue
* CPU (Waord)
R&:R1 axfea
R2:R3 B BEEa
R4 :R5 B e
R5:R7 B BEEa
R&:R9 B e

R18:R11 exbBee
R12:R13 éwxboeé
R14:R15 @ewxBbes
R16:R17 exBeet
R18:R19 @ex8e8l
RZ8:R21 éwxboed
R22:R23 BwBels
RZ4:R25 @w@lada

% axee14
¥ ax8198
L Bwffak
PC ox0e8ade
SP auelef
= SR 8x35
c 1
Oz o
N1
Owv o
5 1
H 1
Ot o
1 o

You can also use the registers window to display peripheral registers. To display the state of the target's
bootloader registers, select BOOT_LOAD from the Register Groups menu.

87

CrossWorks for AVR Reference Manual

Registers 1

" y Hg Xy Xjg Ex 'x El
Mame Value
+ CPU (Word)
R@:R1 Bxffee
R2:R3 Bxaeee
R4 :R5 BxEees
R6:R7 Bxaeee
R3:R9 BxERee
R18:R11 238088
R12:R13 2x0008
R14:R15 238088
R16:R17 2xB0aF
R18:R19 238088
R28:R21 2x0008
R22:R23 238088
R24:R25 2x0008
x ex@lab
ki 2x8198
L Bxeeas
PC B8x0008de
sp exeles
SR 8x@2
* BOOT LOAD
= SPMCSR exe2
O] sPMIE 0
O rwwsE 0
O] rRWWSRED
] BLBSET O
O] pGWRT 0
PGERS 1
] sPMEN O

CrossStudio Tutorial

There are four register windows, so you can open and display four sets of CPU and peripheral registers at the

same time. You can configure which registers and peripherals to display in the Registers windows individually.

88

CrossWorks for AVR Reference Manual CrossStudio Tutorial

As you single-step the program, the contents of the Registers window updates and any change in a register

value is highlighted in red.

Disassembly

The Disassembly window can be used to debug your program at the instruction level. It displays a disassembly
of the instructions around the currently located instruction, interleaved with the source code of the program, if
the source is available. When the Disassembly window has focus, all single-stepping is done one instruction at a
time. This window also allows you to set breakpoints by clicking in the gutter of lines containing instructions on

which you want to set a breakpoint.

89

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Disassembly

_main + 0x4

— main.c — 18

int main{woid)

{

int 1i;

for (i = 8; 1 < 18; ++1)
SE8a0A 2d2e MmOV R18, RE
e 2d38 MOV R19, Re

debug_printf("ractorial of &d is &\n", 1, foctorial{i})};
Oy BeseDE g1lds mOvW R26, R13
SE88ER d21g RCALL 32; exeglez «_factorials
SeaBE2 5zba 5T -¥, R27
SeagES 93a3a 5T -Y, R2G
SSSEEL 933a 5T -¥, R19
SS8aES 932a 5T -¥, R18
SE8EEA £9a@ LDI R2&6, ex9a
SeaBEC egbl LDI R27, BxBl
SESEEE d25d RCALL 18&; @x8dlaa
SE8eFa 9524 ADIW R28,4
— main.c — 16
for (i = 8; 1 ¢ 18; ++1)
SEaaF 2 5f2f SUBI R18,255
SeeagFa 4f3f SBCI R19, 255
SEE8EF & Jg2a CPI R13, 1€
BE8aF 3 2538 CPC R19, RE
SE8EFA f28C BRLT -38; exeggde
— main.c — 15
debug_printf("ractorial of &d is &\n", 1, foctorial{i})};
return &;
BEE88FC 2dag MOV R26, RE
2aB8FE 2dbe MOV R27, RE

2eglee 9588 RET

Stopping and starting debugging

* You can stop debugging using Debug > Stop or Shi f t +F5.
» Torestart debugging without reloading the program, you can use Debug > Debug From Reset. Note
that, when you debug from reset, no loading takes place; it is expected that your program resets any data

values as necessary as part of its startup.

90

CrossWorks for AVR Reference Manual CrossStudio Tutorial

* You can attach the debugger to a running target, other than a simulator, using Target > Attach
Debugger.

91

CrossWorks for AVR Reference Manual CrossStudio Tutorial

Debugging externally built applications

This section describes how to debug applications that were not built by CrossStudio. To keep things simple, we

shall use the application we just built as our externally built application.
Start by creating a new, externally built executable project:
* Choose File > New Project or press Ctrl+Shift+N.

The New Project dialog appears. It displays the set of project types and project templates.

i

Mew Project [~ 7| (3]

Select new project template

Categories: Project Templates:

* Standard . ~ =
Combining Project + (Standard Projects) Rowley Associates

Executable -
Externally Built Execut @ An externally built executable.
Library

Object file
Staging Project

Mame: |Ex|:erna||y_BuiIt_TutnriaI |

Location: |C:_a'Crcuschurks Projects/Externally_Built_Tutorial |

Ne¢ | | Finish | | Cancel]

We'll create an externally built executable project:

* In the Categories pane, select the Standard > Externally Built Executable project type.

* Inthe Project Templates pane, select the An externally built executable icon, which selects the type of
project to add.

* TypeExternal | y_Built_Tutori al inthe Name field, which names the project.

* You can use the Location field or the Browse button to locate where you want the project to be created.

* Click OK.

Once created, the project-setup wizard prompts you for the executable file you want to use.

92

CrossWorks for AVR Reference Manual CrossStudio Tutorial

i

Mew Project

G Choose common project settings

Properties:
Property Setting
+ External Build Options
Executable File C/CrossWaorks Projects/Tutorial/AVE Debugy/Tutorial.hzx EH
Executable File
The name of the externally built executable,

Next][Finish][Cancel

In the Executable File field, type the path to the Tut or i al . hzx executable file we generated earlier. For
example, if the project was created in the C. / Cr ossWir ks Proj ect s/ Tut ori al directory and was built
using the AVR Debug configuration, the path to the executable file will be C. / Cr ossWor ks Pr oj ect s/
Tutorial / AVR Debug/ Tutori al . hzx.

Clicking Next displays the configurations that will be added to the project.

93

CrossWorks for AVR Reference Manual CrossStudio Tutorial

i

Mew Project

G Select configurations to add to project

Configurations:
AVR Debug
AVR Release

Finish] [Cancel

Complete the project creation by clicking Finish.

You will be prompted as to whether you want to overwrite the existing memory map and target script. Click No

to keep the existing files.

Now you have created the externally built executable project. You should be able to use the debugger just as we

did earlier in the tutorial.

94

CrossWorks for AVR Reference Manual CrossStudio User Guide

CrossStudio User Guide

This is the user guide for the CrossStudio integrated development environment (IDE). The CrossStudio IDE

consists of:

* a project system to organize your source files

* a build system to build your applications

* programmer aids to navigate and work effectively

* atarget programmer to download applications into RAM or flash
* adebugger to pinpoint bugs

95

CrossWorks for AVR Reference Manual CrossStudio User Guide

CrossStudio standard layout

CrossStudio's main window is divided into the following areas:

* Title bar: Displays the name of the current solution.

» Menu bar: Menus for editing, building, and debugging your program.

» Toolbars: Frequently used actions are quickly accessible on toolbars below the menu bar.

* Editing area: A tabbed view of any open editor windows and the HTML viewer.

* Docked windows: CrossStudio has many windows that dock to the left, right, or below the editing area.
You can configure which windows will be visible, and their placement, when editing and debugging.

e Status bar At the bottom of the main window, the status bar contains useful information about the

current editor, build status, and debugging environment.

96

CrossWorks for AVR Reference Manual CrossStudio User Guide

Menu bar

The menu bar contains menus for editing, building, and debugging your program. You can navigate menus
using the keyboard or the mouse.

Navigating menus using the mouse

To navigate menus using the mouse:

1. Click a menu title in the menu bar to show the related menu.

2. Click the desired command in the menu to execute that command.

1. Click and hold the mouse on a menu title in the menu bar to show the related menu.
2. Drag the mouse to the desired command in the menu.

3. Release the mouse while it is over the command to execute that command.

Navigating menus with the keyboard

To navigate menus using the keyboard:

1. Tap the Alt key activate the menu bar.

2. Use the Left and Right keys to display the required menu.

3. Use the Up or Down key to select the required command or submenu. Press Enter to execute a selected
command.

4. Press Alt or Esc at any time to cancel menu selection.

After you press the Alt key once, each menu on the menu bar has one letter underlined—its shortcut key. So, to

activate a menu using the keyboard:
* While holding down the Alt key, type the desired menu's shortcut key.
After the menu appears, you can navigate it using the cursor keys:

* Use Up and Down to move up and down the list of menu items.

* Use Esc to cancel a menu.

» Use Right or Enter to open a submenu.

» Use Left or Esc to close a submenu and return to the parent menu.

* Type the underlined letter in a command's name to execute that command.

97

CrossWorks for AVR Reference Manual CrossStudio User Guide

Title bar

The first item shown in the title bar is CrossStudio's name. Because CrossStudio can be used to target different
processors, the name of the target processor family is also shown, to help you distinguish between instances of
CrossStudio when debugging multi-processor or multi-core systems.

The filename of the active editor follows CrossStudio's name; you can configure the presentation of this filename

as described below.
After the filename, the title bar displays status information on CrossStudio's state:

* [building] — CrossStudio is building a solution, building a project, or compiling a file.
* [run] — An application is running under control of CrossStudio's debugger.
* [break] — The debugger is stopped at a breakpoint.

* [autostep] — The debugger is single stepping the application without user interaction (autostepping).

98

CrossWorks for AVR Reference Manual CrossStudio User Guide

Status bar

At the bottom of the window, the status bar contains useful information about the current editor, build status,
and debugging environment. The status bar is divided into two regions: one contains a set of fixed panels and

the other is used for messages.

The message area

The leftmost part of the status bar is a message area used for things such as status tips, progress information,

warnings, errors, and other notifications.

Status bar panels

You can show or hide the following panels on the status bar:

Panel Description

Displays the connected target interface. When
connected, this panel contains the selected target
interface's name and, if applicable, the processor to
which the target interface is connected. The LED icon
Target device status flashes green when a program is running, is solid red
when stopped at a breakpoint, and is yellow when
connected to a target but not running a program.
Double-clicking this panel displays the Targets pane,
and right-clicking it invokes the Target shortcut menu.

Cycle count panel Displays the number of processor cycles used by the
executing program. This panel is only visible if the
connected target supports performance counters
that can report the total number of cycles executed.
Double-clicking this panel resets the cycle counter to
zero, and right-clicking it brings up the Cycle Count
shortcut menu.

Insert/overwrite status Indicates whether the current editor is in insert or
overwrite mode. In overwrite mode, the panel displays
"OVR"; in insert mode, the panel displays "INS".

Read-only status Indicates whether the editor is in read-only mode. If
the editor is editing a read-only file or is in read-only
mode, the panel display "R/O"; if the editor is in read-
write mode, the panel displays "R/W".

Build status Indicates the success or failure of the last build. If
the last build completed without errors or warnings,
the build status pane contains Built OK; otherwise, it
contains the number of errors and warnings reported.
If there were errors, double-clicking this panel displays
the Build Log in the Output pane.

99

CrossWorks for AVR Reference Manual CrossStudio User Guide

Caret position Indicates the cursor position in the editor window.
For text files, the caret position pane displays the
line number and column number of the cursor in the
active window; when editing binary files, it displays the
address being edited.

Time panel Displays the current time.

Configuring the status bar panels

To configure which panels are shown on the status bar:

* Choose View > Status Bar.
* From the status bar menu, select the panels to display and deselect the ones you want hidden.

* Right-click the status bar.
* From the status bar menu, select the panels to display and deselect the ones you want to hide.
To show or hide the status bar:

¢ Choose View > Status Bar.

* From the status bar menu, select or deselect the Status Bar item.
You can choose to hide or display the size grip when CrossStudio's main window is not maximized. (The size grip
is never shown in full-screen mode or when maximized.)
To show or hide the size grip

¢ Choose View > Status Bar.

* From the status bar menu, select or deselect the Size Grip item.

100

CrossWorks for AVR Reference Manual CrossStudio User Guide

Editing workspace

The main area of CrossStudio is the editing workspace. It contains any files being edited, the on-line help
system's HTML browser, and the Dashboard.

101

CrossWorks for AVR Reference Manual CrossStudio User Guide

Docking windows

CrossStudio has a flexible docking system you can use to position windows as you like them. You can dock
windows in the CrossStudio window or in the four head-up display windows. CrossStudio will remember the
position of the windows when you leave the IDE and will restore them when you return.

Window groups

You can organize CrossStudio windows into window groups. A window group has multiple windows docked
in it, only one of which is active at a time. The window group displays the active window's title for each of the

windows docked in the group.

Clicking on the window icons in the window group's header changes the active window. Hovering over a

docked window's icon in the header will display that window's title in a tooltip.

To dock a window to a different window group:

* Press and hold the left mouse button over the title of the window you wish to move.
* Drag the window over the window group to dock in.

* Release the mouse button.

Holding Ctrl when moving the window will prevent the window from being docked. If you do not dock a

window on a window group, the window will float in a new window group.

Perspectives

CrossStudio remembers the dock position and visibility of each window in each perspective. The most common
use for this is to lay your windows out in the Standard perspective, which is the perspective used when you are
editing and not debugging. When CrossStudio starts to debug a program, it switches to the Debug perspective.
You can now lay out your windows in this perspective and CrossStudio will remember how you laid them them
out. When you stop debugging, CrossStudio will revert to the Standard perspective and that window layout;
when you return to Debug perspective on the next debug session, the windows will be restored to how you laid

them out in that perspective.

CrossStudio remembers the layout of windows, in all perspectives, such that they can be restored when you run

CrossStudio again. However, you may wish to revert back to the standard docking positions; to do this:
» Choose Window > Reset Window Layout.

Some customers are accustomed to having the Project Explorer on the left or the right, depending upon which
version of Microsoft Visual Studio they commonly use. To quickly switch the CrossStudio layout to match your

preferred Visual Studio setup:

* Choose Window > Reverse Workspace Layout.

102

CrossWorks for AVR Reference Manual CrossStudio User Guide

Dashboard

When CrossStudio starts, it presents the Dashboard, a collection of panels that provide useful information, one-

click loading of recent projects, and at-a-glance summaries of activity relevant to you.

Tasks

The Tasks panel indicates tasks you need to carry out before CrossWorks is fully functional—for instance,

whether you need to activate CrossWorks, install packages, and so on.

Updates

The Updates panel indicates whether any packages you have installed are now out of date because a newer
version is available. You can install each new package individually by clicking the Install button under each
notification, or install all packages by clicking the Install all updates link at the bottom of the panel.

Projects

The Projects panel contains links to projects you have worked on recently. You can load a project by clicking the
appropriate link, or clear the project history by clicking the Clear List button. To manage the contents of the list,

click the Manage Projects link and edit the list of projects in the Recent Projects window.

News

The News panel summarizes the activity of any RSS and Atom feeds to which you have subscribed. Clicking a
link will display the published article in an external web browser. You can manage your feed subscriptions to by
clicking the Manage Feeds link at the end of the News panel and pinning the feeds in the Favorites window—

you are only subscrbed to the pinned feeds.

Links

The Links panel is a handy set of links to your favorite websites. If you pin a link in the Favorites window, it

appears in the Links panel.

103

CrossWorks for AVR Reference Manual CrossStudio User Guide

CrossStudio help and assistance

CrossStudio provides context-sensitive help in increasing detail:

Tooltips
When you position the pointer over a button and keep it still, a small window displays a brief description of

the button and its keyboard shortcut, if it has one.

Status tips
In addition to tooltips, CrossStudio provides a longer description in the status bar when you hover over a

button or menu item.

Online manual
CrossStudio has links from all windows to the online help system.

The browser

Documentation pages are shown in the Browser.

Help using CrossStudio

CrossStudio provides an extensive, HTML-based help system that is available at all times.

To view the help text for a particular window or other user-interface element:

¢ Click to select the item with which you want assistance.
» Choose Help > Help or press F1.

Help within the text editor

The text editor is linked to the help system in a special way. If you place the cursor over a word and press F1, the
help-system page most likely to be useful is displayed in the HTML browser. This a great way to quickly find the

help text for functions provided in the library.

Browsing the documentation

The Contents window lists all the topics in the CrossWorks documentation and gives a way to search through

them.

The highlighted entry indicates the current help topic. When you click a topic, the corresponding page appears

in the Browser window.

104

CrossWorks for AVR Reference Manual CrossStudio User Guide

The Next Topic and Previous Topic items in the Help menu, or the buttons on the Contents window toolbar,

help navigate through topics.

To search the online documentation, type a search phrase into the Search box on the Contents window toolbar.

To search the online documentation:

¢ Choose Help > Search.

» Enter your search phrase in the Search box and press Enter (or Return on Macs).

The search commences and the table of contents is replaced by links to pages matching your query, listed in

order of relevance. To clear the search and return to the table of contents, click the clear icon in the Search box.

105

CrossWorks for AVR Reference Manual CrossStudio User Guide

Creating and managing projects

A CrossStudio project is a container for everything required to build your applications. It contains all the assorted

resources and maintains the relationships between them.

A project is a convenient place to find every file and piece of information associated with your work. You place

projects into a solution, which can contain one or more projects.

This chapter introduces the various parts of a project, shows how to create projects, and describes how to
organize the contents of a project. It describes how to use the Project Explorer and Project Manager for project-
management tasks.

106

CrossWorks for AVR Reference Manual CrossStudio User Guide

Solutions and projects

To develop a product using CrossStudio, you must understand the concepts of projects and solutions.
* A project contains and organizes everything you need to create a single application or a library.
* Asolution is a collection of projects and configurations.

Organizing your projects into a solution allows you to build all the projects in a solution with a single keystroke,

and to load them onto the target ready for debugging.
In your CrossWorks project, you...

* ...organize build-system inputs for building a product.
* ...add information about items in the project, and their relationships, to assist you in the development

process.

Projects in a solution can reside in the same or different directories. Project directories are always relative to the

directory of the solution file, which enables you to more-easily move or share project-file hierarchies.

The Project Explorer organizes your projects and files, and provides quick access to the commands that operate

on them. A toolbar at the top of the window offers quick access to commonly used commands.

Solutions

When you have created a solution, it is stored in a project file. Project files are text files, with the file extension
hzp, that contain an XML description of your project. See Project file format for a description of the project-file

format.

Projects

The projects you create within a solution have a project type CrossStudio uses to determine how to build the
project. The project type is selected when you use the New Project dialog. The available project types depend

on the CrossWorks variant you are using, but the following are present in most CrossWorks variants:

» Executable: — a program that can be loaded and executed.

* Externally Built Executable: — an executable that was not built by CrossWorks.

o Library: — a group of object files collected into a single file (sometimes called an archive).

» Object File: — the result of a single compilation.

* Staging: — a project that will apply a user-defined command to each file in a project.

* Combining: — a project that can be used to apply a user-defined command when any files in a project

have changed.

107

CrossWorks for AVR Reference Manual CrossStudio User Guide

Properties and configurations

Properties are attached to project nodes. They are usually used in the build process, for example, to define
C preprocessor symbols. You can assign different values to the same property, based on a configuration: for
example, you can assign one value to a C preprocessor symbol for release and a different value for a debug
build.

Folders

Projects can contain folders, which are used to group related files. Automated grouping uses the files' extensions
to, for example, put all .c files in one folder, etc. Grouping also can be done manually by explicitly creating a
file within a folder. Note that these project folders do not map onto directories in the file system, they are used

solely to structure the display of content shown in the Project Explorer.

Source files

Source files are all the files used to build a product. These include source code files and also section-placement
files, memory-map files, and script files. All the source files you use for a particular product, or for a suite of
related products, are managed in a CrossStudio project. A project can also contain files that are not directly used
by CrossStudio to build a product but contain information you use during development, such as documentation.
You edit source files during development using CrossStudio's built-in text editor, and you organize files into a

target (described next) to define the build-system inputs for creating the product.

The source files of your project can be placed in folders or directly in the project. Ideally, the paths to files
placed in a project should be relative to the project directory, but at times you might want to refer to a file in an

absolute location and this is supported by the project system.

When you add a file to a project, the project system detects whether the file is in the project directory. If a

file is not in the project directory, the project system tries to make a relative path from the file to the project
directory. If the file isn't relative to the project directory, the project system detects whether the file is relative to
the $(StudioDir) directory; if so, the filename is defined using $(StudioDir). If a file is not relative to the project

directory or to $(StudioDir), the full, absolute pathname is used.
The project system will allow (with a warning) duplicate files to be put into a project.
The project system uses a file's extension to determine the appropriate build action to perform on the file:

* A file with the extension .c will be compiled by a C compiler.

A file with the extension .s or .asm will be compiled by an assembler.

A file with the extension .cpp or .cxx will be compiled by a C++ compiler.

A file with the object-file extension .0 or .hzo will be linked.

A file with the library-file extension .a or .hza will be linked.

108

CrossWorks for AVR Reference Manual CrossStudio User Guide

* A file with the extension .xml will be opened and its file type determined by the XML document type.
* Files with other file extensions will not be compiled or linked.

You can modify this behavior by setting a file's File Type property with the Common configuration selected in

the Properties window, which enables files with non-standard extensions to be compiled by the project system.

Solution links

You can create links to existing project files from a solution, which enables you to create hierarchical builds. For
example, you could have a solution that builds a library together with a stub test driver executable. You can
link to that solution from your current solution by right-clicking the solution node of the Project Explorer and

selecting Add Existing Project. Your current solution can then use the library built by the other project.

Session files

When you exit CrossWorks, details of your current session are stored in a session file. Session files are text files,
with the file extension hzs, that contain details such as which files you have opened in the editor and what

breakpoints you have set in the Breakpoint window.

109

CrossWorks for AVR Reference Manual CrossStudio User Guide

Creating a project
You can create a new solution for each project or place multiple projects in an existing solution.

To create a new project in an existing solution:

1. Choose Project > Add New Project.

2. Inthe New Project wizard, select the type of project you wish to create and specify where it will be
placed.

3. Ensure that Add the project to current solution is checked.

4. Click OK to go to next stage or Cancel to cancel the project's creation.

The project name must be unique to the solution and, ideally, the project directory should be relative to the
solution directory. The project system will use the project directory as the current directory when it builds your
project. Once complete, the Project Explorer displays the new solution, project, and files contained in the
project. To add another project to the solution, repeat the above steps.

To create a new project in a new solution:

1. Choose File > New Project or press Ctrl+Shift+N.

2. Select the type of project you wish to create and where it will be placed.
3. Click OK.

110

CrossWorks for AVR Reference Manual CrossStudio User Guide

Adding existing files to a project

You can add existing files to a project in a number of ways.

To add existing files to the active project:
* Choose Project > Add Existing File.

Using the Open File dialog, navigate to the directory containing the files and select the ones you wish to add to

the project.
* Click OK.
The selected files are added to the folders whose filter matches the extension of each of the files. If no filter
matches a file's extension, the file is placed underneath the project node.
To add existing files to a specific project:
1. In the Project Explorer, right-click the project to which you wish to add a new file.
2. Choose Add Existing File.
To add existing files to a specific folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add Existing File.

The files are added to the specified folder without using filter matching.

111

CrossWorks for AVR Reference Manual CrossStudio User Guide

Adding new files to a project

You can add new files to a project in a number of ways.

To add new files to the active project:

e Choose Project > Add New File or press Ctrl+N.

To add a new file to a project:

1. In the Project Explorer, right-click the project to which you wish to add a new file.
2. Choose Add New File.

When adding a new file, CrossStudio displays the New File dialog, from which you can choose the type of file

to add, its filename, and where it will be stored. Once created, the new file is added to the folder whose filter
matches the extension of the newly added file. If no filter matches the newly added file extension, the new file is
placed underneath the project node.

To add new files to a folder:

1. In the Project Explorer, right-click the folder to which you wish to add a new file.
2. Choose Add New File.

The new file is added to the folder without using filter matching.

112

CrossWorks for AVR Reference Manual CrossStudio User Guide

Removing a file, folder, project, or project link

You can remove whole projects, folders, or files from a project, or you can remove a project from a solution,
using the Remove button on the Project Explorer toolbar. Note that removing a source file from a project does
not remove it from disk.

To remove an item from the solution:

1. In the Project Explorer, select the item to remove.
2. Choose Edit > Delete or press Del.

—Or—

1. In the Project Explorer, right-click the item to remove.

2. Choose Remove.

113

CrossWorks for AVR Reference Manual CrossStudio User Guide

Project macros

You can use macros to modify the way the project system refers to files.

Macros are divided into four classes:

System macros defined by CrossStudio relay information about the environment, such as paths to
common directories.

Global macros are saved in the environment and are shared across all solutions and projects. Typically,
you would set up paths to libraries and any external items here.

Project macros are saved as project properties in the project file and can define values specific to the
solution or project in which they are defined.

Build macros are generated by the project system when you build your project.

System macros

System macros are defined by CrossStudio itself and as such are read-only. System macros can be used in project

properties, environment settings and to refer to files. See System macros list for the list of System macros.

Global macros

To define a global macro:

1.
2.
3.

Choose Project > Macros.
Select the Global tab.

Set the macro using the syntax name = replacement text.

Project macros

To define a project macro:

1. Choose Project > Macros.
2. Select the Project tab.

3.
4

. Set the macro using the syntax name = replacement text.

Select the solution or project to which the macro should apply.

Alternatively, you can set the project macros from the Properties window:

1. Select the appropriate solution/project in the Project Explorer.

2. Inthe Properties window's General Options group, select the Macros property.
3.
4

. Set the macro using the syntax name = replacement text.

Click the ellipsis button on the right.

114

CrossWorks for AVR Reference Manual CrossStudio User Guide

Build macros

Build macros are defined by the project system for a build of a given project node. See Build macros list for the
list of build macros.

Using macros

You can use a macro for a project property or environment setting by using the $(macro) syntax. For example,
the Object File Name property has a default value of $(I nt Di r) / $(| nput Nane) $(OBJ).

115

CrossWorks for AVR Reference Manual CrossStudio User Guide

Building your application

CrossStudio builds your application using the resources and build rules it finds in your solution.

When CrossStudio builds your application, it tries to avoid building files that have not changed since they were
last built. It does this by comparing the modification dates of the generated files with the modification dates
of the dependent files together with the modification dates of the properties that pertain to the build. But if
you are copying files, sometimes the modification dates may not be updated when the file is copied—in this

instance, it is wise to use the Rebuild command rather than the Build command.

You can see the build rationale CrossStudio currently is using by setting the Environment Properties > Build
Settings > Show Build Information property. To see the build commands themselves, set the Environment
Properties > Build Settings Echo Build Command property.

You may have a solution that contains several interdependent projects. Typically, you might have several
executable projects and some library projects. The Project Dependencies dialog specifies the dependencies
between projects and to see the effect of those dependencies on the solution build order. Note that
dependencies can be set on a per-configuration basis, but the default is for dependencies to be defined in the
Common configuration.

You will also notice that a new folder titled Dependencies has appeared in the Project Explorer. This folder
contains the list of newly generated files and the files from which they were generated. To see if one of files
can be decoded and displayed in the editor, right-click the file to see if the View command is available on the
shortcut menu.

If you have the Symbols window open, it will be updated with the symbol and section information of all
executable files built in the solution.

When CrossStudio builds projects, it uses the values set in the Properties window. To generalize your builds, you
can define macro values that are substituted when the project properties are used. These macro values can be
defined globally at the solution and project level, and can be defined on a per-configuration basis. You can view
and update the macro values using Project > Macros.

The combination of configurations, properties with inheritance, dependencies, and macros provides a very
powerful build-management system. However, such systems can become complicated. To understand the
implications of changing build settings, right-click a node in the Project Explorer and select Properties to view a
dialog that shows which macros and build steps apply to that project node.
To build all projects in the solution:

1. Choose Build > Build Solution or press Shift+F7.

1. Right-click the solution in the Project Explorer window.

2. Choose Build from the shortcut menu.

116

CrossWorks for AVR Reference Manual

To build a single project:

1. Select the required project in the Project Explorer.
2. Choose Build > Build or press F7.

1. Right-click the project in the Project Explorer.
2. Choose Build.
To compile a single file:

1. In the Project Explorer, click to select the source file to compile.

2. Choose Build > Compile or press Ctrl+F7.

1. In the Project Explorer, right-click the source file to compile.

2. Choose Compile from the shortcut menu.

Correcting errors after building

CrossStudio User Guide

The results of a build are recorded in a Build Log that is displayed in the Output window. Errors are highlighted

in red, warnings are highlighted in yellow. Double-clicking an error, warning, or note will move the insertion

point to the line of source code that triggered that log entry.

You can move forward and backward through errors using Search > Next Location and Search > Next Location.

When you build a single project in a single configuration, the Transcript will display the memory used by the

application and a summary for each memory area.

117

CrossWorks for AVR Reference Manual CrossStudio User Guide

Creating variants using configurations

CrossStudio provides a facility to build projects in various configurations. Project configurations are used to

create different software builds for your projects.

A configuration defines a set of project property values. For example, the output of a compilation can be put
into different directories, dependent upon the configuration. When you create a solution, some default project

configurations are created.

Build configurations and their uses

Configurations are typically used to differentiate debug builds from release builds. For example, the compiler
options for debug builds will differ from those of a release build: a debug build will set options so the project can
be debugged easily, whereas a release build will enable optimization to reduce program size or to increase its
speed. Configurations have other uses; for example, you can use configurations to produce variants of software,

such as custom libraries for several different hardware variants.

Configurations inherit properties from other configurations. This provides a single point of change for definitions
common to several configurations. A particular property can be overridden in a particular configuration to

provide configuration-specific settings.

When a solution is created, two configurations are generated — Debug and Release — and you can create
additional configurations by choosing Build > Build Configurations. Before you build, ensure that the
appropriate configuration is set using Build > Set Active Build Configuration or, alternatively, the Active
Configuration combo box in the Project Explorer. You should also ensure that the appropriate build properties

are set in the Properties window.

Selecting a configuration

To set the configuration that affects your building and debugging, use the combo box in the Project Explorer or

select Build > Set Active Build Configuration

Creating a configuration

To create your own configurations, select Build > Build Configurations to invoke the Configurations dialog. The
New button will produce a dialog allowing you to name your configuration. You can now specify the existing

configurations from which your new configuration will inherit values.

Deleting a configuration

You can delete a configuration by selecting it and clicking the Remove button. This deletion cannot be undone

or canceled, so beware.

118

CrossWorks for AVR Reference Manual CrossStudio User Guide

Private configurations

Some configurations are defined purely for inheriting and, as such, should not appear in the Build combo box.

When you select a configuration in the Configuration dialog, you can choose to hide that configuration.

119

CrossWorks for AVR Reference Manual CrossStudio User Guide

Project properties

For solutions, projects, folders, and files, properties can be defined that are used by the project system in

the build process. These property values can be viewed and modified by using the Properties window in
conjunction with the Project Explorer. As you select items in the Project Explorer, the Properties window will
list the set of relevant properties.

Some properties are only applicable to a given item type. For example, linker properties are only applicable to
a project that builds an executable file. However, other properties can be applied either at the file, project, or
solution project node. For example, a compiler property can be applied to a solution, project, or individual file.

By setting a property at the solution level, you enable all files of the solution to use that property's value.

120

CrossWorks for AVR Reference Manual CrossStudio User Guide

Unique properties

A unique property has one value. When a build is done, the value of a unique property is the first one defined

in the project hierarchy. For example, the Treat Warnings As Errors property could be set to Yes at the solution
level, which would then be applicable to every file in the solution that is compiled, assembled, and linked. You
can then selectively define property values for other project items. For example, a particular source file may have
warnings you decide are allowable, so you set the Treat Warnings As Errors to No for that particular file.

Note that, when the Properties window displays a project property, it will be shown in bold if it has been
defined for unique properties. The inherited or default value will be shown if it hasn't been defined.

solution —Treat Warnings As Errors = Yes
projectl —Treat Warnings As Errors = Yes
filel —Treat Warnings As Errors Yes
file2 —Treat Warnings As Errors No
project2 —Treat Warnings As Errors = No
filel —Treat Warnings As Errors No
file2 —Treat Warnings As Errors Yes

In the above example, the files will be compiled with these values for Treat Warnings As Errors:

project1/filel Yes
project1/file2 No
project2/file1 No
project2/file2 Yes

121

CrossWorks for AVR Reference Manual CrossStudio User Guide

Aggregate properties

An aggregating property collects all the values defined for it in the project hierarchy. For example, when a C
file is compiled, the Preprocessor Definitions property will take all the values defined at the file, project, and

solution levels. Note that the Properties window will not show the inherited values of an aggregating property.

sol uti on —Preprocessor Definitions = Sol uti onDef
projectl —Preprocessor Definitions =
filel —Preprocessor Definitions
file2 —Preprocessor Definitions Fi | e1lDef
proj ect2 —Preprocessor Definitions = Project Def
filel —Preprocessor Definitions
file2 —Preprocessor Definitions

Fi | e2Def

In the above example, the files will be compiled with these preprocessor definitions:

project1/filel SolutionDef

project1/file2 SolutionDef, File1Def
project2/file1 SolutionDef, ProjectDef
project2/file2 SolutionDef, ProjectDef, File2Def

122

CrossWorks for AVR Reference Manual CrossStudio User Guide

Configurations and property values

Property values are defined for a configuration so you can have different values for a property for different
builds. A given configuration can inherit the property values of other configurations. When the project system
requires a property value, it checks for the existence of the property value in current configuration and then in
the set of inherited configurations. You can specify the set of inherited configurations using the Configurations

dialog.

A special configuration named Common is always inherited by a configuration. The Common configuration
allows you to set property values that will apply to all configurations you create. You can select the Common
configuration using the Configurations combo box of the properties window. If you are modifying a property
value of your project, you almost certainly want each configuration to inherit it, so ensure that the Common
configuration is selected.

If the property is unique, the build system will use the one defined for the particular configuration. If the
property isn't defined for this configuration, the build system uses an arbitrary one from the set of inherited

configurations.

If the property is still undefined, the build system uses the value for the Common configuration. If it is still

undefined, the build system tries to find the value in the next higher level of the project hierarchy.

solution [Common] — Preprocessor Definitions = CommonSolutionDef
solution [Debug] — Preprocessor Definitions = DebugSolutionDef
solution [Release] — Preprocessor Definitions = ReleaseSolutionDef
project1 - Preprocessor Definitions =

file1 - Preprocessor Definitions =

file2 [Common] — Preprocessor Definitions = CommonFile1Def

file2 [Debug] — Preprocessor Definitions = DebugFile1Def

project2 [Common] — Preprocessor Definitions = ProjectDef

file1 — Preprocessor Definitions =

file2 [Common] - Preprocessor Definitions = File2Def

In the above example, the files will be compiled with these preprocessor definitions when in Debug

configuration...

File Setting
project1/file1 CommonSolutionDef, DebugSolutionDef
project1/file2 CommonSolutionDef,

DebugSolutionDef,CommonFile1Def, DebugFile1Def

project2/filel CommonSolutionDef, DebugSolutionDef, ProjectDef
project2/file2 ComonSolutionDef, DebugSolutionDef, ProjectDef,
File2Def

...and the files will be compiled with these Preprocessor Definitions when in Release configuration:

123

CrossWorks for AVR Reference Manual CrossStudio User Guide

File Setting
project1/filel CommonSolutionDef, ReleaseSolutionDef
project1/file2 CommonSolutionDef, ReleaseSolutionDef,

CommonFile1Def

project2/filel CommonSolutionDef, ReleaseSolutionDef, ProjectDef
project2/file2 ComonSolutionDef, ReleaseSolutionDef, ProjectDef,
File2Def

124

CrossWorks for AVR Reference Manual CrossStudio User Guide

Dependencies and build order

You can set up dependency relationships between projects using the Project Dependencies dialog. Project
dependencies make it possible to build solutions in the correct order and, where the target permits, to load
and delete applications and libraries in the correct order. A typical usage of project dependencies is to make
an executable project dependent upon a library executable. When you elect to build the executable, the build
system will ensure that the library it depends upon is up to date. In the case of a dependent library, the output

file of the library build is supplied as an input to the executable build, so you don't have to worry about it.

Project dependencies are stored as project properties and, as such, can be defined differently based upon the
selected configuration. You almost always want project dependencies to be independent of the configuration,

so the Project Dependencies dialog selects the Common configuration by default.

To make one project dependent upon another:

1. Choose Project > Project Dependencies.

2. From the Project dropdown, select the target project that depends upon other projects.

3. In the Depends Upon list box, select the projects the target project depends upon and deselect the
projects it does not depend upon.

Some items in the Depends Upon list box may be dimmed, indicating that a circular dependency would
result if any of those projects were selected. In this way, CrossStudio prevents you from constructing circular
dependencies using the Project Dependencies dialog.

If your target supports loading multiple projects, the Build Order also reflects the order in which projects are
loaded onto the target. Projects will load, in order, from top to bottom. Generally, libraries need to be loaded
before the applications that use them, and you can ensure this happens by making the application dependent
upon the library. With this dependency set, the library gets built and loaded before the application does.

Applications are deleted from a target in reverse of their build order; in this way, applications are removed
before the libraries on which they depend.

125

CrossWorks for AVR Reference Manual CrossStudio User Guide

Linking and section placement

Executable programs consist of a number of sections. Typically, there are program sections for code, initialized
data, and zeroed data. There is often more than one code section and they must be placed at specific addresses
in memory.

To describe how the program sections of your program are positioned in memory, the CrossWorks project
system uses memory-map files and section-placement files. These XML-formatted files are described in Memory
Mabp file format and Section Placement file format. They can be edited with the CrossWorks text editor. The
memory-map file specifies the start address and size of target memory segments. The section-placement file
specifies where to place program sections in the target's memory segments. Separating the memory map from
the section-placement scheme enables a single hardware description to be shared across projects and also
enables a project to be built for a variety of hardware descriptions.

For example, a memory-map file representing a device with two memory segments called FLASH and SRAM

could look something like this in the memory-map editor.

<Root nane="Devi cel">
<Menor ySegnent name="FLASH' start="0x10000000" si ze="0x10000" />
<Menor ySegnent name="SRAM' start="0x20000000" si ze="0x1000" />

A corresponding section-placement file will refer to the memory segments of the memory-map file and will
list the sections to be placed in those segments. This is done by using a memory-segment name in the section-

placement file that matches the corresponding memory-segment name in the memory-map file.

For example, a section-placement file that places a section called .stack in the SRAM segment and the .vectors

and .text sections in the FLASH segment would look like this:

<Root nane="Fl ash Section Pl acenent">
<Menor ySegnment nanme="FLASH' >
<ProgranBSecti on name=".vectors" | oad="Yes" />
<ProgranBSecti on nanme=".text" |oad="Yes" />
</ Menor ySegmnent >
<Menor ySegnent name="SRAM' >
<Pr ogr anfSecti on name=". stack" | oad="No" />
</ Menor ySegnent >
</ Root >

Note that the order of section placement within a segment is top down; in this example .vectors is placed at
lower addresses than .text.

The memory-map file and section-placement file to use for linkage can be included as a part of the project or,
alternatively, they can be specified in the project's linker properties.

You can create a new program section using either the assembler or the compiler. For the C compiler, this can be
achieved using one of the #pragma directives. For example:

#pragma codeseg(". foo")
voi d foobar(void);

126

CrossWorks for AVR Reference Manual CrossStudio User Guide

#pragma codeseq(defaul t)

This will allocate foobar in the section called .foo. Alternatively, you can specify the names for the code,

constant, data, and zeroed-data sections of an entire compilation unit by using the Section Options properties.

You can now place the section into the section placement file using the editor so that it will be located after the

vectors sections as follows:

<Root name="Fl ash Section Pl acement" >
<Menor ySegnent nane="FLASH' >
<ProgranSecti on name=".vectors" | oad="Yes" />
<Pr ogr anfSecti on nane=".fo00" | oad="Yes" />
<Pr ogranfSecti on name=".text" |oad="Yes" />
</ Menor y Segnent >
<Menor ySegnment nane="SRAM' >
<Pr ogr anfSecti on nane=".stack" |oad="No" />
</ Menor ySegnent >
</ Root >

If you are modifying a section-placement file that is supplied in the CrossWorks distribution, you will need to

import it into your project using the Project Explorer.

Sections containing code and constant data should have their load property set to Yes. Some sections don't
require any loading, such as stack sections and zeroed-data sections; such sections should have their load

property set to No.

You can specify that initialization data is stored in the default program section using the | NI T directive, and you
can refer to the start and end of the section using the SFE and SFB directives. If, for example, you create a new
data section called | DATAZ2, you can store this in the program by putting the following into the startup code:

_data2_init_begin::
INIT "I DATA2"
_data2_init_end::

You can then use these symbols to copy the stored section information into the data section using (an assembly-

coded version of):

/* Section image |located in flash */
extern const unsigned char data2_init_begin[];
extern const unsigned char data2_init_end[];

nencpy(SFB(1 DATA2), data2_init_begin, data2_init_end-data2_init_end)

127

CrossWorks for AVR Reference Manual CrossStudio User Guide

Using source control

Source control is an essential tool for individuals or development teams. CrossStudio integrates with several

popular source-control systems to provide this feature for files in your CrossWorks projects.

Source-control capability is implemented by a number of third-party providers, but the set of functions provided
by CrossWorks aims to be provider independent.

128

CrossWorks for AVR Reference Manual CrossStudio User Guide

Source control capabilities

The source-control integration capability provides:

» Connecting to the source-control database (sometimes called a repository) and mapping files in the
CrossWorks project to those in source control.

» Showing the source-control status of files in the project.

* Adding files in the project to source control. This operation is called Add To Source Control.

* Fetching files in the project from source control. This operation is called Get Latest Version.

* Locking and unlocking files in the project for editing. The lock operation is called Check Out. The unlock
operation is called Undo Check Out. These are optional for some source-control providers.

» Comparing afile in the project with the latest version in source control. This operation is called Show
Differences.

* Merging a file in the project with the latest version in source control with reference to the original version.
This operation is called Merge and requires an external, three-way merge tool.

» Committing changes made to project files into source control. This operation is called Check In.

129

CrossWorks for AVR Reference Manual CrossStudio User Guide

Choosing your source-control provider

The source-control system you are using must be enabled.

To enable a provider:

Choose Tools > Options or press Alt+,.

Select the Source Control category in the options dialog.

Set the Source Control Provider to the appropriate provider.
Set the provider-specific options.

A

Set Enable Source Code Control Integration to Yes.

Note: The source-control provider information is stored in the CrossWorks global environment, so you can only
use one provider for all your CrossWorks projects.

130

CrossWorks for AVR Reference Manual CrossStudio User Guide

Connecting to the source-control system

You must connect each CrossWorks project individually to the source-control system.

To connect to the source-control system:
* Choose VCS > Connect.

The login dialog that appears enables you to specify your user name and password, and to select the source-
control database. These details will be saved in the session file (the password is encrypted) so you won't need to

specify this information each time the project is loaded.

To map files in the project to those in the source-control system, specify a local root directory and the
corresponding directory in source control (called the remote root). Once you have provided this information,
the files in your project that are within the local root directory are considered to be in, or can be added to, source
control.

After the login dialog, you will be presented with a dialog where you specify the local and remote roots. The
local root can be selected using a directory browser and the remote root can be selected using the source-
control explorer. With both browsers, you can create new directories—such as when starting a new project or if

you don't have any projects in source control.

131

CrossWorks for AVR Reference Manual CrossStudio User Guide

Opening a project from source control

To fetch a project in source control to a local directory:

1. Choose Source Control > Open Solution. This will show the login dialog and then the source-control
explorer.

2. Select a CrossWorks project file (the extension is .{hzp}) using the file list of the source-control explorer.

3. Use the mappings dialog that appears to specify the local root directory, i.e., where you want the project
files to go.

4. Adialog will list the files to get from source control and, after confirmation, those files are fetched and the
project file is loaded into CrossWorks.

132

CrossWorks for AVR Reference Manual CrossStudio User Guide

Files source-control status

Determining the source-control status of a file can be an expensive operation. CrossWorks will do this when:

» Afile node is selected by the Project Explorer.
» The source-control status is displayed in the Project Explorer and the file node is visible there, too.
* Before a recursive source-control operation.

 After a source-control operation.
A file will be in one of the following states:

* Controlled: The file is in source control.

» Not Controlled: The file is not in source control.

» Checked Out: The file is checked out.

Old: The file is older than the most-recent version in source control.
Checked Out and Old: Both of the above.

If the file has been modified, its status is displayed in red in the Project Explorer. Note that if a file is not under

the local root, it will not have a source-control status.

You can reset any stored source-control file status by choosing Project > Source Control > Refresh Status.

133

CrossWorks for AVR Reference Manual CrossStudio User Guide

Source-control operations

Source-control operations can be performed on single files or recursively on multiple files in the Project
Explorer hierarchy. Single-file operations are available on the Source Control toolbar and on the text editor's
shortcut menu. All operations are available using the VCS menu. The operations are described in terms of the
Project Explorer shortcut menu.

134

CrossWorks for AVR Reference Manual CrossStudio User Guide

Adding files to source control

To add a single file to the source-control system:

1. In the Project Explorer, right-click a file.

2. Choose Add To Source Control.

3. Optionally, add a comment to help distinguish this version of the file later.
4. Click OK.

To add multiple files to the source-control system:

1. In the Project Explorer, right-click a solution, project, or folder.

2. Choose Add To Source Control (Recursive).

3. The dialog will list the files that can be added, i.e., those whose status is Not Controlled.
4. In that dialog, you can deselect any files you don't want to add to source control.

5. You may optionally add a comment.

6. Click OK.

135

CrossWorks for AVR Reference Manual

Checking files out

To check out a single file in the project:

1. In the Project Explorer, right-click the file to check out.
2. Choose Check Out.

3.

4. Click OK.

Add a comment.

To check out multiple files in the project:

1.
2.

In the Project Explorer, right-click the solution, project, or folder to check out.

Choose Source Control > Check Out (Recursive).

CrossStudio User Guide

The dialog box will list the files that can be checked out, i.e., ones whose status is Controlled.

1.
2.

In the dialog, deselect the files you do not wish want to check out and add a comment.

Click OK.

136

CrossWorks for AVR Reference Manual

Checking files in

To checkin a single file:

1. In the Project Explorer, right-click the file to check in.
2. Choose Source Control > Check In.

3.

4. Click OK.

Enter an optional comment.

To check in multiple files:

1.

2. From the shortcut menu, choose Source Control > Check In (Recursive).

In the Project Explorer, right-click a solution, project, or folder.

The dialog box will list the files that can be checked in.

1.
2.

In the dialog, deselect the items you do not wish to check in and add a comment.

Click OK.

137

CrossStudio User Guide

CrossWorks for AVR Reference Manual CrossStudio User Guide

Undoing a check out

To undo the check out of a single file:
1. In the Project Explorer, right-click a file node.
2. Choose Source Control > Undo Check Out.
To undo check out of multiple files:

1. In the Project Explorer, right-click a solution, project, or folder.
2. Choose Source Control > Undo Check Out (Recursive).

The dialog box will list the files that have a status of Checked Out and are therefore eligible for this operation.

1. In the dialog, deselect the files you do not wish to revert.
2. Click OK.

138

CrossWorks for AVR Reference Manual

Getting the latest version

To get the latest version of a single file:
1. In the Project Explorer, right-click the file to get.
2. Choose Source Control > Get Latest Version.
To get the latest version of multiple files:

1. In the Project Explorer, right-click a solution, project, or folder.
2. Choose Source Control > Get Latest Version (Recursive).

The dialog will list the files that have a status of Controlled, Checked Out or Old.

1. In the dialog, you can deselect the files you don't want to get.
2. Click OK.

139

CrossStudio User Guide

CrossWorks for AVR Reference Manual CrossStudio User Guide

Showing differences between files

To show the differences between the file in the project and the version checked into source control, do the
following:

1. In the Project Explorer, right-click the file.

2. From the shortcut menu, choose Source Control > Show Differences.

You can use an external diff tool in preference to the built-in CrossWorks diff tool. To define the diff command
line CrossWorks generates, choose Tools > Options > Source Control > Diff Command Line. The command line
is defined as a list of strings to avoid problems with spaces in arguments. The diff command line can contain the
following macros:

S(localfile): The filename of the file in the project.

S(remotefile): The filename of the latest version of the file in source control.

S(localname): A display name for $(localfile).

» S(remotename): A display name for $(remotefile).

140

CrossWorks for AVR Reference Manual CrossStudio User Guide

Merging files

To use merging, you must have a merge tool. To define the merge command line CrossWorks generates, choose
Tools > Options > Source Control > Merge Command Line. The command line is defined as a list of strings to

avoid problems with spaces in arguments. The merge command line can contain the following macros:

S(localfile): The filename of the file in the project.

S(remotefile): The filename of the latest version of the file in source control.

$(commonfile): The filename of the version of the file you originally edited and the file which will be

produced by the merge tool.

S(localname): A display name for $(localfile).
» S(remotename): A display name for $(remotefile).
» $S(commonname): A display name for $(commonfile).

To merge the file in the project and the version checked into source control:

1. In the Project Explorer, right-click the file node.
2. Choose Source Control > Merge.

When the external tool has finished, if $(commonfile) has been modified, you will be asked if you want to

overwrite the file in the project with $(commonfile).

141

CrossWorks for AVR Reference Manual CrossStudio User Guide

Source-control explorer

The Source Control Explorer dialog is used when selecting the remote root directory and when Project >
Source Control > Open Solution From is selected.
To activate the Source Control Explorer:

¢ Choose VCS > Explorer.

The Source Control Explorer lists the directories and files in source control. You can use the directory side of the

dialog to create new directories and to refresh the list, if that is required by the source-control provider.

142

CrossWorks for AVR Reference Manual CrossStudio User Guide

Source-control properties

When a file in the project is in source control, the Properties window shows the following properties in the

Source Control Options group:

Property Description
If Yes, the file is checked out by you to the project

Checked Out s cKe yYy proj
location; if No, the file is not checked out.

Different If Yes, the checked-out file differs from the version in
the source control system; if No, they are identical.

File Path The pathname of the file in the source-control system.

Local Revision The revision number/name of the local file.

Old Version If Yes, the file in the project location is an old version
compared to the latest version in the source-control
system.

Provider Status The source-control provider status of the file.

Remote Revision The revision number/name of the most-recent version
in source control.

Status The source-control status of the file.

143

CrossWorks for AVR Reference Manual CrossStudio User Guide

Visual SourceSafe provider

The Visual SourceSafe source-control provider is implemented using the SourceSafe OLE Automation interface
provided in ssapi.dll. The two versions of ssapi.dll are supported by CrossWorks, they can be identified (using the
OLE/COM Object Viewer of Visual Studio) as:

* Visual SourceSafe 6.0 Type Library (Ver 5.1)
* Visual SourceSafe 8.0 Type Library (Ver 5.2)

Other versions have not been tested. If you get an error when connecting to the database, try registering the
type library using the DOS command r egsvr 32 ssapi . dl | .

Provider-specific options
The following environment options are supported:

Property Description

Exclusive Checkout If Yes, check outs will be exclusive.

Connecting to the source-control system

When connecting to source control, the working directory of the SourceSafe root $ is used to initially set the
file mappings. Subsequently, the provider will not change the working directory of SourceSafe or refer to it for

operations.

Source-control operations

In general, all CrossWorks source-control operations map directly to SourceSafe operations with default flag

behavior.
The Add To Source Control operation will create SourceSafe projects, if they don't exist.

Source-control operations are performed one file at a time, there are no recursive SourceSafe project operations.

144

CrossWorks for AVR Reference Manual CrossStudio User Guide

SourceOffSite provider

The SourceGear SourceOffsite source-control provider has been tested with SourceOffSite Classic 3.5.3 server.

Provider-specific options
The following environment options are supported:

Property Description

The directory to the ser ver s subdirectory in your

Home Director
y SOS client installation.

Port The port number used by your SOS server.
Server The name or IP address of the computer running the
SOS server.

Connecting to the source-control system

When connecting to source control, the working directory of the SourceSafe root $ is used initially to set the
file mappings. Subsequently, the provider will not change the working directory of SourceSafe or refer to it for

operations.

Source-control operations

For each server connection, SourceOffSite maintains a file that has control information about the local files that
have been fetched. The SourceOffSite provider will keep this file updated as it performs single-file operations.
However, to update the project and files list, you will need to use the directory list's shortcut menu to choose

VCS > Refresh Status.

In general, all CrossWorks source-control operations map directly to SourceSafe operations with default flag

behavior.
The Add To Source Control operation will create SourceSafe projects, if they don't exist.

The operations are performed one file at a time, i.e., there are no recursive SourceSafe project operations.

145

CrossWorks for AVR Reference Manual CrossStudio User Guide

Subversion provider

The Subversion source-control provider has been tested with SVN 1.4.3.

Provider-specific options

The following environment options are supported:

Property Description
Executable The path to the svn executable.
Lock Supported If Yes, check out and undo check out operations

are supported. Check out will issue the svn | ock
command; check in and undo check out will issue the
svn unl ock command.

Repository URL The Subversion URL to the repository.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in SVN control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in SVN control after you have set the remote
root,asvn checkout - Ncommand will beissued to make the local root SVN controlled. This command will

also copy any files in the remote root to the local root.

The user name and password you enter will be supplied with each svn command the provider issues.

Source control operations

The CrossWorks source-control operations have been implemented using SVN commands. There are no multiple

file operations, each operation is done on a single file and is committed as part of the operation.

Operation Command

svn status --show updat es for local
Get Status directories that are in SVN control. svn i nf o for
directories in the repository.

Add To Source Control svn addandsvn conmmit foreach directory notin
SVN control. svn add andsvn conmmit for the file.

Get Latest svn updat e - Nforeach directory notin SVN
control. Optional removal of the local file for overwrite
caseand svn updat e.

Check Out Optional removal of the local file for overwrite case
andsvn updat e.svn | ock to lock the file.

146

CrossWorks for AVR Reference Manual CrossStudio User Guide

Undo Check Out svn unl ock to unlock the file. Optional svn
updat e to get the latest version.
Check In svn conmit for thefile.
Source Control Explorer svn | i st with aremoteroot.svn nkdi r to create

directories in the repository.

147

CrossWorks for AVR Reference Manual CrossStudio User Guide

CVS provider

The CVS source-control provider has been tested with CYSNT 2.5.03. The CVS source-control provider uses the
CVSr | s command to browse the repository—this command is implemented in CVS 1.12 but usage of '’ as the
root of the module name is not supported.

Provider-specific options

The following environment options are supported:

Property Description
CVSROOT The CVSROOT value to access the repository.
Edit/Unedit Supported If Yes, Check Out and Undo Check Out commands

are supported. Any check-out operation will issue the
cvs edit command; any check-in or undo-check-

out operation will issue the cvs unedi t command;
the status operation will issue the cvs ss command.

Executable The path to the cvs executable.

Login/Logout Required If Yes, Connect will issue the cvs | ogi n command.

Connecting to the source-control system

When connecting to source control, the provider checks if the local root is in CVS control. If this is the case, the
local and remote root will be set accordingly. If the local root is not in CVS control after you have set the remote
root,acvs checkout -1 -dcommand will beissued to make the local root CVS controlled. This command

will also copy any files in the remote root to the local root.

Source-control operations

The CrossWorks source-control operations have been implemented using CVS commands. There are no
multiple-file operations, each operation is done on a single file and committed as part of the operation.

Operation Command

cvs st at us and optionalcvs edi t or s for local
Get Status directories in CVS control.cvs rl s - e for directories
in the repository.

Add To Source Control cvs add for each directory not in CVS control.
cvs add for the file.cvs commi t for the file and
directories.

Get Latest cvs update -I -d foreach directory notin CVS

control.cvs updat e to merge the local file. cvs
updat e - Cto overwrite the local file.

148

CrossWorks for AVR Reference Manual CrossStudio User Guide

Check Out Optional cvs updat e - Cto get the latest version.
cvs edit tolockthefile.

Undo Check Out cvs unedit to unlock the file. Optional cvs
updat e to get the latest version.

Check In cvs conmit for the file.

Source Control Explorer cvs rls - e with aremote root starting with '.".cvs

i mport to create directories in the repository.

149

CrossWorks for AVR Reference Manual CrossStudio User Guide

Package management

Additional target-support functions can be added to, and removed from, CrossWorks with packages.

A CrossWorks package is an archive file containing a collection of target-support files. Installing a package
involves copying the files it contains to an appropriate destination directory and registering the package with
CrossWorks's package system. Keeping target-support files separate from the main CrossWorks installation
allows us to support new hardware and issue bug fixes for existing hardware-support files between CrossWorks
releases, and it allows third parties to develop their own support packages.

Installing packages

Use the Package Manager to automate the download, installation, upgrade and removal of packages.

To activate the Package Manager:
* Choose Tools > Manage Packages.

In some situations, such as using CrossWorks on a computer without Internet access or when you want to
install packages that are not on the Rowley Associates website, you cannot use the Package Manager to install
packages and it will be necessary to manually install them.

To manually install a package:

1. Choose Tools > Packages > Manually Install Packages.
2. Select the package file(s) you want to install.

3. Click Open to install the packages.
Choose Tools > Show Installed Packages to see more information on the installed packages.

The Package Manager window will remove manually installed packages.

The package manager

The Package Manager manages the support packages installed on your system. It lists the available packages,

shows the installed packages, and allows you to install, update, reinstall, and remove them.

150

CrossWorks for AVR Reference Manual

CrossStudio User Guide

. 3
¥ Package Manager @Iéj
Select Packages

Search Packages -
Title Type Status Action -
Analog Devices ADUCTO00 CPU Support Package CPU Support Package Mot Installed Mo Action
Analog Devices ADuCT020 Eval Board Support Package Board Support Package Mot Installed Mo Adion |=
Analog Devices ADuCT7024 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT026 Eval Board Support Package Board Support Package Mot Installed Mo Action
Analog Devices ADUCT128 Eval Board Support Package Board Support Package Mot Installed Mo Action
Anglia Calumbus STRY1x USE Evaluation Board Support Package Board Support Package Mot Installed Mo Action
ARM Evaluator-7T Board Support Package Board Support Package | Installed Mo Action
Atmel ATO1SAMT CPU Support Package CPU Support Package Update Available Update
Atmel ATOLSAMTAZ-EK Board Support Package Board Support Package Mot Installed Install
Atmel AT915AMYTL-5TK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT91SAM7TSE-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AM7S-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT9LSAMTX-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel ATO15AMO260-EK Board Support Package Board Support Package Installed Mo Action
Atmel AT915AM9261-EK Board Support Package Board Support Package Mot Installed Mo Action
Atmel AT915AMO263-EK Board Support Package Board Support Package | Installed Mo Action
Atmel EBO1 Board Support Package Board Support Package Mot Installed No Adtion
Atmal FRAAA Raard Sonnnart Darkana Rnard Soonnnart Darkana Mlnt Trctallad Mo Artinn

Package Information -

Description This package contains project templates and system files for the Atmel AT91SAMY.

Installed Version 17

Latest Version 15

Package Version History

13

Added support for AT915SAM7LG4 and AT91SAMTL125.
Loaders now set the boot from internal FLASH NVM bit by default.
1.7 -
Mext l [Cancel
-

To activate the Package Manager:

* Choose Tools > Manage Packages.

Filtering the package list

By default, the Package Manager lists all available and installed packages. You can filter the displayed packages

in a number of ways.

To filter by package status:

* Click on the disclosure icon near the top-right corner of the dialog.

» Use the pop-up menu to choose how to filter the list of packages.

The list-filter choices are:

* Display All — Show all packages irrespective of their status.

* Display Not Installed — Show packages that are available but are not currently installed.

151

CrossWorks for AVR Reference Manual CrossStudio User Guide

* Display Installed — Only show packages that are installed.
* Display Updates — Only show packages that are installed but are not up-to-date because a newer

version is available.

You can also filter the list of packages by the text in the package's title and documentation.

To filter packages by keyword:

* Type the keyword into the Search Packages box at the top-left corner of the dialog.

Installing a package

The package-installation operation downloads a package to $(PackagesDir)/downloads, if it has not been
downloaded already, and unpacks the files contained within the package to their destination directory.

To install a package:

1. Choose Tools > Packages > Install Package (this is equivalent to choosing Tools > Manage Packages
and setting the status filter to Display Not Installed).

Select the package or packages you wish to install.

Right-click the selected packages and choose Install Selected Packages from the shortcut menu.
Click Next; you will be see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will install the selected packages.

S O

When installation is complete, click Finish to close the Package Manager.

Updating a package

The package-update operation first removes existing package files, then it downloads the updated package to

$(PackagesDir)/downloads and unpacks the files contained within the package to their destination directory.

To update a package:

1. Choose Tools > Packages > Update Packages (this is equivalent to clicking Tools > Package Manager
and setting the status filter to Display Updates).

Select the package or packages you wish to update.

Right-click the selected packages and choose Update Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will update the package(s).

S T

When the update is complete, click Finish to close the Package Manager.

Removing a package

The package-remove operation removes all the files that were extracted when the package was installed.

152

CrossWorks for AVR Reference Manual CrossStudio User Guide

To remove a package:

1.

S T

Choose Tools > Packages > Remove Packages (this is equivalent to choosing Tools > Package Manager
and setting the status filter to Display Installed).

Select the package or packages you wish to remove.

Right-click the selected packages and choose Remove Selected Packages from the shortcut menu.

Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will remove the package(s).

When the operation is complete, click Finish to close the Package Manager.

Reinstalling a package

The package-reinstall operation carries out a package-remove operation followed by a package-install

operation.

To reinstall a package:

1.

IS T

Choose Tools > Packages > Reinstall Packages (this is equivalent to choosing Tools > Package Manager
and setting the status filter to Display Installed).

Select the package or packages you wish to reinstall.

Right-click the packages to reinstall and choose Reinstall Selected Packages from the shortcut menu.
Click Next; you will see the actions the Package Manager is about to carry out.

Click Next and the Package Manager will reinstall the packages.

When the operation is complete, click Finish to close the Package Manager.

153

CrossWorks for AVR Reference Manual CrossStudio User Guide

Exploring your application

In this section, we discuss the CrossStudio tools that help you examine how your application is built.

154

CrossWorks for AVR Reference Manual CrossStudio User Guide

Project explorer

The Project Explorer is the user interface of the CrossWorks project system. It organizes your projects and files
and provides access to the commands that operate on them. A toolbar at the top of the window offers quick
access to commonly used commands for the selected project node or the active project. Right-click to reveal a
shortcut menu with a larger set of commands that will work on the selected project node, ignoring the active

project.

The selected project node determines what operations you can perform. For example, the Compile operation
will compile a single file if a file project node is selected; if a folder project node is selected, each of the files in

the folder are compiled.

You can select project nodes by clicking them in the Project Explorer. Additionally, as you switch between files
in the editor, the selection in the Project Explorer changes to highlight the file you're editing.

To activate the Project Explorer:

¢ Choose View > Project Explorer or press Ctrl+Alt+P.

Left-click operations
The following operations are available in the Project Explorer with a left-click of the mouse:

Action Description

Select the node. If the node is already selected and

Single click is a solution, project, or folder node, a rename editor
appears.
Double click Double-clicking a solution node or folder node will

open/close the node. Double-clicking a project node
sets it as the active project. Double-clicking a file opens
the file with the default editor for that file's type.

Toolbar commands
The following buttons are on the toolbar:

Button Description

Adds a new file to the active project using the New File
dialog.

Adds existing files to the active project.

Removes files, folders, projects, and links from the
project.

oF X W o

Creates a new folder in the active project.

155

CrossWorks for AVR Reference Manual

B g g

Shortcut menu commands

CrossStudio User Guide

Menu of build operations.
Disassembles the active project.

Menu of Project Explorer options.

Displays the properties dialog for the selected item.

The shortcut menu, displayed by right-clicking, contains the commands listed below.

For solutions:

Item
Build and Batch Build

Rebuild and Batch Rebuild

Clean and Batch Clean

Export Build and Batch Export Build

Add New Project
Add Existing Project
Paste

Remove

Rename

Source Control Operations

Edit Solution As Text

Save Solution As

Properties

For projects:

Item

Build and Batch Build

Description

Build all projects under the solution in the current or
batch build configuration.

Rebuild all projects under the solution in the current or
batch build configuration.

Remove all output and intermediate build files for the
projects under the solution in the current or batch
build configuration.

Create an editor with the build commands for the
projects under the solution in the current or batch
build configuration.

Add a new project to the solution.

Create a link from an existing solution to this solution.
Paste a copied project into the solution.

Remove the link to another solution from the solution.
Rename the solution node.

Source-control operations on the project file and
recursive operations on all files in the solution.

Create an editor containing the project file.

Change the filename of the project file—note that the
saved project file is not reloaded.

Show the Properties dialog with the solution node
selected.

Description

Build the project in the current or batch build
configuration.

156

CrossWorks for AVR Reference Manual

Rebuild and Batch Rebuild

Clean and Batch Clean

Export Build and Batch Export Build

Link

Set As Active Project

Debugging Commands

Memory-Map Commands

Section-Placement Commands

Target Processor

Add New File
Add Existing File
New Folder

Cut

Copy

Paste

Remove
Rename

Source Control Operations

Find in Project Files

Properties

CrossStudio User Guide

Reuild the project in the current or batch build
configuration.

Remove all output and intermediate build files for the
project in the current or batch build configuration.

Create an editor with the build commands for the
project in the current or batch build configuration.

Perform the project node build operation: link for an
Executable project type, archive for a Library project
type, and the combine command for a Combining
project type.

Set the project to be the active project.

For Executable and Externally Built Executable project
types, the following debugging operations are
available on the project node: Start Debugging, Step
Into Debugging, Reset And Debug, Start Without
Debugging, Attach Debugger, and Verify.

For Executable project types that don't have memory-
map files in the project and have the memory-map file
project property set, there are commands to view the
memory-map file and to import it into the project.

For Executable project types that don't have section-
placement files in the project but have the section-
placement file project property set, there are
commands to view the section-placement file and to
import it into the project.

For Executable and Externally Built Executable project
types that have a Target Processor property group, the
selected target can be changed.

Add a new file to the project.

Add an existing file to the project.

Create a new folder in the project.

Cut the project from the solution.

Copy the project from the solution.

Paste a copied folder or file into the project.
Remove the project from the solution.
Rename the project.

Source-control, recursive operations on all files in the
project.

Run Find in Files in the project directory.

Show the Project Manager dialog and select the
project node.

157

CrossWorks for AVR Reference Manual

For folders:

Item

Add New File
Add Existing File
New Folder

Cut

Copy

Paste

Remove
Rename

Source Control Operations

Compile

Properties

For files:

Item
Open
Open With

Select in File Explorer

Compile

Export Build

Exclude From Build

Disassemble

Preprocess

Cut
Copy
Remove
Import

Source Control Operations Source-control operations
on the file.

CrossStudio User Guide

Description

Add a new file to the folder.

Add an existing file to the folder.

Create a new folder in the folder.

Cut the folder from the project or folder.
Copy the folder from the project or folder.
Paste a copied folder or file into the folder.
Remove the folder from the project or folder.
Rename the folder.

Source-control recursive operations on all files in the
folder.

Compile each file in the folder.

Show the properties dialog with the folder node
selected.

Description
Edit the file with the default editor for the file's type.

Edit the file with a selected editor. You can choose
from the Binary Editor, Text Editor, and Web Browser.

Create a operating system file system window with the
file selected.

Compile the file.

Create an editor window containing the commands to
compile the file in the active build configuration.

Set the Exclude From Build property to Yes for this
project node in the active build configuration.

Disassemble the output file of the compile into an
editor window.

Run the C preprocessor on the file and show the
output in an editor window.

Cut the file from the project or folder.
Copy the file from the project or folder.
Remove the file from the project or folder.

Import the file into the project.

158

CrossWorks for AVR Reference Manual CrossStudio User Guide

Properties Show the properties dialog with the file node selected.

159

CrossWorks for AVR Reference Manual CrossStudio User Guide

Source navigator window

One of the best ways to find your way around your source code is using the Source Navigator. It parses the
active project's source code and organizes classes, functions, and variables in various ways.

The main part of the Source Navigator window provides an overview of your application's functions, classes,
and variables.

CrossStudio displays these icons to the left of each object:

Icon Description
i A C or C++ structure or a C++ namespace.
G A C++ class.
&

A C++ member function declared pri vat e ora
function declared with st at i ¢ linkage.

e

tl?‘ A C++ member function declared pr ot ect ed.
$ A C++ member function declared publ i c ora
function declared with ext er n linkage.
@ A C++ member variable declared pri vat e ora
variable declared with st at i ¢ linkage.
%’@ A C++ member variable declared pr ot ect ed.
@ A C++ member variable declared publ i ¢ or a variable

declared with ext er n linkage.

To activate the Source Navigator:

» Choose Tools > Source Navigator or press Ctrl+Alt+N.

Re-parsing after editing
The Source Navigator does not update automatically, only when you ask it to.
To parse source files manually, click the Refresh button on the Source Navigator toolbar.

CrossStudio re-parses any changed files and updates the Source Navigator with the changes. Progress

information and any errors are sent to the Source Navigator Log in the Output window when parsing.

Sorting and grouping

You can group objects by their type; that is, whether they are classes, functions, namespaces, structures, or
variables. Each object is placed into a folder according to its type.

160

CrossWorks for AVR Reference Manual CrossStudio User Guide
To group objects by type:

1. On the Source Navigator toolbar, click the arrow to the right of the Cycle Grouping button.
2. Choose Group By Type

161

CrossWorks for AVR Reference Manual CrossStudio User Guide

Symbol browser

The Symbol Browser shows useful information about your linked application and complements the information
displayed in the Project Explorer window. You can select different ways to filter and group the information in
the Symbol Browser to provide an at-a-glance overview of your application. You can use the Symbol Browser
to drill down to see the size and location of each part of your program. The way symbols are sorted and grouped
is saved between runs; so, when you rebuild an application, CrossStudio automatically updates the Symbol

Browser so you can see the effect of your changes on the memory layout of your program.

User interface

Button Description

{El Groups symbols by source filename.

{ﬁ Groups symbols by symbol type (equates, functions,

labels, sections, and variables).

{. Groups symbols by the section where they are defined.
& | Moves the cursor to the statement that defined the

- symbol.

Determines what columns to display.

The main part of the Symbol Browser displays each symbol (both external and static) that is linked into an
application. CrossStudio displays the following icons to the left of each symbol:

Icon Description
% Private Equate A private symbol not defined relative
to a section.

Public Equate A public symbol that is not defined
relative to a section.

Private Function A private function symbol.
Public Function A public function symbol.

Private Label A private data symbol, defined relative
to a section.

e » @ » o

Public Label A public data symbol, defined relative to
a section.

Section A program section.

162

CrossWorks for AVR Reference Manual CrossStudio User Guide

Choosing what to show

To activate the Symbol Browser window:
» Choose Project > Symbol Browser or press Ctrl+Alt+Y.
You can choose to display the following fields for each symbol:

* Value: The value of the symbol. For labels, code, and data symbols, this will be the address of the symbol.
For absolute or symbolic equates, this will be the value of the symbol.

* Range: The range of addresses the code or data item covers. For code symbols that correspond to high-
level functions, the range is the range of addresses used for that function's code. For data addresses that
correspond to high-level static or extern variables, the range is the range of addresses used to store that
data item. These ranges are only available if the corresponding source file was compiled with debugging
information turned on: if no debugging information is available, the range will simply be the first address
of the function or data item.

* Size: The size, in bytes, of the code or data item. The Size column is derived from the Range of the
symbol: if the symbol corresponds to a high-level code or data item and has a range, Size is calculated
as the difference between the start and end addresses of the range. If a symbol has no range, the size
column is blank.

* Section: The section in which the symbol is defined. If the symbol is not defined within a section, the
Section column is blank.

» Type: The high-level type for the data or code item. If the source file that defines the symbol is compiled
with debugging information turned off, type information is not available and the Type column is blank.

Initially the Range and Size columns are shown in the Symbol Browser. To select which columns to display, use
the Field Chooser button on the Symbol Browser toolbar.

To select the fields to display:

1. Click the Field Chooser button on the Symbol Browser toolbar.
2. Select the fields you wish to display and deselect the fields you wish to hide.

Organizing and sorting symbols

When you group symbols by section, each symbol is grouped underneath the section in which it is defined.

Symbols that are absolute or are not defined within a section are grouped beneath ‘(No Section)'’.

To group symbols by section:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. From the pop-up menu, choose Group By Section.

163

CrossWorks for AVR Reference Manual CrossStudio User Guide

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by section.
When you group symbols by type, each symbol is classified as one of the following:

* An Equate has an absolute value and is not defined as relative to, or inside, a section.
* A Function is defined by a high-level code sequence.

A Variable is defined by a high-level data declaration.

A Label is defined by an assembly language module. Label is also used when high-level modules are

compiled with debugging information turned off.

When you group symbols by source file, each symbol is grouped underneath the source file in which it is
defined. Symbols that are absolute, are not defined within a source file, or are compiled without debugging
information, are grouped beneath ‘(Unknown)'.

To group symbols by type:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Type from the pop-up menu.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by type.

To group symbols by source file:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.

2. Choose Group By Source File.
The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols by source file.

When you sort symbols alphabetically, all symbols are displayed in a single list in alphabetical order.

To list symbols alphabetically:

1. On the Symbol Browser toolbar, click the arrow next to the Cycle Grouping button.
2. Choose Sort Alphabetically.

The Cycle Grouping icon will change to indicate that the Symbol Browser is grouping symbols alphabetically.

Filtering and finding symbols

When you're dealing with big projects with hundreds, or even thousands, of symbols, a way to filter those
symbols in order to isolate just the ones you need is very useful. The Symbol Browser's toolbar provides
an editable combobox} you can use to specify the symbols you'd like displayed. You can type *' to match a

sequence of zero or more characters and ?’ to match exactly one character.

The symbols are filtered and redisplayed as you type into the combo box. Typing the first few characters of a

symbol name is usually enough to narrow the display to the symbol you need. Note: the C compiler prefixes all

164

CrossWorks for AVR Reference Manual CrossStudio User Guide

high-level language symbols with an underscore character, so the variable ext ern i nt u or the function
voi d fn(voi d) have low-level symbol names _u and _f n. The Symbol Browser uses the low-level symbol
name when displaying and filtering, so you must type the leading underscore to match high-level symbols.
To display symbols that start with a common prefix:

* Type the desired prefix text into the combo box, optionally followed by a "*".
For instance, to display all symbols that start with "i2c_", type "i2¢_" and all matching symbols are displayed—
you don't need to add a trailing "*" in this case, because it is implied.
To display symbols that end with a common suffix:

* Type * into the combo box, followed by the required suffix.

For instance, to display all symbols that end in ‘_data’, type *_data’ and all matching symbols are displayed—in

this case, the leading *' is required.

When you have found the symbol you're interested in and your source files have been compiled with debugging
information turned on, you can jump to a symbol's definition using the Go To Definition button.

To jump to the definition of a symbol:

1. Select the symbol from the list of symbols.

2. On the Symbol Browser toolbar, click Go To Definition.

1. Right-click the symbol in the list of symbols.

2. Choose Go To Definition from the shortcut menu.

Watching symbols

If a symbol's range and type is known, you can add it to the most recently opened Watch window or Memory

window.

To add a symbol to the Watch window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Watch window.
2. On the shortcut menu, choose Add To Watch.

To add a symbol to the Memory window:

1. In the Symbol Browser, right-click the symbol you wish to add to the Memory window.

165

CrossWorks for AVR Reference Manual CrossStudio User Guide

2. Choose Locate Memory from the shortcut menu.

Using size information

Here are a few common ways to use the Symbol Browser:

What function uses the most code space? What requires the most data space?

IS L o

Choose Project > Symbol Browser or press Ctrl+Alt+Y.

In the Grouping button menu on the Symbol Browser toolbar, select Group By Type.
Ensure the Size field is checked in the Field Chooser button's menu.

Ensure that the filter on the Symbol Browser toolbar is empty.

Click on the Size field in the header to sort by data size.

The sizes of variables and of functions are shown in separate lists.

What's the overall size of my application?

1. Choose Project > Symbol Browser or press Ctrl+Alt+Y.

2. In the Grouping button menu on the Symbol Browser toolbar, select Group By Section.
3.
4

. Read the section sizes and ranges of each section in the application.

Ensure the Range and Size fields are checked in the Field Chooser button's menu.

166

CrossWorks for AVR Reference Manual CrossStudio User Guide

Memory usage window

The Memory Usage window displays a graphical summary of how memory has been used in each memory

segment of a linked application.

Bdemal _FLASH (e BO00000C
B 2.9MB free of 4 MB

Extemal _SRAM b8 1 0000

Each bar represents an entire memory segment. Green represents the area of the segment that contains code or
data.
To activate the Memory Usage window:

* Choose View > Memory Usage or press Ctrl+Alt+Z.

The memory-usage graph will only be visible if your active project's target is an executable file and the file exists.

If the executable file has not been linked by CrossStudio, memory-usage information may not be available.

Displaying section information

The Memory Usage window can also be used to visualize how program sections have been placed in memory.
To display the program sections, simply click the memory segment to expand it; or, alternatively, right-click and
choose Show Memory Sections from the shortcut menu.

167

CrossWorks for AVR Reference Manual CrossStudio User Guide

SRAM (4 000000
4 11.3kB free of 16 kB

wvectors_ram (e DOD0000

&0 bytes used

data (4000003
1 kB used

b=s (cA00004 3c
1.1 kB used

heap (4000084
1 kB used

stack (e A0000cc4

1 kB uszed

Each bar represents an entire memory segment. Green represents the area of the segment that contains the
program section.

Displaying segment overflow

The Memory Usage window also displays segment overflows when the total size of the program sections placed
in a segment is larger than the segment size. When this happens, the segment and section bars represents the
total memory used, green areas represent the code or data within the segment, and red areas represent code or
data placed outside the segment.

168

CrossWorks for AVR Reference Manual CrossStudio User Guide

Extemal _SRAM (b3 1 000000

4 65 kB over 1 MBE

data? (bc8 1000000

65 kB used

bss2 (31010400

1 ME used

Getting more-detailed information

If you require more-detailed information than that provided by the Memory Usage window, such as the location
of specific objects within memory, use the Symbol browser.

169

CrossWorks for AVR Reference Manual CrossStudio User Guide

Editing your code

CrossStudio has a built-in editor that allows you to edit text, but some features make it particularly well suited to

editing code.

You can open multiple code editors to view or edit project source code, and you can copy and paste among

them. The Windows menu contains a list of all open code editors.

The code editor supports the language of the source file it is editing, showing code with syntax highlighting and

offering smart indenting.
You can open a code editor in several ways, some of which are:

» By double-clicking a file in the Project Explorer or by right-clicking a file and selecting Open from the
shortcut menu.
» Using the File > New File or File > Open commands.

Elements of the code editor

The code editor is composed of several elements, which are described here.

» Code pane: The area where you edit code. You can set options that affect the code pane's text indents,
tabs, drag-and-drop behavior, and so forth.

* Margin gutter: A gray area on the left side of the code editor where margin indicators such as breakpoints,
bookmarks, and shortcuts are displayed. Clicking this area sets a breakpoint on the corresponding line of
code.

* Horizontal and vertical scroll bars: You can scroll the code pane horizontally and vertically to view code
that extends beyond the edges of the pane.

170

CrossWorks for AVR Reference Manual CrossStudio User Guide

Basic editing
This section is a whirlwind tour of the basic editing features CrossStudio's code editor provides.

Whether you are editing code, HTML, or plain text, the code editor is just like many other text editors or word
processors. For code that is part of a project, the project's programming language support provides syntax
highlighting (colorization), indentation, and so on.

This section is not a reference for everything the code editor provides; for that, look in the following sections.

171

CrossWorks for AVR Reference Manual CrossStudio User Guide

Moving the insertion point

The most common way to navigate through text is to use use the keyboard's cursor keys, the scroll bars, or the

mouse's scroll wheel.

The keystrokes most commonly used to navigate through a document are:

Keystroke Description

Up Moves the insertion point up one line

Down Moves the insertion point down one line

Left Moves the insertion point left one character

Right Moves the insertion point right one character

Home Moves the insertion point to the first character on the

line; pressing Home a second time moves the insertion
point to the leftmost column

End Moves the insertion point to the end of the line
PageUp Moves the insertion point up one page

PageDown Moves the insertion point down one page

Ctrl+Left Moves the insertion point left one word

Ctrl+Right Moves the insertion point right one word

Ctrl+Home Moves the insertion point to the start of the document
Ctrl+End Moves the insertion point to the end of the document
Alt+Up Moves the insertion point up five lines

Alt+Down Moves the insertion point down five lines

Ctrl+Up Scrolls the document up one line in the window

without moving the insertion point

Ctrl+Down Scrolls the document down one line in the window
without moving the insertion point

172

CrossWorks for AVR Reference Manual

Selecting text

You can select text by using the keyboard or the mouse.

To select text with the keyboard:

* Hold down the Shift key while using the cursor keys.

To select text with the mouse:

1. Click the start of the selection.
2. Drag the mouse to mark the selection.

3. Release the left mouse button to end selection.

173

CrossStudio User Guide

CrossWorks for AVR Reference Manual CrossStudio User Guide

Adding text

The editor has two text-input modes:

* Insertion mode: As you type on the keyboard, text is entered at the insertion point and any text to the
right of the cursor is shifted along. A visual indication of insertion mode is that the cursor is a flashing line.
* Overstrike mode: As you type on the keyboard, text at the insertion point is replaced with your typing. A

visual indication of insertion mode is that the cursor is a flashing block.

Insert and overstrike modes are common to all editors: if one editor is in insert mode, all editors are in insert
mode. To configure the cursor appearance, choose Tools > Options.
To toggle between insertion and overstrike mode:

¢ Click Insert.
If overstrike mode is enabled, the OVR status indicator will be enabled and the cursor will change to the
overstrike cursor.
To add or insert text:

1. Move the insertion point to the place text is to be inserted.
2. Enter the text using the keyboard.

To overwrite characters in an existing line, press the Insert key to put the editor into overstrike mode.

174

CrossWorks for AVR Reference Manual CrossStudio User Guide

Deleting text

The text editor supports the following common editing keystrokes:

Keystroke Description

Backspace Deletes the character before the insertion point
Delete Deletes the character after the insertion point
Ctrl+Backspace Deletes one word before the insertion point
Ctrl+Delete Deletes one word after the insertion point

To delete characters or words:

1. Place the insertion point before the word or letter you want to delete.
2. Press Delete as many times as needed.

1. Place your cursor at the end of the letter or word you want to delete.
2. Press Backspace as many times as needed.
To delete text that spans more than a few characters:

1. Select the text you want to delete.
2. Press Delete or Backspace to delete it.

175

CrossWorks for AVR Reference Manual CrossStudio User Guide

Using the clipboard

To copy selected text to the clipboard:
¢ Choose Edit > Copy or press Ctrl+C.

The Windows standard key sequence Ctrl+Ins also copies text to the clipboard.

To cut selected text to the clipboard:
e Choose Edit > Cut or press Ctrl+X.

The Windows standard key sequence Shift+Del also cuts text to the clipboard.

To insert the clipboard content at the insertion point:
» Choose Edit > Paste or press Ctrl+V.

The Windows standard key sequence Shift+Ins also inserts the clipboard content at the insertion point.

176

CrossWorks for AVR Reference Manual CrossStudio User Guide

Undo and redo

The editor has an Undo facility to undo previous editing actions. The Redo feature can be used to re-apply
previously undone actions.
To undo one editing action:

¢ Choose Edit > Undo or press Ctrl+Z.

The Windows standard key sequence Alt+Backspace also undoes an edit.

To undo multiple editing actions:
1. On the Standard toolbar, click the arrow next to the Undo button.
2. Select the editing operations to undo.

To undo all edits:

* Choose Edit > Advanced > Undo All or press Ctrl+K, Ctrl+Z.

To redo one editing action:
* Choose Edit > Redo or press Ctrl+Y.

The Windows standard key sequence Alt+Shift+Backspace also redoes an edit.

To redo multiple editing actions:

1. On the Standard toolbar, click the arrow next to the Redo tool button.

2. From the pop-up menu, select the editing operations to redo.

To redo all edits:

* Choose Edit > Advanced > Redo All or press Ctrl+K, Ctrl+Y.

177

CrossWorks for AVR Reference Manual CrossStudio User Guide

Drag and drop

You can select text, then drag it to another location. You can drop the text at a different location in the same
window or in another one.
To drag and drop text:

1. Select the text you want to move.
2. Press and hold the mouse button to drag the selected text to where you want to place it.
3. Release the mouse button to drop the text.

Dragging text moves it to the new location. To copy it to a new location, hold down the Ctrl key while dragging
the text: the cursor changes to indicate a copy operation. Press the Esc key while dragging text to cancel the
drag-and-drop edit.

By default, drag-and drop-editing is disabled and you must enable it if you want to use it.

To enable or disable drag-and-drop editing:

1. Choose Tools > Options or press Alt+,.
2. Click Text Editor.
3. Set Allow Drag and Drop Editing to Yes to enable or to No to disable drag-and-drop editing.

178

CrossWorks for AVR Reference Manual CrossStudio User Guide

Searching

To find text in the current file:

1. Press Ctrl+F.

2. Enter the string to search for.

As you type, the editor searches the file for a match. The pop-up shows how many matches are in the current file.
To move through the matches while the Find box is still active, press Tab or F3 to move to the next match and
Shift+Tab or Shift+F3 to move to the previous match.

179

CrossWorks for AVR Reference Manual CrossStudio User Guide

Advanced editing

You can do anything using its basic code-editing features, but the CrossStudio text editor has a host of labor-

saving features that make editing programs a snap.

This section describes the code-editor features intended to make editing source code easier.

180

CrossWorks for AVR Reference Manual

Indenting source code

The editor can increase or decrease the indentation level of a selection.

To increase indentation of selected text:

* Choose Selection > Increase Line Indent or press Tab.

To decrease indentation of selected text:

* Choose Selection > Decrease Line Indent or press Shift+Tab.

181

CrossStudio User Guide

CrossWorks for AVR Reference Manual CrossStudio User Guide

Commenting out sections of code

To comment selected text:

* Choose Selection > Comment or press Ctrl+/.

To uncomment selected text:
* Choose Selection > Uncomment or press Ctrl+Shift+/.

You can also toggle the commenting of a selection by typing /. This has no menu equivalent.

182

CrossWorks for AVR Reference Manual CrossStudio User Guide

Changing letter case

The editor can change the case of the current word or the selection. The editor will change the case of the
selection, if there is a selection, otherwise it will change the case of word at the insertion point.
To change text to uppercase:

» Choose Selection > Make Uppercase or press Ctrl+Shift+U.

This changes, for instance, ‘Hello’ to ‘HELLO'.

To change text to lowercase:
* Choose Selection > Make Lowercase or press Ctrl+U.

This changes, for instance, ‘Hello’ to ‘hello.

To switch between uppercase and lowercase:
* Choose Selection > Switch Case.
This changes, for instance, ‘Hello’ to ‘hELLO.’

With large software teams or imported source code, sometimes identifiers don't conform to your local coding
style. To assist in conversion between two common coding styles for identifiers, CrossStudio's editor offers the
following two shortcuts:

To change from split case to camel case:
* Choose Selection > Camel Case or press Ctrl+K, Ctrl+Shift+U.

This changes, for instance ‘this_is_wrong’ to ‘thislsWrong.’

To change from camel case to split case:
¢ Choose Selection > Split Case or press Ctrl+K, Ctrl+U.

This changes, for instance ‘thislsWrong'’ to ‘this_is_wrong.’

183

CrossWorks for AVR Reference Manual CrossStudio User Guide

Indenting

The editor uses the Tab key to increase or decrease the indentation level. The indentation size can be changed
in the Language Properties pane of the editor's Properties window, as can all the indent-related features listed
below.
To change the indentation size:

1. Set the Indent Size property for the required language.
The editor can optionally use tab characters to fill whitespace when indenting. The use of tabs for filling
whitespace can be selected in the editor's Language settings.
To select tab or space fill when indenting:

1. Set the Use Tabs property for the required language. Note: changing this setting does not add or remove

existing tabs from files, the change will only affect new indents.

The editor can assist with source code indentation while inserting text. There are three levels of indentation
assistance:

* None: The indentation of the source code is left to the user.

* Indent: This is the default. The editor maintains the current indentation level. When you press Return or
Enter, the editor moves the insertion point down one line and indented to the same level as the now-
previous line.

» Smart: The editor analyzes the source code to compute the appropriate indentation level for each line.
You can change how many lines before the cursor position will be analyzed for context. The smart-indent
mode can be configured to indent either open and closing braces or the lines following the braces.

Changing indentation options:
To change the indentation mode:
1. Set the Indent Mode property for the required language.
To change whether opening braces are indented in smart-indent mode:
1. Set the Indent Opening Brace property for the required language.
To change whether closing braces are indented in smart-indent mode:
1. Set the Indent Closing Brace property for the required language.

To change the number of previous lines used for context in smart-indent mode:

1. Set the Indent Context Lines property for the required language.

184

CrossWorks for AVR Reference Manual CrossStudio User Guide

Bookmarks

To edit a document elsewhere and then return to your current location, add a bookmark.

Dropping bookmarks

To place a bookmark:

1. Move the insertion point to the line you wish to bookmark.
2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

A temporary bookmark symbol appears next to the line in the indicator margin to show the bookmark is set.

You will also find the Toggle Bookmark button in the Text Edit toolbar.

Moving through bookmarks you've set

You can move through the bookmarks you've set in the current document or in all documents:

Keystroke Description

F2 Moves to the next bookmark in the current document

BookmarkOrevinDocument Moves to the previous bookmark in the current
document

Ctrl+Q, F2 Moves to the first bookmark in the current document

Ctrl+Q, Shift+F2 Moves to the last bookmark in the current document

To navigate forward through bookmarks:

1. Choose Edit > Bookmarks > Next Bookmark In Document or press F2.

2. The editor moves the insertion point to the next bookmark in the document.

If there is no following bookmark, the insertion point is moved to the first bookmark in the document.

To navigate backward through bookmarks:

1. Choose Edit > Bookmarks > Previous Bookmark In Document or press Shift+F2.

2. The editor moves the insertion point to the previous bookmark in the document.

If there is no previous bookmark, the insertion point is moved to the last bookmark in the document.

Removing bookmarks

To remove a bookmark:

1. Move the insertion point to the line containing the bookmark.

185

CrossWorks for AVR Reference Manual CrossStudio User Guide

2. Choose Edit > Bookmarks > Toggle Bookmark or press Ctrl+F2.

The bookmark symbol disappears, indicating the bookmark has been removed.

To remove all bookmarks in a document:

* Choose Edit > Bookmarks > Clear Bookmarks In Document or press Ctrl+K, F2.

186

CrossWorks for AVR Reference Manual CrossStudio User Guide

Find and Replace window

The Find and Replace window allows you to search for and replace text in the current document or in a range of

specified files.

To activate the find-and-replace window:

* Choose Search > Find And Replace or press Ctrl+Alt+F.

To find text in a single file:

* Select Current Document in the context combo box.

* Enter the string to be found in the text edit input.

* If the search will be case sensitive, set the Match case option.

* If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or
end of the line, on both sides of the string being searched for—set the Whole word option.

« If the search string is a regular expression, set the Use regexp option.

* Click the Find button to find all occurrences of the string in the current document.

To find and replace text in a single file:

* Click the Replace button on the toolbar.

* Enter the string to search for into the Find what input.

» Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

* If the search will be case sensitive, set the Match case option.

* If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or
end of the line, on both sides of the string being searched for—set the Match whole word option.

* If the search string is a regular expression, set the Use regular expression option.

* Click the Find Next button to find next occurrence of the string, then click the Replace button to replace
the found string with the replacement string; or click Replace All to replace all occurrences of the search

string without prompting.

To find text in multiple files:

* Click the Find In Files button on the toolbar.

* Enter the string to search for into the Find what input.

* Select the appropriate option in the Look in input to select whether to carry out the search in all open
documents, all documents in the current project, all documents in the current solution, or all files in a
specified folder.

* If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want

to search.

187

CrossWorks for AVR Reference Manual CrossStudio User Guide

« If the search will be case sensitive, set the Match case option.

* If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or
end of the line, on both sides of the string being searched for—set the Match whole word option.

* If the search string is a regular expression, set the Use regular expression option.

¢ Click the Find All button to find all occurrences of the string in the specified files, or click the Bookmark

All button to bookmark all the occurrences of the string in the specified files.

To replace text in multiple files:

* Click the Replace In Files button on the toolbar.

* Enter the string to search for into the Find what input.

 Enter the replacement string into the Replace with input. If the search string is a regular expression, the n
back-reference can be used in the replacement string to reference captured text.

* Select the appropriate option in the Look in input to select whether you want to carry out the search
and replace in all open documents, all documents contained in the current project, all documents in the
current solution, or all files in a specified folder.

* If you have specified that you want to search in a folder, select the folder you want to search by entering
its path in the Folder input and use the Look in files matching input to specify the type of files you want
to search.

« If the search will be case sensitive, set the Match case option.

* If the search will be for a whole word—i.e., there will be whitespace, such as spaces or the beginning or
end of the line, on both sides of the string being searched for—set the Match whole word option.

* If the search string is a regular expression, set the Use regular expression option.

* Click the Replace All button to replace all occurrences of the string in the specified files.

188

CrossWorks for AVR Reference Manual CrossStudio User Guide

Clipboard-ring window

The code editor captures all cut and copy operations, and stores the cut or copied item on the clipboard ring. The
clipboard ring stores the last 20 cut or copied text items, but you can configure the maximum number by using
the environment options dialog. The clipboard ring is an excellent place to store scraps of text when you're

working with many documents and need to cut and paste between them.
To activate the clipboard ring:
* Choose Edit > Clipboard Ring > Clipboard Ring or press Ctrl+Alt+C.
* Right-click the toolbar area to display the View menu.
* Choose Clipboard Ring from the shortcut menu.
To paste from the clipboard ring:

1. Cut or copy some text from your code. The last item you cut or copy into the clipboard ring is the current
item for pasting.

2. Press Ctrl+Shift+V to paste the clipboard ring's current item into the current document.

3. Repeatedly press Ctrl+Shift+V to cycle through the entries in the clipboard ring until you get to the one
you want to permanently paste into the document. Each time you press Ctrl+Shift+V, the editor replaces
the last entry you pasted from the clipboard ring, so you end up with just the last one you selected. The
item you stop on then becomes the current item.

4. Move to another location or cancel the selection. You can use Ctrl+Shift+V to paste the current item

again or to cycle the clipboard ring to a new item.

Clicking an item in the clipboard ring makes it the current item.

To paste an item from the clipboard ring into the current document:

1. Move the cursor to where you want to paste the item into the document.
2. Display the pop-up menu of the item to paste by clicking the arrow on the right of the item.
3. Choose Paste.

1. Make the item you want to paste the current item by clicking it.
2. Move the cursor to where you want to paste the item into the document.
3. Press Ctrl+Shift+V.

To paste all items into a document:

To paste all items on the clipboard ring into the current document, move the cursor to where you want to paste

the items and do one of the following:

189

CrossWorks for AVR Reference Manual CrossStudio User Guide

» Choose Edit > Clipboard Ring > Paste All.

* On the Clipboard Ring toolbar, click the Paste All button.

To remove an item from the clipboard ring:
1. Display the pop-up menu of the item to delete by clicking the arrow at the right of the item.
2. Choose Delete.
To remove all items from the clipboard ring:
* Choose Edit > Clipboard > Clear Clipboard.
—or—

* On the Clipboard Ring toolbar, click the Clear Clipboard Ring button.

To configure the clipboard ring:

1. Choose Tools > Options or press Alt+,.

2. Click the Windows button to show the Clipboard Ring Options group.

3. Select Preserve Contents Between Runs to save the content of the clipboard ring between runs, or
deselect it to start with an empty clipboard ring.

4. Change Maximum Items Held In Ring to configure the maximum number of items stored on the

clipboard ring.

190

CrossWorks for AVR Reference Manual CrossStudio User Guide

Regular expressions

The editor can search and replace text using regular expressions. A regular expression is a string that uses
special characters to describe and reference patterns of text. The regular expression system used by the editor
is modeled on Perl's regexp language. For more information on regular expressions, see Mastering Regular
Expressions, Jeffrey E F Freidl, ISBN 0596002890.

Summary of special characters

The following table summarizes the special characters the CrossStudio editor supports

Pattern Description

\d Match a numeric character.

\D Match a non-numeric character.

\s Match a whitespace character.

\S Match a non-whitespace character.

\w Match a word character.

\W Match a non-word character.

[c] Match set of characters; e.g., [ch] matches characters

c or h. A range can be specified using the -’ character;
e.g., '[0-27-9]' matches if the characteris 0, 1, 2,7 8, or
9. A range can be negated using the ‘A’ character; e.g.,
‘[Aa-z]’ matches if the character is anything other than
a lowercase alphabetic character.

\c Match the literal character c. For example, you would
use * to match the character *'.

\a Match ASCII bell character (ASCII code 7).

\f Match ASCII form feed character (ASCIl code 12).

\n Match ASClII line feed character (ASCII code 10).

\r Match ASCII carriage return character (ASCIl code 13).

\t Match ASCII horizontal tab character (ASCIl code 9).

\v Match ASClII vertical tab character.

\xhhhh Match Unicode character specified by hexadecimal
number hhhh.

Match any character.

* Match zero or more occurrences of the preceding
expression.

+ Match one or more occurrences of the preceding
expression.

191

CrossWorks for AVR Reference Manual

{n}
{n}

\b
\B
(e)

\n

Examples

CrossStudio User Guide

Match zero or one occurrences of the preceding
expression.

Match n occurrences of the preceding expression.

Match at least n occurrences of the preceding
expression.

Match at most m occurrences of the preceding
expression.

Match at least n and at most m occurrences of the
preceding expression.

Beginning of line.
End of line.

Word boundary.
Non-word boundary.
Capture expression e.

Back-reference to nth captured text.

The following regular expressions can be used with the editor's search-and-replace operations. To use the

regular expression mode, the Use regular expression checkbox must be set in the search-and-replace dialog.

Once enabled, regular expressions can be used in the Find what search string. The Replace With strings can use

the "n" back-reference string to reference any captured strings.

"Find what"

u\w.d

/\.*.s

7

(typedef.+\s+)(\S+);

"Replace With"

\TTEST_\2;

Description

Search for any-length string
containing one or more word
characters beginning with the
character ‘v’ and ending in the
character ‘d".

Search for any lines ending in a
semicolon.

Find C type definition and insert the
string ‘TEST' onto the beginning of
the type name.

192

CrossWorks for AVR Reference Manual CrossStudio User Guide

Debugging windows

This section describes the windows you can use to debug your application.

193

CrossWorks for AVR Reference Manual CrossStudio User Guide

Locals window

The Locals window displays a list of all variables that are in scope of the selected stack frame in the Call Stack.

The Locals window has a toolbar and a main data display.

Button Description

x, Displays the selected item in binary.

x, Displays the selected item in octal.

X, Displays the selected item in decimal.

X Displays the selected item in hexadecimal.

+x Displays the selected item as a signed decimal.

gt Displays the selected item as a character or Unicode
character.

Sets the range displayed in the active Memory window
to where the selected item is stored.

%l Sorts the variables alphabetically by name.

gl Sorts the variables numerically by address or register

number (default).

Using the Locals window

The Locals window shows the local variables of the active function when the debugger is stopped. The contents
of the Locals window changes when you use the Debug Location toolbar items or select a new frame in the Call
Stack window. When the program stops at a breakpoint, or is stepped, the Locals window updates to show the
active stack frame. ltems that have changed since they were previously displayed are highlighted in red.
To activate the Locals window:

* Choose Debug > Locals or press Ctrl+Alt+L.
When you select a variable in the main part of the display, the display-format button highlighted on the Locals
window toolbar changes to show the selected item's display format.

To change the display format of a local variable:

* Right-click the item to change.

» From the shortcut menu, choose the desired display format.

194

CrossWorks for AVR Reference Manual CrossStudio User Guide

* Click the item to change.
» On the Locals window toolbar, select the desired display format.
To modify the value of a local variable:

¢ Click the value of the local variable to modify.
 Enter the new value for the local variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,
and octal numbers with 0.

—Or—

* Right-click the value of the local variable to modify.

» From the shortcut menu, select one of the commands to modify the local variable's value.

195

CrossWorks for AVR Reference Manual CrossStudio User Guide

Globals window

The Globals window displays a list of all variables that are global to the program. The operations available on the
entries in this window are the same as the Watch window, except you cannot add or delete variables from the
Globals window.

Globals window user interface
The Globals window consists of a toolbar and main data display.

Globals toolbar

Button Description
x, Displays the selected item in binary.
X, Displays the selected item in octal.
X, Displays the selected item in decimal.
X Displays the selected item in hexadecimal.
+x Displays the selected item as a signed decimal.
1t Displays the selected item as a character or Unicode
character.
Sets the range displayed in the active memory window

to where the selected item is stored.

Sorts the variables alphabetically by name.

wm N
—

-—

Sorts the variables numerically by address or register
number (default).

Using the Globals window

The Globals window shows the global variables of the application when the debugger is stopped. When the
program stops at a breakpoint, or is stepped, the Globals window updates to show the active stack frame and
new variable values. Items that have changed since they were previously displayed are highlighted in red.

To activate the Globals window:

» Choose Debug > Other Windows > Globals or press Ctrl+Alt+G.

196

CrossWorks for AVR Reference Manual CrossStudio User Guide

Changing the display format

When you select a variable in the main part of the display, the display-format button highlighted on the Globals
window toolbar changes to show the item's display format.

To change the display format of a global variable:

* Right-click the item to change.
* From the shortcut menu, choose the desired display format.

* Click the item to change.
* On the Globals window toolbar, select the desired display format.
To modify the value of a global variable:

* Click the value of the global variable to modify.
* Enter the new value for the global variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,

and octal numbers with 0.

197

CrossWorks for AVR Reference Manual CrossStudio User Guide

Watch window

The Watch window provides a means to evaluate expressions and to display the results of those expressions.
Typically, expressions are just the name of a variable to be displayed, but they can be considerably more
complex; see Debug expressions. Note: expressions are always evaluated when your program stops, so the
expression you are watching is the one that is in scope of the stopped program position.

The Watch window is divided into a toolbar and the main data display.

Button Description

x, Displays the selected item in binary.

x, Displays the selected item in octal.

X0 Displays the selected item in decimal.

X Displays the selected item in hexadecimal.

+x Displays the selected item as a signed decimal.

' Displays the selected item as a character or Unicode

=

character.
Sets the range displayed in the active memory window
f

to the address where the selected item is stored.
%l Sorts the watch items alphabetically by name.
Bl Sorts the watch items numerically by address or
9 .

register number (default).
= Remove the selected watch item.
"
é{' Remove all the watches.

Right-clicking a watch item shows a shortcut menu with commands that are not available from the toolbar.

Button Description
Hyelt View pointer or array as a null-terminated string.
x[1 View pointer or array as an array.
» View pointer value.
=0 Set watch value to zero.
=1 Set watch value to one.

198

CrossWorks for AVR Reference Manual CrossStudio User Guide

=t Increment watched variable by one.
x] Decrement watched variable by one.
—u Negated watched variable.

Z Invert watched variable.
View the properties of the watch value.

You can view details of the watch item using the Properties window.

Filename
The filename context of the watch item.

Line number
The line number context of the watch item.

(Name)
The name of the watch item.

Address

The address or register of the watch item.

Expression
The debug expression of the watch item.

Previous Value
The previous watch value.

Size In Bytes
The size of the watch item in bytes.

Type
The type of the watch item.

Value
The value of the watch item.

Using the Watch window

Each expression appears as a row in the display. Each row contains the expression and its value. If the value of an

expression is structured (for example, an array), you can open the structure to see its contents.

The display updates each time the debugger locates to source code. So it will update each time your program
stops on a breakpoint, or single steps, and whenever you traverse the call stack. tems that have changed since

they were previously displayed are highlighted in red.

199

CrossWorks for AVR Reference Manual CrossStudio User Guide

To activate the Watch window:
¢ Choose Debug > Other Windows > Watch > Watch 1 or press Ctrl+T, W, 1.
You can show other Watch windows similarly.

You can add a new expression to be watched by clicking and typing into the last entry in the Watch window.

You can change an expression by clicking its entry and editing its contents.

When you select a variable in the main part of the display, the display format button highlighted on the Watch
window toolbar changes to show the item's display format.

To change the display format of an expression:

* Right-click the item to change.

* From the shortcut menu, choose the desired display format.

* Click the item to change.

* On the Watch window toolbar, select the desired display format.

The selected display format will then be used for all subsequent displays and will be preserved after the debug

session stops.

For C programs, the interpretation of pointer types can be changed by right-clicking and selecting from the

shortcut menu. A pointer can be interpreted as:

¢ anull-terminated ASCII string
* anarray
* aninteger

 dereferenced

To modify the value of an expression:

* Click the value of the local variable to modify.
 Enter the new value of the local variable. Prefix hexadecimal numbers with 0x, binary numbers with Ob,
and octal numbers with 0.

—Or—

* Right-click the value of the local variable to modify.

» From the shortcut menu, choose one of the commands to modify the variable's value.

200

CrossWorks for AVR Reference Manual CrossStudio User Guide

Register window

The Register windows show the values of both CPU registers and the processor's special function or peripheral
registers. Because microcontrollers are becoming very highly integrated, it's not unusual for them to have
hundreds of special function registers or peripheral registers, so CrossStudio provides four register windows. You

can configure each register window to display one or more register groups for the processor being debugged.

A Register window has a toolbar and a main data display.

Button Description

Displays the CPU, special function register, and
peripheral register groups.

x, Displays the selected item in binary.

X, Displays the selected item in octal.

x5, Displays the selected item in decimal.

X Displays the selected item in hexadecimal.

+x Displays the selected item as a signed decimal.

' Displays the selected item as a character or Unicode
character.

— Force reads a register, ignoring the access property of
the register.

Updates the selected register group.

Sets the active memory window to the address and
size of the selected register group.

Using the registers window

Both CPU registers and special function registers are shown in the main part of the Registers window. When the
program stops at a breakpoint, or is stepped, the Registers windows update to show the current values of the

registers. Items that have changed since they were previously displayed are highlighted in red.

To activate the first register window:
* Choose Debug > Other Windows > Registers > Registers 1 or press Ctrl+T, R, 1.

Other register windows can be similarly activated.

201

CrossWorks for AVR Reference Manual CrossStudio User Guide

Displaying CPU registers

The values of the CPU registers displayed in the Registers window depend up upon the selected context. The
selected context can be:

* The register state the CPU stopped in.

* The register state when a function call occurred using the Call Stack window.

* The register state of the currently selected thread using the the Threads window.
* The register state you supplied with the Debug > Locate operation.

To display a group of CPU registers:

* On the Registers window toolbar, click the Groups button.

* From the pop-up menu, select the register groups to display and deselect the ones to hide.

You can deselect all CPU register groups to allow more space in the display for special function registers or
peripheral registers. So, for instance, you can have one register window showing the CPU registers and other

register windows showing different peripheral registers.

Displaying special function or peripheral registers

The Registers window shows the set of register groups defined in the memory-map file the application was built
with. If there is no memory-map file associated with a project, the Registers window will show only the CPU
registers.

To display a special function or peripheral register:

* On the Registers toolbar, click the Groups button.

* From the pop-up menu, select the register groups to display and deselect the ones to hide.

Changing display format

When you select a register in the main part of the display, the display-format button highlighted on the
Registers window toolbar changes to show the item's display format.

To change the display format of a register:

* Right-click the item to change.
* From the shortcut menu, choose the desired display format.

* Click the item to change.

* On the Registers window toolbar, select the desired display format.

202

CrossWorks for AVR Reference Manual CrossStudio User Guide

Modifying register values

To modify the value of a register:

* Click the value of the register to modify.
* Enter the new value for the register. Prefix hexadecimal numbers with 0x, binary numbers with 0Ob, and
octal numbers with 0.

* Right-click the value of the register to modify.

» From the shortcut menu, choose one of the commands to modify the register value.

Modifying the saved register value of a function or thread may not be supported.

203

CrossWorks for AVR Reference Manual CrossStudio User Guide

Memory window

The Memory windows show the contents of the connected target's memory areas.

To activate the first Memory window:
* Choose Debug > Other Windows > Memory > Memory 1 or press Ctrl+T, M, 1.
There are four memory window in total and you can display other memory windows similarly.

The memory window does not show the complete address space of the target; instead you must enter both

the start address and the number of bytes to display. You can specify the start address and size using debugger
expressions, which enables you to position the memory display at the start address of a variable or to use a value
in a register. You can also specify whether you want the expressions to be evaluated each time the Memory
window is updated, or you can re-evaluate them yourself with the press of a button. Memory windows update
each time your program stops on a breakpoint after a or single step, and whenever you traverse the call stack. If
any values that were previously displayed have changed, they are highlighted in red.

Memory window user interface

The Memory window has a toolbar and a main data display.

Button Description

Address Start address to display (a debugger expression).

Size Number of bytes to display (a debugger expression).

x, Select binary display.

x, Select octal display.

x5, Select unsigned decimal display.

+x Select signed decimal display.

X Select hexadecimal display.

+=§+ Select byte display, which includes an ASCII display.

+1_Ei+ Select 2-byte display.

E—E-r Select 4-byte display.

% Evaluate the address and size expressions, and update
the Memory window.

F Move the data display up one line.

204

CrossWorks for AVR Reference Manual

*

{x
¥

Left-click operations

CrossStudio User Guide

Move the data display down one line.
Move the data display up by Size bytes.

Move the data display down by Size bytes.

The following operations are available by left-clicking the mouse:

Action

Single Click

Shortcut menu commands

The shortcut menu contains the following commands:

Action
Auto Evaluate

Set Number of Columns

Access Memory By Display Width
Export To Binary Editor

Save As

Load From

Using the memory window

Display formats

Description

First click selects the line, second click selects the
displayed memory value. Once the memory value is
selected, it can be modified by entering a new value.
Note that the input radix is the same as the display
radix; i.e., Ox is not required to specify a hex number.

Description

Re-evaluate Address and Size each time the Memory
window is updated.

Set the number of columns to display, the default
being 8.
Access memory in terms of the display width.

Create a binary editor with the current Memory
window contents.

Save the current Memory window contents to a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, Tl Hex File, and Hex File.

Load the current Memory window from a file.
Supported file formats are Binary File, Motorola S-
Record File, Intel Hex File, Tl Hex File, and Hex File.

You can set the Memory window to display 8-bit, 16-bit, and 32-bit values that are formatted as hexadecimal,

decimal, unsigned decimal, octal, or binary. You can also specify how many columns to display.

205

CrossWorks for AVR Reference Manual CrossStudio User Guide

You can change a value in the Memory window by clicking the value to change and editing it as a text field.
Note that, when you modify memory values, you need to prefix hexadecimal numbers with 0x, binary numbers

with Ob, and octal numbers with 0.

Saving memory contents

You can save the displayed contents of the Memory window to a file in various formats. Alternatively, you can

export the contents to a binary editor to work on them.

You can save the displayed memory values as a binary file, Motorola S-record file, Intel hex file, or a Texas
Instruments TXT file.

To save the current state of memory to a file:

* Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.
* Right-click the main memory display.

* From the shortcut menu, select Save As, then choose the format from the submenu.

To export the current state of memory to a binary editor:

* Select the start address and number of bytes to save by editing the Start Address and Size fields in the
Memory window toolbar.
* Right-click the main memory display.

» Choose Export to Binary Editor from the shortcut menu.

Note that subsequent modifications in the binary editor will not modify memory in the target.

206

CrossWorks for AVR Reference Manual CrossStudio User Guide

Breakpoints window

The Breakpoints window manages the list of currently set breakpoints on the solution. Using the Breakpoints

window, you can:

* Enable, disable, and delete existing breakpoints.
* Add new breakpoints.

» Show the status of existing breakpoints.

Breakpoints are stored in the session file, so they will be remembered each time you work on a particular
project. When running in the debugger, you can set breakpoints on assembly code addresses. These low-level
breakpoints appear in the Breakpoints window for the duration of the debug run but are not saved when you

stop debugging.

When a breakpoint is reached, the matching breakpoint is highlighted in the Breakpoints window.

Breakpoints window layout
The Breakpoints window has a toolbar and a main breakpoint display.

Button Description

Creates a new breakpoint using the New Breakpoint
dialog.

Toggles the selected breakpoint between enabled and
disabled states.

Removes the selected breakpoint.

Moves the cursor to the statement at which the
selected breakpoint is set.

Deletes all breakpoints.
Disables all breakpoints.

Enables all breakpoints.

LEE & e 3

Creates a new breakpoint group and makes it active.

The main part of the Breakpoints window shows what breakpoints have been set and the state they are in. You

can organize breakpoints into folders, called breakpoint groups.
CrossStudio displays these icons to the left of each breakpoint:

Icon Description

207

CrossWorks for AVR Reference Manual CrossStudio User Guide

Enabled breakpoint An enabled breakpoint will stop
P your program running when the breakpoint condition
is met.

Disabled breakpoint A disabled breakpoint will not
stop the program when execution passes through it.

7] Invalid breakpoint An invalid breakpoint is one
where the breakpoint cannot be set; for example, no
executable code is associated with the source code
line where the breakpoint is set or the processor does
not have enough hardware breakpoints.

Showing the Breakpoints window

To activate the Breakpoints window:

* Choose Breakpoints > Breakpoints or press Ctrl+Alt+B.

Managing single breakpoints

You can manage breakpoints in the Breakpoint window.

To delete a breakpoint:

¢ In the Breakpoints window, click the breakpoint to delete.

* From the Breakpoints window toolbar, click the Delete Breakpoint} button.
To edit the properties of a breakpoint:

¢ In the Breakpoints window, right-click the breakpoint to edit.
» Choose Edit Breakpoint from the shortcut menu.
 Edit the breakpoint in the New Breakpoint dialog.

» Totoggle the enabled state of a breakpoint:

* In the Breakpoints window, right-click the breakpoint to enable or disable.

» Choose Enable/Disable Breakpoint from the shortcut menu.

* In the Breakpoints window, click the breakpoint to enable or disable.
* Press Ctrl+F9.

208

CrossWorks for AVR Reference Manual CrossStudio User Guide

Breakpoint groups

Breakpoints are divided into breakpoint groups. You can use breakpoint groups to specify sets of breakpoints
that are applicable to a particular project in the solution or for a particular debug scenario. Initially, there is a

single breakpoint group, named Default, to which all new breakpoints are added.

To create a new breakpoint group:

* From the Breakpoints window toolbar, click the New Breakpoint Group button.
—or—

» From the Debug menu, choose Breakpoints then New Breakpoint Group.
—or—

* Right-click anywhere in the Breakpoints window.

¢ Choose New Breakpoint Group from the shortcut menu.
In the New Breakpoint Group dialog, enter the name of the breakpoint group.

When you create a breakpoint, it is added to the active breakpoint group.

To make a group the active group:

* In the Breakpoints window, right-click the breakpoint group to make active.

» Choose Set as Active Group from the shortcut menu.

To delete a breakpoint group:

* In the Breakpoints window, right-click the breakpoint group to delete.

* Choose Delete Breakpoint Group from the shortcut menu.

You can enable all breakpoints within a group at once.

To enable all breakpoints in a group:

* In the Breakpoints window, right-click the breakpoint group to enable.

» Choose Enable Breakpoint Group from the shortcut menu.

You can disable all breakpoints within a group at once.

To disable all breakpoints in a group:

* In the Breakpoints window, right-click the breakpoint group to disable.
* Choose Disable Breakpoint Group from the shortcut menu.

Managing all breakpoints

You can delete, enable, or disable all breakpoints at once.

209

CrossWorks for AVR Reference Manual

To delete all breakpoints:
» Choose Breakpoints > Clear All Breakpoints or press Ctrl+Shift+F9.

* On the Breakpoints window toolbar, click the Delete All Breakpoints button.

To enable all breakpoints:
* Choose Breakpoints > Enable All Breakpoints.

* On the Breakpoints window toolbar, click the Enable All Breakpoints button.

To disable all breakpoints:
» Choose Breakpoints > Disable All Breakpoints.

* On the Breakpoints window toolbar, click the Disable All Breakpoints button.

210

CrossStudio User Guide

CrossWorks for AVR Reference Manual CrossStudio User Guide

Call Stack window

The Call Stack window displays the list of function calls (stack frames) that were active when program execution
halted. When execution halts, CrossStudio populates the call-stack window from the active (currently executing)
task. For simple, single-threaded applications not using the CrossWorks tasking library, there is only a single

task; but for multi-tasking programs that use the CrossWorks Tasking Library, there may be any number of tasks.

CrossStudio updates the Call Stack window when you change the active task in the Threads window.

The Call Stack window has a toolbar and a main call-stack display.

Button Description

Moves the cursor to where the call was made to the

~ selected frame.

[Sets the debugger context to the selected stack frame.

e Moves the debugger context down one stack to the
called function.

- Moves the debugger context up one stack to the
calling function.

gt Selects the fields to display for each entry in the call
stack.

e Sets the debugger context to the most recent stack

frame and moves the cursor to the currently executing
statement.

The main part of the Call Stack window displays each unfinished function call (active stack frame) at the point
when program execution halted. The most recent stack frame is displayed at the bottom of the list and the

oldest is displayed at the top of the list.

CrossStudio displays these icons to the left of each function name:

Icon Description

s Indicates the stack frame of the current task.

[Indicates the stack frame selected for the debugger
context.

) Indicates that a breakpoint is active and when the

function returns to its caller.

These icons can be overlaid to show, for instance, the debugger context and a breakpoint on the same stack

frame.

211

CrossWorks for AVR Reference Manual CrossStudio User Guide

Showing the call-stack window

To activate the Call Stack window:

¢ Choose Debug > Call Stack or press Ctrl+Alt+S.

Configuring the call-stack window

Each entry in the Call Stack window displays the function name and, additionally, parameter names, types, and
values. You can configure the Call Stack window to show varying amounts of information for each stack frame.
By default, CrossStudio displays all information.

To show or hide a field:

1. On the Call Stack toolbar, click the Options button on the far right.
2. Select the fields to show, and deselect the ones that should be hidden.

Changing the debugger context

You can select the stack frame for the debugger context from the Call Stack window.

To move the debugger context to a specific stack frame:
* In the Call Stack window, double-click the stack frame to move to.

* In the Call Stack window, select the stack frame to move to.
* On the Call Stack window's toolbar, click the Switch To Frame button.

* In the Call Stack window, right-click the stack frame to move to.
* Choose Switch To Frame from the shortcut menu.

The debugger moves the cursor to the statement where the call was made. If there is no debug information for

the statement at the call location, CrossStudio opens a disassembly window at the instruction.

To move the debugger context up one stack frame:
¢ On the Call Stack window's toolbar, click the Up One Stack Frame button.

212

CrossWorks for AVR Reference Manual CrossStudio User Guide

* On the Debug Location toolbar, click the Up One Stack Frame button.
—or—

* Press Alt+-.
The debugger moves the cursor to the statement where the call was made. If there is no debug information for
the statement at the call location, CrossStudio opens a disassembly window at the instruction.
To move the debugger context down one stack frame:

* On the Call Stack window's toolbar, click the Down One Stack Frame button.
—or—

* On the Debug Location toolbar, click the Down One Stack Frame button.
—or—

* Press Alt++.

The debugger moves the cursor to the statement where the call was made. If there is no debug information for

the statement at the call location, CrossStudio opens a disassembly window at the instruction.

Setting a breakpoint on a return to a function

To set a breakpoint on return to a function:

* In the Call Stack window, click the stack frame on the function to stop at on return.
* On the Build toolbar, click the Toggle Breakpoint button.

* In the Call Stack window, click the stack frame on the function to stop at on return.
* Press F9.

—Or—

* In the Call Stack window, right-click the function to stop at on return.

» Choose Toggle Breakpoint from the shortcut menu.

213

CrossWorks for AVR Reference Manual CrossStudio User Guide

Threads window

The Threads window displays the set of executing contexts on the target processor structured as a set of

queues.
To activate the Threads window:

* Choose Debug > Threads or press Ctrl+Alt+H.

The window is populated using the threads script, which is a JavaScript program store in a file whose file-type
property is "Threads Script" (or is called t hr eads. j s) and is in the project that is being debugged.

When debugging starts, the threads script is loaded and the f uncti on i ni t () is called to determine which

columns are displayed in the Threads window.

When the application stops on a breakpoint, the function updat e() is called to create entries in the Threads
window corresponding to the columns that have been created together with the saved execution context
(register state) of the thread. By double-clicking one of the entries, the debugger displays its saved execution

context—to put the debugger back into the default execution context, use Show Next Statement.

Writing the threads script
The threads script controls the Threads window with the Threads object.

The methods Thr eads. set Col utms and Thr eads. set Sort ByNunber can be called from the
function init().

function init()

{

Thr eads. set Col ums(" Nane", "Priority", "State", "Tinme");
Thr eads. set Sort ByNunber (" Ti ne") ;
}

The above example creates the named columns Name>, Priority, State, and Time in the Threads window, with

the Time column sorted numerically rather than alphabetically.

If you don't supply thef uncti on init () inthe threads script, the Threads window will create the default

columns Name, Priority, and State.

The methods Thr eads. cl ear (), Thr eads. newqueue(),and Thr eads. add() can be called from the
function update().

The Thr eads. cl ear () method clears the Threads window.

The Thr eads. newqueue() function takes a string argument and creates a new, top-level entry in the
Threads window. Subsequent entries added to this window will go under this entry. If you don't call this, new

entries will all be at the top level of the Threads window.

214

CrossWorks for AVR Reference Manual CrossStudio User Guide

The Thr eads. add() function takes a variable number of string arguments, which should correspond to the
number of columns displayed by the Threads window. The last argument to the Thr eads. add() function
should be an array (possibly empty) containing the registers of the thread or, alternatively, a handle that can
be supplied a call to the threads script f uncti on get r egs(handl e), which will return an array when the
thread is selected in the Threads window. The array containing the registers should have elements in the same
order in which they are displayed in the CPU Registers display—typically this will be in register-number order,
e.g. r0,r1,and so on.

function update()
{

Threads. cl ear () ;

Thr eads. newgueue(" My Tasks");

Thr eads. add(" Task1", "0", "Executing", "21000",

[0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16]) ;

Thr eads. add(" Task2", "1", "Witing", "2000", [O0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16]);

}

The above example will create a fixed output on the Threads window and is here to demonstrate how to call the
methods.

To get real thread state, you need to access the debugger from the threads script. To do this, you can use the
JavaScript method Debug. eval uat e(" expr essi on"), which will evaluate the string argument as a debug
expression and return the result. The returned result will be an object if you evaluate an expression that denotes

a structure or an array. If the expression denotes a structure, each field can be accessed by using its field name.
So, if you have structs in the application as follows...

struct task {
char *nane;
unsi gned char priority;
char *state;
unsi gned ti ne;
struct task *next;
unsi gned registers[17];
unsi gned thread_| ocal _storage[4];

b

struct task task2 =
{
"Task2",

1,

"Wi ting",

2000,

0,1,2,3,4,56,7,8,9, 10, 11, 12, 13, 14, 15, 16 },

0,1,2,3}

bi

struct task taskl =
{

"Task1",

0,

"Executing",

1000,

&t ask2,

215

CrossWorks for AVR Reference Manual CrossStudio User Guide

{ 01,23,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15,16 },
{01,273}
}s

...you can updat e() the Threads window using the following:

taskl = Debug. eval uate("task1");
Thr eads. add(t askl. nane, taskl.priority, taskl.state, taskl.tine, taskl.registers);

You can use pointers and C-style cast to enable linked-list traversal.

var next = Debug. eval uate("&t askl");
whi l e (next)
{

var xt = Debug. eval uate("*(struct task*)"+next);
Thr eads. add(xt.nane, xt.priority, xt.state, xt.time, xt.registers);
next =xt . next ;

Note that, if the threads script goes into an endless loop, the debugger—and consequently CrossStudio—will
become unresponsive and you will need to kill CrossStudio using a task manager. Therefore, the above loop is

better coded as follows:

var next = Debug. eval uat e(" &t ask1");

var count =0;

whil e (next && count > 10)

{

var xt = Debug. eval uate("*(struct task*)"+next);
Thr eads. add(xt.nanme, xt.priority, xt.state, xt.tine, xt.registers);
next =xt . next;
count ++;

You can speed up the Threads window update by not supplying the registers of the thread to the
Thr eads. add() function. To do this, you should supply a handle/pointer to the thread as the last argument to
the Thr eads. add() function. For example:

var next = Debug. eval uat e(" &t ask1");
var count =0;
whil e (next && count > 10)

{

var xt = Debug. eval uate("*(struct task*)"+next);

Thr eads. add(xt.nane, xt.priority, xt.state, xt.tinme, next);
next =xt . next;

count ++;

When the thread is selected, the Threads window will call get r egs(x) in the threads script. That function

should return the array of registers, for example:

function getregs(x)

{

return Debug. eval uate("((struct task*)"+x+")->registers");

}

216

CrossWorks for AVR Reference Manual CrossStudio User Guide

If you use thread local storage, implementing the get t | s(x) function enables you to return an expression for

the debugger to evaluate when the base address of the thread local storage is accessed, for example:

function gettls(x)

{

return "((struct task*)"+x+")->thread_| ocal _storage";

}

217

CrossWorks for AVR Reference Manual CrossStudio User Guide

Execution Profile window

The Execution Profile window shows a list of source locations and the number of times those source locations
have been executed. This window is only available for targets that support the collection of jump trace

information.
To activate the Execution Profile window:

» Choose Debug > Other Windows > Execution Profile.

The count value displayed is the number of times the first instruction of the source code location has been
executed. The source locations displayed are target dependent: they could represent each statement of the
program or each jump target of the program. If however the debugger is in intermixed or disassembly mode
then the count values will be displayed on a per instruction basis.

The execution counts window is updated each time your program stops and the window is visible so if you have
this window displayed then single stepping may be slower than usual.

218

CrossWorks for AVR Reference Manual CrossStudio User Guide

Trace window

The trace window displays historical information on the instructions executed by the target.

To activate the Trace window:
e Choose Debug > Other Windows > Execution Trace.

The type and number of the trace entries depends upon the target that is connected when gathering trace
information. Some targets may trace all instructions, others may trace jump instructions, and some may trace

modifications to variables. You'll find the trace capabilities of your target on the shortcut menu.

Each entry in the trace window has a unique number, and the lower the number the earlier the trace. You can
click on the header to show earliest to latest or the latest to earliest trace entries. If a trace entry can have source

code located to it then double-clicking the trace entry will show the appropriate source display.
Some targets may provide timing information which will be displayed in the ticks column.

The trace window is updated each time the debugger stops when it is visible so single stepping is likely to be

slower if you have this window displayed.

219

CrossWorks for AVR Reference Manual CrossStudio User Guide

Debug file search editor

When a program is built with debugging enabled, the debugging information contains the paths and filenames
of all the source files for the program in order to allow the debugger to find them. If a program or library linked
into the program is on a different machine than the one on which it was compiled, or if the source files were

moved after the program was compiled, the debugger will not be able to find the source files.

In this situation, the simplest way to help CrossStudio find the source files is to add the directory containing
the source files to one of its source-file search paths. Alternatively, if CrossStudio cannot find a source file, it will

prompt you for its location and will record its new location in the source-file map.

Debug source-file search paths

Debug's source-file search paths can be used to help the debugger locate source files that are no longer located
where they were at compile time. When a source file cannot be found, the search-path directories will be

checked, in turn, to see if they contain the source file. CrossStudio maintains two debug source-file search paths:

* Project-session search path: This path is for the current project session and does not apply to all projects.
* The global search path: This system-wide path applies to all projects.

The project-session search path is checked before the global search path.

To edit the debug search paths:

» Choose Debug > Options > Search Paths.

Debug source file map

If a source file cannot be found while debugging and the debugger has to prompt the user for its location,

the results are stored in the debug source file map. The debug source file map simply correlates, or maps, the
original pathnames to the new locations. When a file cannot be found at its original location or in the debug
search paths, the debug source file map is checked to see if a new location has been recorded for the file or if the
user has specified that the file does not exist. Each project session maintains its own source file map, the map is
not shared by all projects.

To view the debug source file map:

» Choose Debug > Options > Search Paths.

To remove individual entries from the debug source file map:

¢ Choose Debug > Options > Search Paths.

220

CrossWorks for AVR Reference Manual CrossStudio User Guide

* Right-click the mapping to delete.
* Choose Delete Mapping from the shortcut menu.
To remove all entries from the debug source file map:

¢ Choose Debug > Options > Search Paths.
* Right-click any mapping.

* Choose Delete All Mappings from the shortcut menu.

221

CrossWorks for AVR Reference Manual CrossStudio User Guide

Breakpoint expressions

The debugger can set breakpoints by evaluating simple C-like expressions. Note that the exact capabilities
offered by the hardware to assist in data breakpointing will vary from target to target; please refer to the
particular target interface you are using and the capabilities of your target silicon for exact details. The simplest
expression supported is a symbol name. If the symbol name is a function, a breakpoint occurs when the first
instruction of the symbol is about to be executed. If the symbol name is a variable, a breakpoint occurs when the
symbol has been accessed; this is termed a data breakpoint. For example, the expression X will breakpoint when
xis accessed. You can use a debug expression (see Debug expressions) as a breakpoint expression. For example,
X[4] will breakpoint when element 4 of array x is accessed, and @ p will breakpoint when the sp register is
accessed.

Data breakpoints can be specified, using the == operator, to occur when a symbol is accessed with a specific
value. The expression X == 4 will breakpoint when x is accessed and its value is 4. The operators <, >=, >;, >=,
==, and = can be used similarly. For example, @p <= 0x1000 will breakpoint when register sp is accessed

and its value is less than or equal to 0x1000.

You can use the operator ‘&' to mask the value you wish to breakpoint on. For example, (x & 1) == 1 will

breakpoint when x is accessed and has an odd value.

You can use the operator ‘&&’ to combine comparisons. For example...
(x >= 2) && (x <= 14)

...will breakpoint when x is accessed and its value is between 2 and 14.

You can specify an arbitrary memory range using an array cast expression. For example, (char [256])
(0x1000) will breakpoint when the memory region 0x1000-0x10FF is accessed.

You can specify an inverse memory range using the ! operator. For example ! (char [256]) (0x1000) will
breakpoint when memory outside the range 0x1000-0x10FF is accessed.

222

CrossWorks for AVR Reference Manual CrossStudio User Guide

Debug expressions

The debugger can evaluate simple expressions that can be displayed in the Watch window or as a tool-tip in the

code editor.
The simplest expression is an identifier the debugger tries to interpret in the following order:

* an identifier that exists in the scope of the current context.

* the name of a global identifier in the program of the current context.
Numbers can be used in expressions. Hexadecimal numbers must be prefixed with 0x.
Registers can be referenced by prefixing the register name with @

The standard C and C++ operators !, ~,*,/ , %+, - ,>>,<<, <, <=,>,>=,==,| ,& ", &%, and | | are supported

on numeric types.

The standard assignment operators =, +=, - =, * =,/ =, %, >>, >>=, <<=, &=, | =, *= are supported on numeric

types.

The array subscript operator ‘[]' is supported on array and pointer types.

The structure access operator .’ is supported on structured types (this also works on pointers to structures), and -

> works similarly.

The dereference operator (prefix ‘*') is supported on pointers, the address-of (prefix ‘&’) and sizeof operators are

supported.

The addr essof (filename, linenumber) operator will return the address of the specified source code line
number.

Function calling with parameters and return results.

Casting to basic pointer types is supported. For example, (unsigned char *)0x300 can be used to display the

memory at a given location.

Casting to basic array types is supported. For example, (unsigned char[256])0x100 can be used to reference a

memory region.

Operators have the precedence and associativity one expects of a C-like programming language.

223

CrossWorks for AVR Reference Manual CrossStudio User Guide

Utility windows

This section describes the utility windows.

224

CrossWorks for AVR Reference Manual CrossStudio User Guide

Output window

The Output window contains logs and transcripts from various systems within CrossStudio. Most notably, it

contains the Transcript and Source Navigator Log.

Transcript
The Transcript contains the results of the last build or target operation. It is cleared on each build. Errors
detected by CrossStudio are shown in red and warnings are shown in yellow. Double-clicking an error
or warning in the build log will open the offending file at the error position. The commands used for the
build can be echoed to the build log by setting the Echo Build Command Lines environment option. The
transcript also shows a trace of the high-level loading and debug operations carried out on the target. For
downloading, uploading, and verification operations, it displays the time it took to carry out each operation.

The log is cleared for each new download or debug session.

Navigator Log
The Source Navigator Log displays a list of files the Source Navigator has parsed and the time it took to
parse each file.

To activate the Output window:

* Choose View > Output or press Ctrl+Alt+O.

To show a specific log:

* On the Output window toolbar, click the log combo box.

* From the list, click the log to display.

* Choose View > Logs and select the log to display.

225

CrossWorks for AVR Reference Manual CrossStudio User Guide

Properties window

The Properties window displays properties of the current CrossStudio object. Using the Properties window, you
can set the build properties of your project, modify the editor defaults, and change target settings.
To activate the Properties window:

¢ Choose View > Properties Window or press Ctrl+Alt+Enter.

The Properties window is organized as a set of key-value pairs. As you select one of the keys, help text explains
the purpose of the property. Because properties are numerous and can be specific to a particular product build,
consider this help to be the definitive help on the property.

You can divide the properties display into categories or, alternatively, display it as a flat list that is sorted
alphabetically.

A combo-box enables you to change the properties and explains which properties you are looking at.

Some properties have actions associated with them—you can find these by right-clicking the property key. Most

properties that represent filenames can be opened this way.

When the Properties window is displaying project properties, you'll find some properties displayed in bold. This
means the property value hasn't been inherited. If you wish to inherit rather than define such a property, right-
click the property and select Inherit from the shortcut menu.

226

CrossWorks for AVR Reference Manual CrossStudio User Guide

Targets window

The Targets window (and its associated menu) displays the set of target interfaces you can connect to in order
to download and debug your programs. Using the Targets window in conjunction with the Properties window
enables you to define new targets based on the specific target types supported by the particular CrossStudio
release.

To activate the Targets window:

* Choose View > Targets or press Ctrl+Alt+T.

You can connect, disconnect, and reconnect to a target system. You can also use the Targets window to reset

and load programs.

Targets window layout

Button Description

Connects the target interface selected in the Targets
window.

Disconnects the connected target interface.
Reconnects the connected target interface.

Resets the connected target interface.

B & ¢

Displays the properties of the selected target interface.

Managing connections to target devices

To connect a target:

¢ In the Targets window, double-click the target to connect.
—or—

» Choose Target > Connect and click the target to connect.
—or—

1. In the Targets window, click the target to connect.
2. On the Targets window toolbar, click the Connect button

1. In the Targets window, right-click the target to connect.

2. Choose Connect.

227

CrossWorks for AVR Reference Manual CrossStudio User Guide

To disconnect a target:

» Choose Target > Disconnect or press Ctrl+T, D.
—or—

* On the Targets window toolbar, click the Disconnect button.
—or—

1. Right-click the connected target in the Targets window.
2. Choose Disconnect from the shortcut menu.

Alternatively, connecting a different target will disconnect the current target connection.

You can disconnect and reconnect a target in a single operation using the reconnect feature. This may be useful
if the target board has been power cycled, or reset manually, because it forces CrossStudio to resynchronize with
the target.

Toreconnecta target:

* Choose Target > Reconnect or press Ctrl+T, E.
—or—

* On the Targets window toolbar, click the Reconnect button.
—or—

1. In the Targets window, right-click the target to reconnect.
2. Choose Reconnect from the shortcut menu.

Automatic target connection

You can configure CrossStudio to automatically connect to the last-used target interface when loading a

solution.

To enable or disable automatic target connection:
1. Choose View > Targets or press Ctrl+Alt+T.
2. Click the disclosure arrow on the Targets window toolbar.
3. Select or deselect Unknown property Target/Auto Connect.

Resetting the target

Reset of the target is typically handled by the system when you start debugging. However, you can manually

reset the target from the Targets window.

To reset the connected target:

* Choose Project > Reset And Debug or press Ctrl+Alt+F5.

228

CrossWorks for AVR Reference Manual CrossStudio User Guide

—Or—

¢ On the Targets window toolbar, click the Reset button.

Creating a new target interface

To create a new target interface:

1. From the Targets window shortcut menu, click New Target Interface. A menu will display the types of
target interface that can be created.

2. Select the type of target interface to create.

Setting target interface properties

All target interfaces have a set of properties. Some properties are read-only and provide information about the
target, but others are modifiable and allow the target interface to be configured. Target interface properties can

be viewed and edited using CrossStudio's property system.

To view or edit target properties:

 Select a target.

* Select the Properties option from the target's shortcut menu.

The Targets window provides the facility to restore the target definitions to the default set. Restoring the default
target definitions will undo any of the changes you have made to the targets and their properties, therefore it

should be used with care.

To restore the default target definitions:

1. Select Restore Default Targets from the Targets window shortcut menu.

2. Click Yes when the systems asks whether you want to restore the default targets.

Importing and exporting target definitions

You can import and export your target-interface definitions. This may be useful if you make a change to the

default set of target definitions and want to share it with another user or use it on another machine.

To export the current set of target-interface definitions:

* Choose Export Target Definitions To XML from the Targets window shortcut menu.
* Specify the location and name of the file to which you want to save the target definitions and click Save.

To import an existing set of target-interface definitions:

 Select Import Target Definitions From XML from the Targets window shortcut menu.

* Select the file from which you want to load the target definitions and click Open.

229

CrossWorks for AVR Reference Manual CrossStudio User Guide

Downloading programs

Program download is handled automatically by CrossStudio when you start debugging. However, you can

download arbitrary programs to a target using the Targets window.

To download a program to the currently selected target:

* In the Targets window, right-click the selected target.
¢ Choose Download File.
» From the Download File menu, select the type of file to download.

* In the Open File dialog, select the executable file to download and click Open to download the file.
CrossStudio supports the following file formats when downloading a program:

* Binary

* Intel Hex

* Motorola S-record

» CrossWorks native object file (AVR, MSP430, and MAXQ products)

* Texas Instruments text file

Verifying downloaded programs

You can verify a target's contents against arbitrary programs on disk using the Targets window.

To verify a target's contents against a program:

1. In the Targets window, right-click the selected target.

2. Choose Verify File.

3. From the Verify File menu, select the type of file to verify.

4. In the Open File dialog, select the executable file to verify and click Open to verify the file.

CrossStudio supports the same file types for verification as for downloading.

Erasing target memory

Usually, erasing target memory is done when CrossStudio downloads a program, but you can erase a target's

memory manually.

To erase all target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase All from the shortcut menu.

To erase part of target memory:

1. In the Targets window, right-click the target to erase.

2. Choose Erase Range from the shortcut menu.

230

CrossWorks for AVR Reference Manual CrossStudio User Guide

Terminal emulator window

The Terminal Emulator window contains a basic serial-terminal emulator that allows you to receive and transmit
data over a serial interface.
To activate the Terminal Emulator window:

* Choose Tools > Terminal Emulator > Terminal Emulator or press Ctrl+Alt+M.

To use the terminal emulator:

1. Set the required terminal emulator properties.
2. Connect the terminal emulator to the communications port by clicking the button on the toolbar or by

selecting Connect from the shortcut menu.

Once connected, any input in the Terminal Emulator window will be transmitted to the communications port

and any data received from the communications port will be displayed on the terminal.

Connection may be refused if the communication port is in use by another application or if the port doesn't
exist.

To disconnect the terminal emulator:

1. Disconnect the communications port by clicking the Disconnect icon on the toolbar or by right-clicking

to select Disconnect from the shortcut menu.

This will release the communications port so it can be used by other applications.

Supported control codes

The terminal supports a limited set of control codes:

Control code Description

<BS> Backspace

<LF> Linefeed

<LF> Linefeed {mo Why duplicated?}
<ESC>[{attr1};....{attrn}m Set display attributes. The attributes 2-Dim, 5-Blink, 7-

Reverse, and 8-Hidden are not supported.

231

CrossWorks for AVR Reference Manual CrossStudio User Guide

Script Console window

The Script Console window provides interactive access to the JavaScript interpreter and JavaScript classes that
are built into CrossStudio. The interpreter is an implementation of the 3rd edition of the ECMAScript standard.
The interpreter has an additional function property of the global object that enable files to be loaded into the
interpreter.

The JavaScript method load(filepath) loads and executes the JavaScript contained in filepath returns a Boolean
indicating success.

To activate the Script Console window:

* Choose View > Script Console or press Ctrl+Alt+J.

232

CrossWorks for AVR Reference Manual CrossStudio User Guide

Debug Immediate window

The Debug Immediate window allows you to type in debug expressions and display the results. All results are
displayed in the format specified by the Default Display Mode property found in the Debugging group in the
Environment Options dialog.

To activate the Envronment Options dialog:

* Choose Tools > Options or press Alt+,.

To activate the Debug Immediate window:

* Choose Debug > Other Windows > Debug Immediate.

233

CrossWorks for AVR Reference Manual CrossStudio User Guide

Downloads window

The Downloads Window displays a historical list of files downloaded over the Internet by CrossStudio.

Downloads ._'E. x

M Luminary_Stellaris_Driver_Library.hzg

— 4 R A
Il L o e R D R A R R

Luminary_LMZ25.hz

= o R A

Xy

- =1 2w oweniload o

L = W SR A= R ELER |

Atmel_AT915AMS261_EK.hzq

Xy

{ o O e -] S
-1 = = il el o =T |

L L i L} W N BL LRl RELEE)

Atmel_AT91SAMTY_EK.hzg

= m) - - - - —
- K LAMLAML i g 101 =
= L} 1

Xy

Atmel_AT91SAMTS_EK.hzg

-
i iy
=

Xy

=]
K TAMLAM 'L =1 "1 =11Aar
L} L LER L Aadid

ST _STA2051.hzq

Xy

=]
K TAMLAM 'L =1 "1 =11Aar
L} W N 241 ARELER L Aadid

To activate the Downloads window:

¢ Choose Tools > Downloads Window.

234

CrossWorks for AVR Reference Manual CrossStudio User Guide

Latest News window

The Latest News window displays a historical list of news articles from the Rowley Associates website.

Latest News B =
COrdered by date b

_rossWorks for ARM Version 1.7 Build 13 Released Sep 24

Atmel AT915AMS260-EK Board Support Package Version 1.3
Released

Atmel AT9154M9261-EK Board Support Package Yersion 1.3
Feleased

Atmel AT915AMS263-EK Board Support Package Version 1.3

Feleased
AT915AMTL-5TK Board Support Package Released Sep 2
ATILSAMT CPU Support Package Version 1.3 Released Sep 2

CrossWarks for AVRE Version 1.4 Build 3 Released Aug 29

B8 aa a aa

CrossWorks for ARM Version 1.7 Build 12 Released AU 2T

To activate the Latest News window:

¢ Choose Help > Latest News.

235

CrossWorks for AVR Reference Manual CrossStudio User Guide

Memory-map editor

memory-map files are tree-structured descriptions of the target memory map. They are used by the compiler
to ensure correct placement of program sections, and by the debugger so it knows which addresses are valid
on the target and which program sections to load. You can also use them files to direct the debugger to display
memory-mapped peripherals. Usually, you don't need to modify memory-map files—they will be set up for the

particular targets CrossStudio supports—but it is useful to view them with the memory-map editor.

To open memory-map files, choose File > Open and select the XML file that contains the memory map or,

alternatively, use the View Memory Map option on the shortcut menu of the Project Explorer.

The memory-map editor provides a tree-structured view of the memory space of a target. The memory map
consists of a set of different node types arranged in a hierarchy. These nodes have properties that can be
modified using the Properties window when the node is selected. These properties and the placement of nodes
within the memory map are used as input to the program-building process so the linker knows where sections
should be placed. Additionally, the debugger uses the information in memory-map files to enable register and

memory displays.
The memory-map editor supports the following node types:

Root
The top node of the memory map.

Memory Segment
A range of addresses that represents a region in target memory.

Program Section
Represents a program section of your application.

Register Group
Represents an area in memory that contains a group of related registers.

Register
Represents a memory-mapped register.

Bit Field

Part of a memory-mapped register.
The following statements hold regarding the creation and movement of nodes within a memory:

* Memory segments can be within the Root segment.
* Program sections must be within a memory segment.
* Register groups can be within the Root or within a memory segment.

* Registers can be within memory segments or register groups.

Bitfields can be within registers.

236

CrossWorks for AVR Reference Manual CrossStudio User Guide

All nodes have both mandatory and optional properties. The value of the mandatory Name property should be
unique within the memory map.

Memory-segment and register-group properties

Start Address
A hexadecimal number stating where memory begins (lowest address).

Start Address Symbol

The name of a linker symbol to generate with the value of the Start Address.

Size
A hexadecimal number specifying the size in bytes of the memory segment.

Size Symbol

The name of a linker symbol to generate with the value of the Size.

Access Type
Specifies whether the memory segment is read only or read/write.

Program section properties

Start Address
An optional hexadecimal value representing the absolute load position of the section. If this isn't set, the
relative placement of the program section within the memory segment will determine the load position of
the section.

Size
An optional decimal value specifying the size in bytes of the program section.

Load
Specifies whether the section should be loaded by the debugger.

Alignment
An optional decimal value specifying the alignment requirements of the section.

Section To Run In
An optional name of another program section to which this program section will be copied.

Input Section Names
The optional names of the files that will be placed in this section.

Register properties

Start Address
A hexadecimal value specifying where the register is placed.

237

CrossWorks for AVR Reference Manual CrossStudio User Guide

Start Address Symbol
The name of a linker symbol to generate with the value of the Start Address.

Register Type
Optional, a C type specifying how you want to display the register. This defaults to the word length of the
target processor.

Endian
Optional, specifies the byte order of a multibyte register. This defaults to the byte order of the target
processor.

Bitfield properties

Bit Offset
A decimal value that sets the starting bit position of the bit field. Bit 0 is the first bit position.

Bit Length

A decimal value that defines the number of bits in the field.

The memory-map editor shares many of the attributes of the text editor, and the same key-bindings—for
example, cut, copy and paste—are accessible from the Edit menu. But in addition to the standard editor
capabilities, the memory-map editor supports moving nodes up and down within a hierarchy. This enables
adjusting the sequence of program sections.

238

CrossWorks for AVR Reference Manual CrossStudio User Guide

Environment options dialog

The Environment Options dialog enables you to modify settings that apply to all uses of a CrossWorks

installation.

239

CrossWorks for AVR Reference Manual

CrossStudio User Guide

Building Environment Options

Build Options

Property

Automatically Build Before Debug
Envi ronment / Bui | d/ Bui | d Before
Debug - Boolean

Build Macros

Envi r onnent / Macr os/ A obal Macr os - StringList

Confirm Debugger Stop
Envi ronnent / Bui | d/ Confi r m Debugger
St op - Boolean

Echo Build Command Lines
Envi r onnent / Bui | d/ Show Conmand
Li nes - Boolean

Echo Raw Error/Warning Output
Envi r onnent / Bui | d/ Show Unpar sed Error
Cut put -Boolean

Find Error After Building
Envi ronnent/ Bui |l d/ Fi nd Error After
Bui | d - Boolean

Keep Going On Error
Envi ronnent / Bui | d/ Keep Goi ng On
Er r or - Boolean

Save Project File Before Building
Envi ronnent / Bui | d/ Save Project File On
Bui | d - Boolean

Show Build Information
Envi r onnent / Bui | d/ Show Bui | d
| nf or mat i on - Boolean

Show Error Window on Build Error
Envi ronnent / Bui | d/ Show Error W ndow on
Bui |l d Error -Boolean

Toolchain Root Directory
Envi ronment / Bui | d/ Tool
Di rect ory - String

Chai n Root

Window Options

Property

Description

Enables auto-building of a project before downloading
if it is out of date.

Build macros that are shared across all solutions and
projects e.g. paths to library files.

Present a warning when you start to build that requires
the debugger to stop.

Selects whether build command lines are written to
the build log.

Selects whether the unprocessed error and warning
output from tools is displayed in the build log.

Moves the cursor to the first diagnostic after a build
completes with errors.

Build doesn't stop on error.

Selects whether to save the project file prior to build.

Show build information.

Shows the Errors window if there is a build error.

Specifies where to find the toolchain (compilers etc).

Description

240

CrossWorks for AVR Reference Manual CrossStudio User Guide

Show Build Log On Build
Envi ronnent / Show Transcri pt On Show the build log when a build starts.
Bui | d - Boolean

241

CrossWorks for AVR Reference Manual CrossStudio User Guide

Debugging Environment Options

Breakpoint Options

Property Description

Clear Disassembly Breakpoints On Debug Stop
Envi ronment / Debugger/ Cl ear Di sassenbly Clear Disassembly Breakpoints On Debug Stop
Br eakpoi nt - Boolean

Initial Breakpoint Is Set
Envi r onment / Debugger/ Set I niti al Specify when the initial breakpoint should be set
Br eakpoi nt — Enumeration

Set Initial Breakpoint At
Envi r onment / Debugger /I ni ti al An initial breakpoint to set if no other breakpoints exist
Br eakpoi nt - String

Debugging Options

Property Description

TLS Expression Default expression the debugger evaluates to get the
Envi r onment / Debugger/ TLS Expr essi on -String base of Thread Local Storage

Display Options

Property Description

Close Disassembly On Mode Switch
Envi ronment / Debugger/ O ose Di sassenbly On Close Disassembly On Mode Switch
Mbde Swi t ch -Boolean

Data Tips Display a Maximum Of
Envi r onnent / Debugger / Maxi mum Ar r ay
El ements Di spl ayed - IntegerRange

Selects the maximum number of array elements
displayed in a datatip.

Default Display Mode
Envi r onment / Debugger/ Def aul t Vari abl e Selects the format that data values are shown in.
Di spl ay Mode - Enumeration

Display Floating Point Number In
Envi r onnent / Debugger / Fl oati ng Poi nt
For mat Di spl ay - Custom

The printf format directive used to display floating
point numbers.

Maximum Backtrace Calls
Envi r onnent / Debugger / Maxi mum Backtr ace
Cal | s - IntegerRange

Selects the maximum number of calls when
backtracing.

242

CrossWorks for AVR Reference Manual

Prompt To Display If More Than
Envi r onnent / Debugger/ Array El enents
Prompt Si ze - IntegerRange

Show CPU Registers In Locals Window
Envi r onnent / Debugger/ Local s Di spl ay
Regi st er s — Boolean

Show Labels In Disassembly
Envi r onnent / Debugger / Di sassenbl y Show
Label s - Boolean

Show Source In Disassembly
Envi r onnent / Debugger / Di sassenbl y Show
Sour ce - Boolean

Show char * as null terminated string
Envi r onnent / Debugger / Di spl ay Char
Stri ng - Boolean

Ptr As

Source Path
Envi ronnent / Debugger / Sour ce Pat h - StringList

Extended Data Tips Options

Property

ASCII
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mbde/ ASCI | -Boolean

Binary
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Bi nary - Boolean

Decimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Deci mal - Boolean

Hexadecimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Hexadeci mal - Boolean

Octal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Cct al —Boolean

Unsigned Decimal
Envi r onnent / Debugger / Ext ended Tool tip
Di spl ay Mode/ Unsi gned Deci mal —Boolean

CrossStudio User Guide

The array size to display with prompt.

Specify whether the locals window should display CPU
registers

Show Labels In Disassembly

Show Source In Disassembly

Show char * as null terminated string

Global search path to find source files.

Description

Selects ASCIl extended datatips.

Selects Binary extended datatips.

Selects Decimal extended datatips.

Selects Hexadecimal extended datatips.

Selects Octal extended datatips.

Selects Unsigned Decimal extended datatips.

243

CrossWorks for AVR Reference Manual

Target Options

Property

Step Using Hardware Step
Envi r onnent / Debugger/ St ep Usi ng Har dwar e
St ep - Boolean

Window Options

Property

Clear Debug Terminal On Run
Envi ronnent/ Cl ear Debug Termi nal On
Run - Boolean

Hide Output Window On Successful Load
Debuggi ng/ Hi de Transcri pt On Successf ul
Load - Boolean

Show Target Log On Load
Debuggi ng/ Show Transcri pt On Load -Boolean

CrossStudio User Guide

Description

Step using hardware single stepping rather than
setting breakpoints

Description

Clear the debug terminal automatically when a
programis run.

Hide the Output window when a load completes
without error.

Show the target log when a load starts.

244

CrossWorks for AVR Reference Manual

IDE Environment Options

Browser Options

Property

Text Size
Envi ronnent / Browser/ Text Si ze — Enumeration

Underline Hyperlinks In Browser
Envi ronment / Browser/ Under| i ne Wb
Li nks - Boolean

File Search Options

Property

Files To Search
Find In Files/File Type - StringList

Find History
Find In Files/Find Hi story - StringList

Folder History

Find In Files/Fol der Hi story -StringList

Match Case
Find In Files/Match Case -Boolean
Match Whole Word

Find In Files/Match Wol e Wr d-Boolean

Replace History
Find In Files/Replace History - StringList

Search Dependencies
Find In Files/Search Dependenci es —Boolean

Search In
Find In Fil es/Context —Enumeration

Use Regular Expressions
Find In Files/Use RegExp -Boolean

Internet Options

Property

Check For Latest News
Envi ronnent /I nt er net / RSS Updat e - Boolean

CrossStudio User Guide

Description

Sets the text size of the integrated HTML and help
browser.

Enables underlining of hypertext links in the
integrated HTML and help browser.

Description

The wildcard used to match files in Find In Files
searches.

The list of strings recently used in searches.

The set of folders recently used in file searches.

Whether the case of letters must match exactly when
searching.

Whether the whole word must match when searching.

The list of strings recently used in searches.

Controls searching of dependent files.

Where to look to find files.

Whether to use a regular expression or plain text
search.

Description

Specifies whether to enable downloading of the Latest
News RSS feeds.

245

CrossWorks for AVR Reference Manual

Check For Packages
Envi ronnent / | nt er net / Check
Packages - Boolean

Check For Updates
Envi ronnent / | nt er net / Check
Updat es - Boolean

Enable Connection Debugging
Envi ronnent /| nt er net/ Enabl e
Debuggi ng - Boolean

External Web Browser
Envi r onnent / Ext er nal

HTTP Proxy Host
Envi ronnent /| nt er net/ HTTP Pr oxy
Ser ver - String

HTTP Proxy Port
Envi ronnent /| nt er net/ HTTP Pr oxy
Port - IntegerRange

Web Browser - FileName

Maximum Download History Items
Envi ronnent/ | nt er net/ Max Downl oad Hi story
| t ens - IntegerRange

Use Content Delivery Network
Envi ronment / Package/ Use Content Delivery
Net wor k — Boolean

Launcher Options

Property

Launch Latest Installations Only
Envi ronnent / Launcher Use Lat est
Installati ons Only -Boolean

Launcher Enabled

Envi ronnent / Launcher Enabl ed - Boolean

Package Manager Options

Property

Check Solution Package Dependencies
Envi r onnent / Package/ Check Sol uti on
Package Dependenci es - Boolean

CrossStudio User Guide

Specifies whether to enable downloading of the list of
available packages.

Specifies whether to enable checking for software
updates.

Controls debugging traces of internet connections and
downloads.

The path to the external web browser to use when
accessing non-local files.

Specifies the IP address or hostname of the HTTP proxy
server. If empty, no HTTP proxy server will be used.

Specifies the HTTP proxy server's port number.

The maximum amount of download history kept in the
downloads window.

Specifies whether to use content delivery network to
deliver packages.

Description

Specifies whether the CrossStudio launcher should
only consider the latest installations of CrossWorks
when deciding which one to use.

Specifies whether the CrossStudio launcher should
be used when the operating system or an external
application requests a file to be opened.

Description

Specifies whether to check package dependencies
when a solution is loaded.

246

CrossWorks for AVR Reference Manual

Package Directory
Envi r onnent / Package/ Dest i nati on
Di rect ory - String

Show Logos
Envi r onment / Package/ Show Logos - Enumeration

Print Options

Property

Bottom Margin
Envi ronnment/ Pri nti ng/ Bottom
Mar gi n - IntegerRange

Left Margin
Envi ronnment / Printi ng/ Left
Mar gi n - IntegerRange

Page Orientation
Envi ronnent/ Printi ng/
Ori ent ati on - Enumeration

Page Size
Envi ronnent/ Pri nti ng/ Page Si ze - Enumeration

Right Margin
Envi ronnent/ Pri nti ng/ Ri ght
Mar gi n - IntegerRange

Top Margin
Envi ronnment/ Printi ng/ Top
Mar gi n - IntegerRange

Startup Options

Property

Allow Multiple CrossStudios
Envi ronnent/Pernmit Multiple Studio
I nst ances - Boolean

New Project Directory
Envi ronment / Gener al / Sol uti on
Di rect ory - String

Project Templates File
Envi r onnent / Gener al / Pr oj ect
Tenpl at es - String

Splash Screen
Envi ronment / Spl ash Scr een - Enumeration

CrossStudio User Guide

Specifies the directory packages are installed to.

Specifies whether the package manager should display
company logos.

Description

The page's bottom margin in millimetres.

The page's left margin in millimetres.

The page's orientation.

The page's size.

The page's right margin in millimetres.

The page's top margin in millimetres.

Description
Allow more than one CrossStudio to run at the same

time.

The directory where projects are created.

The project templates file.

How to display the splash screen on startup.

247

CrossWorks for AVR Reference Manual

Status Bar Options

Property

(Visible)
Envi ronnent / St at us Bar - Boolean

Show Build Status Pane
Envi ronnent / Gener al / St at us Bar/ Show
St at us - Boolean

Bui | d

Show Caret Position Pane
Envi ronnent / Gener al / St at us Bar/ Show
Pos - Boolean

Car et

Show Insert/Overwrite Status Pane
Envi ronnent / Gener al / St at us Bar/ Show
I nsert Mode - Boolean

Show Read-Only Status Pane
Envi ronnent / Gener al / St at us Bar/ Show
Onl y - Boolean

Read

Show Size Grip
Envi ronnent / Gener al / St at us Bar/ Show
Gri p - Boolean

Si ze

Show Target Pane
Envi ronnent / Gener al / St at us Bar/ Show
Tar get - Boolean

Show Time Pane
Envi ronnent / Gener al / St at us Bar/ Show
Ti me - Boolean

User Interface Options

Property

Application Main Font
Envi ronnent / Appl i cati on Main Font -Font

Application Monospace Font
Envi ronnment / Appl i cati on Monospace
Font - Font

Error Display Timeout
Envi ronment / Err or
Ti meout - IntegerRange

Di spl ay

Errors Are Displayed

Envi ronnent/ Error Di spl ay Mobde - Enumeration

CrossStudio User Guide

Description

Show or hide the status bar.

Show or hide the Build pane in the status bar.

Show or hide the Caret Position pane in the status bar.

Show or hide the Insert/Overwrite pane in the status
bar.

Show or hide the Read Only pane in the status bar.

Show or hide the status bar size grip.

Show or hide the Target pane in the status bar.

Show or hide the Time pane in the status bar.

Description

The font to use for the user interface as a whole.

The fixed-size font to use for the user interface as a
whole.

The minimum time, in seconds, that errors are shown
for in the status bar.

How errors are reported in CrossStudio.

248

CrossWorks for AVR Reference Manual

File Size Display Units
Envi ronnent/ Si ze Di spl ay Unit -Enumeration

Number File Names in Menus
Envi ronnent / Nunber Menus - Boolean

Show Large Icons In Toolbars
Envi r onnent / Gener al / Lar ge | cons - Boolean

Show Ribbon
Envi r onment / Gener al / Ri bbon/ Show- Boolean

Show Window Selector On Ctrl+Tab
Envi ronnent / Show Sel ect or —Boolean

User Interface Theme
Envi ronnent / Gener al / Ski n — Enumeration

Window Menu Contains At Most
Envi ronnent / Max W ndow Menu
| t ens - IntegerRange

CrossStudio User Guide

How to display sizes of items in the user interface. Sl
defines 1kB=1000 bytes, IEC defines 1kiB=1024 bytes,
Alternate S| defines 1kB=1024 bytes.

Number the first nine file names in menus for quick
keyboard access.

Show large or small icons on toolbars.

Show or hide the ribbon.

Present the Window Selector on Next Window and
Previous Window commands activated from the
keyboard.

The theme that CrossStudio uses.

The maximum number of windows appearing in the
Windows menu.

249

CrossWorks for AVR Reference Manual

CrossStudio User Guide

Programming Language Environment Options

Assembly Language Settings

Property

Column Guide Columns
Text Editor/Indent/Assenbly
Col utm Gui des - String

Language/

Indent Closing Brace
Text Editor/Indent/Assenbly
Cl ose Brace -Boolean

Language/

Indent Context
Text Editor/Indent/Assenbly
Cont ext Li nes -IntegerRange

Language/

Indent Mode
Text Editor/Indent/Assenbly
| ndent Mode - Enumeration

Language/

Indent Opening Brace
Text Editor/|ndent/Assenbly
Br ace - Boolean

Language/ Qpen

Indent Size
Text Editor/Indent/Assenbly
Si ze - IntegerRange

Tab Size
Text Editor/Indent/Assenbly
Si ze - IntegerRange

Use Tabs
Text Editor/Indent/Assenbly
Tabs - Boolean

Language/

Language/ Tab

Language/ Use

User-Defined Keywords
Text Editor/Indent/Assenbly
Keywor ds - StringList

Language/

C and C++ Settings

Property

Column Guide Columns
Text Editor/Indent/C and
Gui des - String

C++/ Col um

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

250

CrossWorks for AVR Reference Manual

Indent Closing Brace
Text Editor/Indent/C and C++/ Cl ose
Br ace - Boolean

Indent Context
Text Editor/I|Indent/C and C++/ Cont ext
Li nes - IntegerRange

Indent Mode
Text Editor/Indent/C and C++/ 1 ndent
Mode - Enumeration

Indent Opening Brace
Text Editor/Indent/C and C++/ Qpen
Br ace - Boolean

Indent Size
Text Editor/Indent/C and C++/
Si ze - IntegerRange

Tab Size
Text Editor/Indent/C and C++/ Tab
Si ze - IntegerRange

Use Tabs
Text Editor/Indent/C and C++/ Use
Tabs - Boolean

User-Defined Keywords
Text Editor/Indent/C and C++/
Keywor ds - StringList

Default Settings

Property

Column Guide Columns

Text Editor/|ndent/Default/Colum
Gui des - String

Indent Closing Brace

Text Editor/|ndent/Default/d ose
Br ace - Boolean

Indent Context
Text Editor/|ndent/ Def aul t/ Cont ext
Li nes - IntegerRange

Indent Mode
Text Editor/|ndent/Default/Indent
Mode - Enumeration

CrossStudio User Guide

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

251

CrossWorks for AVR Reference Manual

Indent Opening Brace
Text Editor/|ndent/ Defaul t/ Open
Br ace - Boolean

Indent Size
Text Editor/|ndent/ Defaul t/
Si ze - IntegerRange

Tab Size
Text Editor/Indent/Defaul t/ Tab
Si ze - IntegerRange

Use Tabs
Text Editor/Indent/Default/Use
Tabs - Boolean

User-Defined Keywords
Text Editor/Indent/Default/
Keywor ds - StringList

Java Settings

Property

Column Guide Columns

Text Editor/Indent/Java/ Col umm
CGui des - String

Indent Closing Brace

Text Editor/Indent/Java/ C ose
Br ace - Boolean

Indent Context
Text Editor/Indent/Java/ Cont ext
Li nes - IntegerRange

Indent Mode
Text Editor/Indent/Java/l ndent
Mode - Enumeration

Indent Opening Brace
Text Editor/Indent/Java/ Gpen
Br ace - Boolean

Indent Size
Text Editor/Indent/Javal/ Si ze - IntegerRange

Tab Size
Text Editor/Indent/Javal/ Tab
Si ze - IntegerRange

Use Tabs
Text Editor/Indent/Java/ Use Tabs -Boolean

CrossStudio User Guide

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

Additional identifiers to highlight as keywords.

Description

The columns that guides are drawn for.

Indent the closing brace of compound statements.

The number of lines to use for context when indenting.

How to indent when a new line is inserted.

Indent the opening brace of compound statements.

The number of columns to indent a code block.

The number of columns between tabstops.

Insert tabs when indenting.

252

CrossWorks for AVR Reference Manual CrossStudio User Guide

User-Defined Keywords

Additional identifiers to highlight as k ds.
Text Editor/I|ndent/Java/ Keywor ds - StringList tiohatidentifiers to ightight as keywords

253

CrossWorks for AVR Reference Manual

CrossStudio User Guide

Source Control Environment Options

Configuration Options

Property

Enable Source Control Integration
Envi ronnent / Source Code Control/
Enabl ed - Boolean

Source Control Provider
Envi ronnent / Source Code Control/
Pr ovi der - Enumeration

External Tools

Property

Diff Command Line

Envi ronnent / Sour ce Code Control /
Di f f Command - StringList

Merge Command Line

Envi ronnent / Sour ce Code Control/
Mer geConmmand - StringList

Preference Options

Property

Inhibit Add Dialog
Envi ronnent / Source Code Control/
I nhi bi t AddDi al og - Boolean

Inhibit Check In Dialog
Envi ronnent / Source Code Control/
I nhi bi t Checki nDi al og - Boolean

Inhibit Check Out Dialog
Envi ronnent / Source Code Control/
I nhi bi t Checkout Di al og - Boolean

Inhibit Check Out On Edit Dialog
Envi ronnent / Source Code Control/

I nhi bi t Checkout OnEdi t Di al og - Boolean

Inhibit Get Latest Dialog
Envi ronnent / Sour ce Code Control/
I nhi bi t Get Lat est Di al og - Boolean

Description

Source Control integration enabled.

The source control provider to use.

Description

The diff command line

The merge command line

Description

Inhibits the dialog when adding a file to source
control.

Inhibits the dialog when checking in a file to source
control.

Inhibits the dialog when checking out a file from
source control.

Inhibits the check out on edit dialog.

Inhibits the dialog when updating the local version
from the source control version.

254

CrossWorks for AVR Reference Manual CrossStudio User Guide

Inhibit Undo Check Out Dialog
Envi r onnent / Sour ce Code Control /
I nhi bi t UndoCheckout Di al og - Boolean

Inhibits the dialog when undoing a checkout to source
control.

255

CrossWorks for AVR Reference Manual

CrossStudio User Guide

Text Editor Environment Options

Cursor Fence Options

Property

Bottom Margin
Text Editor/ Margi ns/ Bot t om-IntegerRange

Keep Cursor Within Fence
Text Editor/ Margi ns/ Enabl ed - Boolean

Left Margin

Text Editor/ Margins/ Left -IntegerRange
Right Margin

Text Editor/ Margi ns/ Ri ght -IntegerRange
Top Margin

Text Editor/ Margi ns/ Top - IntegerRange

Editing Options

Property

Allow Drag and Drop Editing
Text Editor/Drag Drop Editing-Boolean

Auto-Comment Text
Text Editor/Auto Comment - Boolean

Auto-Surround Text
Text Editor/Auto Surround-Boolean

Bold Popup Diagnostic Messages
Text Editor/Bold Popup
Di agnost i cs - Boolean

Check Spelling
Text Editor/Spell Checking-Boolean

Column-mode Tab
Text Editor/ Col unim Mode Tab -Boolean

Confirm Modified File Reload
Text Editor/Confirm Mdified File
Rel oad - Boolean

Copy Action When Nothing Selected
Text Edi tor/ Copy Acti on-Enumeration

Description

The number of lines in the bottom margin.

Enable margins to fence and scroll around the cursor.

The number of characters in the left margin.

The number of characters in the right margin.

The number of lines in the right margin.

Description

Enables dragging and dropping of selections in the
text editor.

Enable or disable automatically swapping
commenting on source lines by typing '/* with an
active selection.

Enable or disable automatically surrounding selected
text when typing triangular brackets, quotation marks,
parentheses, brackets, or braces.

Displays popup diagnostic messages in bold for easier
reading.

Enable spell checking in comments.

Tab key moves to the next textual column using the
line above.

Display a confirmation prompt before reloading a file
that has been modified on disk.

What Copy copies when nothing is selected.

256

CrossWorks for AVR Reference Manual

Copy On Mouse Select
Text Editor/ Copy On Mouse Sel ect - Boolean

Cut Action When Nothing Selected
Text Editor/Cut Action-Enumeration

Cut Single Blank Line
Text Editor/Cut Bl ank Lines -Boolean

Diagnostic Cycle Mode
Text Editor/Di agnostic Cycle
Mbde - Enumeration

Edit Read-Only Files
Text Editor/Edit Read Only -Boolean

Enable Popup Diagnostics
Text Editor/Enabl e Popup
Di agnost i cs - Boolean

Enable Virtual Space
Text Editor/Enable Virtual

FIXME Tag List
Text Editor/Fl XME Tags - StringList

Space - Boolean

Numeric Keypad Editing
Text Editor/ Numeric Keypad
Enabl ed - Boolean

Paste On Mouse Middle Button
Text Editor/Paste On Mouse M ddl e
But t on - Boolean

Undo And Redo Behavior
Text Editor/Undo Mbde -Enumeration

Find And Replace Options

Property

Case Sensitive Matching
Text Editor/Find/ Match Case -Boolean

Find History
Text Editor/Fi nd/ H st ory - StringList

Regular Expression Matching
Text Editor/Find/ Use RegExp -Boolean

Replace History
Text Editor/ Repl ace/ Hi st ory - StringList

Whole Word Matching
Text Editor/Find/ Match Whol e Wrd-Boolean

CrossStudio User Guide

Automatically copy text to clipboard when marking a
selection with the mouse.

What Cut cuts when nothing is selected.

Selects whether to place text on the clipboard when a
single blank line is cut. When set to

Iterates through diagnostics either from most severe
to least severe or in reported order.

Allow editing of read-only files.

Enables on-screen diagnostics in the text editor.

Permit the cursor to move into locations that do not
currently contain text.

Set the tags to display as FIXMEs.

Selects whether the numeric keypad plus and minus
buttons copy and cut text.

Paste text from clipboard when mouse middle button
is pressed.

How Undo and Redo group your typing when it is
undone and redone.

Description

Enables or disables the case sensitivity of letters when
searching.

The list of strings recently used in searches.

Enables regular expression matching rather than plain
text matching.

The list of strings recently used in replaces.

Enables or disables whole word matching when
searching.

257

CrossWorks for AVR Reference Manual

International

Property

Default Text File Encoding
Text Editor/Default Codec -Enumeration

Save Options

Property

Backup File History Depth
Text Editor/Backup File Depth-IntegerRange

Delete Trailing Space On Save
Text Editor/Delete Trailing Space On
Save - Boolean

Tab Cleanup On Save
Text Editor/C eanup Tabs On
Save - Enumeration

Visual Appearance

Property

Font
Text Editor/ Font - FixedPitchFont

Hide Cursor When Typing
Text Editor/H de Cursor Wen
Typi ng - Boolean

Highlight Cursor Line

Text Editor/Hi ghlight Cursor Line-Boolean

Horizontal Scroll Bar

Text Editor/HScroll Bar —-Enumeration

Insert Caret Style
Text Editor/Insert Caret Style-Enumeration

Line Numbers

Text Editor/Li ne Nunber Mde -Enumeration

Mate Matching Mode
Text Editor/Mate Matchi ng Mode - Enumeration

Overwrite Caret Style
Text Editor/Overwrite Caret
St yl e - Enumeration

CrossStudio User Guide

Description

The encoding to use if not overridden by a project
property or file is not in a known format.

Description

The number of backup files to keep when saving an
existing file.

Deletes trailing whitespace from each line when a file

is saved.

Cleans up tabs when a file is saved.

Description

The font to use for text editors.

Hide or show the I-beam cursor when you start to type.

Enable or disable visually highlighting the cursor line.

Show or hide the horizontal scroll bar.

How the caret is displayed with the editor in insert
mode.

How often line numbers are displayed in the margin.

Controls when braces, brackets, and parentheses are
matched.

How the caret is displayed with the editor in overwrite
mode.

258

CrossWorks for AVR Reference Manual

Show Diagnostic Icons In Gutter
Text Editor/Di agnostic |cons -Boolean

Show Icon Gutter
Text Editor/lcon Qutter —Boolean

Show Mini Toolbar
Text Editor/M ni Tool bar —Boolean

Use I-beam Cursor
Text Editor/|beam cursor —Boolean

Vertical Scroll Bar
Text Editor/VScroll Bar -Enumeration

CrossStudio User Guide

Enables display of diagnostic icons in the icon gutter.

Show or hide the left-hand gutter containing
breakpoint, bookmark, and optional diagnostic icons.

Show the mini toolbar when selecting text with the
mouse.

Show an |-beam or arrow cursor in the text editor.

Show or hide the vertical scroll bar.

259

CrossWorks for AVR Reference Manual CrossStudio User Guide

Windows Environment Options

Call Stack Options

Property

Show Call Address
Envi ronnent/ Cal | St ack/ Show Cal |
Addr ess - Boolean

Show Call Source Location
Envi ronnent/ Cal | St ack/ Show Cal |
Locat i on - Boolean

Show Parameter Names
Envi ronnent/ Cal | St ack/ Show Par anet er
Names - Boolean

Show Parameter Types
Envi ronnment/ Cal | St ack/ Show Par anet er
Types - Boolean

Show Parameter Values
Envi ronnent/ Cal | St ack/ Show Par anet er
Val ues - Boolean

Clipboard Ring Options

Property

Maximum Items Held In Ring
Envi ronnent/ d i pboard Ri ng/ Max
Entri es - IntegerRange

Preserve Contents Between Runs
Envi ronnent/ Cl i pboard Ri ng/ Save - Boolean

Outline Window Options

Property

Group #define Directives
W ndows/ Qut | i ne/ Group Defi nes - Boolean

Group #if Directives
W ndows/ Qut | i ne/ G- oup | fs -Boolean

Group #include Directives
W ndows/ Qut | i ne/ Group | ncl udes - Boolean

Description

Enables the display of the call address in the call stack.

Enables the display of the call source location in the
call stack.

Enables the display of parameter names in the call
stack.

Enables the display of parameter types in the call stack.

Enables the display of parameter values in the call
stack.

Description

The maximum number of items held on the clipboard
ring before they are recycled.

Save the clipboard ring across CrossStudio runs.

Description

Group consecutive #define and #undef preprocessor
directives.

Group lines contained betwen #if, #else, and #endif
preprocessor directives.

Group consecutive #include preprocessor directives.

260

CrossWorks for AVR Reference Manual

Group Top-Level Declarations
W ndows/ Qut | i ne/ Group Top Level
| t ens - Boolean

Group Visibility
W ndows/ Qut | i ne/ Group Vi sibility-Boolean

Hide #region Prefix
W ndows/ Qut | i ne/ Hi de Regi on
Pref i x — Boolean

Refresh Outline and Preview
W ndows/ Qut | i ne/ Previ ew Ref resh
Mode - Enumeration

Project Explorer Options

Property

Add Filename Replace Macros
Envi ronnment / Proj ect Expl orer/Fil ename
Repl ace Macr os - StringList

Color Project Nodes
Envi ronnent / Proj ect Expl orer/ Col or
Nodes - Boolean

Output Files Folder
Envi ronnent / Proj ect Expl orer/ Show Qut put
Fi | es - Boolean

Read-Only Data In Code
Envi ronnent / Proj ect Explorer/Statistics
Read- Onl y Data Handl i ng - Boolean

Show Dependencies
Envi ronnent / Proj ect Expl orer/ Dependenci es
Di spl ay - Enumeration

Show File Count on Folder
Envi ronnent / Pr oj ect Expl orer/ Count
Fi | es - Boolean

Show Properties
Envi ronnent / Proj ect Expl orer/Properties
Di spl ay — Enumeration

Show Statistics Rounded
Envi ronnent/ Proj ect Explorer/Statistics
For mat - Boolean

Source Control Status Column
Envi ronnent / Proj ect Expl orer/ Show Sour ce

Code Control Status-Boolean

CrossStudio User Guide

Group consecutive top-level variable and type
declarations.

Group class members by public, protected, and private
visibility.

Hides the '#region' prefix from groups and shows only
the group name.

How the Preview pane refreshes its contects.

Description

Macros (system and global) used to replace the start of
a filename on project file addition.

Show the project nodes colored for identification in
the Project Explorer.

Show the build output files in an Output Files folder in
the project explorer.

Configures whether read-only data contributes to the
Code or Data statistic.

Controls how the dependencies are displayed.

Show the number of files contained in a folder as a
badge in the Project Explorer.

Controls how the properties are displayed.

Show exact or rounded sizes in the project explorer.

Show the source control status column in the project
explorer.

261

CrossWorks for AVR Reference Manual

Starred Files Names
Envi ronnent/ Proj ect Explorer/Starred File
Names - StringList

Statistics Column
Envi ronnent/ Proj ect Explorer/Statistics
Di spl ay —Boolean

Synchronize Explorer With Editor
Envi ronnent / Proj ect Expl orer/ Sync
Edi t or - Boolean

Use Common Properties Folder
Envi ronment / Proj ect Expl or er/ Comrmon
Properties Displ ay -Boolean

Properties Window Options

Property

Properties Displayed
Envi ronnent / Gener al / Properti es
Di spl ayed - Enumeration

Show Property Details
Envi ronnent / Gener al / Property Vi ew
Det ai | s —Boolean

Windows Window Options

Property

Buffer Grouping
Envi r onnent / W ndows/ Gr oupi ng - Enumeration

Show File Path as Tooltip
Envi r onnent / W ndows/ Show Fi | enanme
Tool ti ps —Boolean

Show Line Count and File Size
Envi r onnent / W ndows/ Show Si zes - Boolean

CrossStudio User Guide

The list of wildcard-matched file names that get
highligted with stars, to bring attention to themselves,
in the Project Explorer.

Show the code and data size columns in the Project
Explorer.

Synchronizes the Project Explorer with the document
being edited.

Controls how common properties are displayed.

Description

Set how the properties are displayed.

Show or hide the property description.

Description
How the files are grouped or listed in the Windows

window.

Show the full file name as a tooltip when hovering
over files in the Windows window.

Show the number of lines and size of each file in the
windows list.

262

CrossWorks for AVR Reference Manual CrossStudio User Guide

Target interfaces

A target interface is a mechanism for communicating with, and controlling, a target. A target can be either a
physical hardware device or a software simulation of a device. CrossStudio has a Targets window for viewing

and manipulating target interfaces. For more information, see Targets window.

Before you can use a target interface, you must connect to it. You can only connect to one target interface at a

time. For more information, see Connecting to a target.

All target interfaces have a set of properties. The properties provide information on the connected target and
allow the target interface to be configured. For more information, see Viewing and editing target properties.

AVR simulator

The AVR simulator target interface provides access to CrossStudio's AVR simulator. This target interface supports
program loading and debugging. The simulator supports the instruction set defined in ATMEL AVRInstruction Set
— Rev. 0856B-06/99}. Additionally, the simulator will simulate EEPROM memory access and provides an extension
mechanism to enable device simulation using JavaScript. The memory system simulated (flash, RAM, EEPROM) is

defined by the Target processor property of the selected project in the active build configuration.

* AVR Simulator Target Interface

JTAGICE

The JTAG ICE target interface provides access to Atmel's JTAG ICE Mk . This target interface supports program
loading and debugging, and access to the lock bits, fuse bits, and signature/calibration bytes immediately after
connecting to the target.

* JTAGICE Target Interface

JTAGICE mkill

The JTAGICE mkll target interfaces provide access to Atmel's JTAGICE mkll. Both USB and serial port host PC
connections are supported, as is JTAG, debugWIRE, PDI, and ISP target connections. The JTAG, debugWIRE,

PDI, and ISP target connections support program loading. The JTAG, debugWIRE, and PDI target connections
support interactive debugging. The JTAG, PDI, and ISP connections support access to the lock bits, fuse bits, and
signature/calibration bytes immediately after connecting to the target.

e JTAGICE mkll (Serial Port to JTAG),

¢ JTAGICE mkll (Serial Port to debugWIRE),
JTAGICE mkll (Serial Port to ISP),
JTAGICE mkll (Serial Port to PDI),
JTAGICE mkll (USB to JTAG),

JTAGICE mkll (USB to debugWIRE),

263

CrossWorks for AVR Reference Manual CrossStudio User Guide

* JTAGICE mkll (USB to ISP),
» JTAGICE mkll (USB to PDI)

AVRDragon

The AVRDragon target interfaces provide access to Atmel's AVRDragon. JTAG, debugWIRE, and ISP target
connections are supported. The JTAG, debugWIRE, and ISP target connections support program loading.

The JTAG and debugWIRE target connections support interactive debugging. The JTAG and ISP connections
support access to the lock bits, fuse bits, and signature/calibration bytes. When debugging with the JTAG
interface, three hardware breakpoints are available for use; however, one of these breakpoints will be needed for
single stepping. Two of the hardware breakpoints can be used as data breakpoints. When debugging with the

debugWIRE interface, no hardware breakpoints are available.

¢ AVRDragon (JTAG),
* AVRDragon (debugWIRE),
* AVRDragon (ISP)

STK500 high voltage

The Atmel STK500 high voltage target interface provides access to Atmel's STK500 high voltage programming.
This target interface supports program loading and access to the fuse bits and lock bits.

» STK500-High Voltage Target Interface

STK500-ISP Target Interface

The Atmel STK500-ISP target interface provides access to Atmel's STK500 ISP programming. This target interface
supports program loading and access to the fuse bits and lock bits.

e STK500-ISP Target Interface

AVRISP

The Atmel STK500-ISP/AVRISP target interface provides access to Atmel's AVRISP programmer. This target

interface supports program loading and access to the fuse bits and lock bits.

» AVRISP Target Interface.

AVRISP mkill

The Atmel AVRISP mkll target interface provides access to Atmel's AVRISP mkll programmer. This target interface
supports program loading and access to the fuse bits and lock bits.

* AVRISP mkll target interface

264

CrossWorks for AVR Reference Manual CrossStudio User Guide

Parallel port

The Parallel Port Target Interface provides access to JTAG-based AVR devices via a PC parallel (printer) port JTAG
cable. This target interface supports program loading and debugging and access to the fuse and lock bits. This
target interface supports the MAXQ 10-pin connector and the ARM 20-pin connector with a suitable converter
board.

 Parallel Port Target Interface

CrossConnect

The CrossConnect Target Interface provides access to JTAG-based AVR devices via a CrossConnect with a
suitable converter board. This target interface supports program loading and debugging and access to the fuse
and lock bits.

¢ CrossConnect Target Interface

Arduino

This target interface only supports program loading. To use this target interface, set the target options to
connect and disconnect when debugging starts and stops, respectively. Then connect to the target interface,
then disconnect from it. You can then press start without debugging, which will connect to the Arduino,

download the application, and then disconnect from the target interface.

Note that you can set the Port Used By Target Interface Terminal Emulator property which will cause the

Terminal Emulator to disconnect/reconnect when downloading.

¢ Arduino Target Interface

Downloading capabilities

The JTAG and PDI target connections support the Erase All target property. When Erase All is set to Yes, a chip
erase is performed prior to download. If you wish to preserve the EEPROM, set the appropriate fuse bit. When
the target property Erase All is set to No, program loading causes the relevant flash pages to be erased prior to
programming. Note that, on JTAG MEGA devices, the page erasing (and subsequent programming) is done in

debug mode and, as such, is considerably slower than when Erase All is set to Yes.

Debug capabilities

When debugging JTAG MEGA devices, you will have access to four hardware breakpoints—but one of them will
be needed for single stepping. Two of the hardware breakpoints may be used as (byte-sized) data breakpoints or

as an aligned powers of 2 range breakpoint.

265

http://www.olimex.com/dev/maxq-jtag.html
http://www.olimex.com/dev/arm-jtag.html
http://www.rowley.co.uk/arm/CrossConnect.htm

CrossWorks for AVR Reference Manual CrossStudio User Guide

When debugging XMEGA devices, you will have access to two hardware (byte-sized) data breakpoints that can
also be used as a range data breakpoint. The two data breakpoints can have conditional data values, using the

following breakpoint expressions:

== 5 — Break when x is read/written with 5.
> 5 — Break when x is read/written with a value greater than 5.

>=5 — Break when x is read/written with a value greater than or equal to 5.

<=5 — Break when x is read/written with a value less than or equal to 5.
>= 5 && X <= 45 — Break when x is read/written with a value in the range 5 to 45.

X

X

X

* X <5 — Break when x is read/written with a value less than 5.

X

X

X <5 |] x > 45— Break when x is read/written with a value not in the range 5 to 45.
(

X & 1) == 1 — Break when x s read/written with an odd value.
Note that >= and < are implemented using > and <= and, as such, won't work for zero values.

The JTAGICE mkll and AVRDragon target interfaces provide support for software breakpoints, which are are used
by default when setting program execute breakpoints. The target-interface property Hardware Breakpoints can

be set to Yes to disallow setting software breakpoints.

JTAG, PDI, ISP, and High Voltage shortcut menu entries

Fuse Bits
This displays the fuse bits editor.

Lock Bits
This displays the lock bits editor.

Signature/Calibration Bytes
This displays the signature and calibration bytes.

debugWIRE target shortcut menu entries

Disconnect (Disable debugWIRE)
This requires the ISP connection in addition to the debugWIRE connection, and will disable the DWEN fuse

and disconnect.

STK500 target shortcut menu entries

ST500 Settings
This displays a dialog used to specify the oscillator frequency, target voltage, and analog reference voltage

supplied by the STK500 to the target processor.

266

CrossWorks for AVR Reference Manual CrossStudio User Guide

AVR Core Simulator Target Interface

Target

Property Description

Device Type The detected type of the currently connected target
devi ce_i d - String device.

267

CrossWorks for AVR Reference Manual

JTAG ICE Target Interface

Connection

Property

Baud Rate
baudRat e — Enumeration

External Reset Required

ext er nal Reset Requi r ed - Boolean

Port Name
por t Nanme - String

Target Clock Frequency
t ar get G ock — Enumeration

Current

Property

Hardware Version
har dwar eVer si on - String

JTAGID
JTAG D- IntegerHex

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

CrossStudio User Guide

Description

The speed of the serial communication.

Apply external reset on connect.

The name of the serial port connected to the JTAG ICE.
On windows hosts you can right click to select from
the set of COM ports available.

The nearest clock frequency of the target - used for the
JTAG clock frequency.

Description

The hardware version of the target interface.

The JTAG ID.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

The target voltage.

268

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (Serial Port to JTAG) Target Interface

Connection

Property

Baud Rate
baudRat e — Enumeration

External Reset Required
ext er nal Reset Requi r ed - Boolean

Hardware Breakpoints
useHar dwar eBr eakpoi nt s - Boolean

Port Name
por t Name - String

Serial Number
connect edSeri al Nunber - String

Target Clock Frequency
t ar get G ock - Enumeration

Current

Property

Hardware Version
har dwar eVer si on - String

JTAGID
JTAG D- IntegerHex

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description

The speed of the serial communication.

Apply external reset on connect.

Always use hardware breakpoints i.e. don't set
software breakpoints.

The name of the serial port connected to the JTAGICE
mkll (Serial Port to JTAG). On windows hosts you can
right click to select from the set of COM ports available.

The serial number of the JTAG ICE MK II.

The nearest clock frequency of the target - used for the
JTAG clock frequency.

Description

The hardware version of the target interface.

The JTAG ID.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

The target voltage.

269

CrossWorks for AVR Reference Manual CrossStudio User Guide

JTAGICE mkll (Serial Port to debugWIRE) Target
Interface

Connection

Property Description

Baud Rate

. The speed of the serial communication.
baudRat e - Enumeration

The name of the serial port connected to the JTAGICE

Port Name mkll (Serial Port to debugWIRE). On windows hosts
por t Nane - String you can right click to select from the set of COM ports
available.

Serial Number
connect edSeri al Nunber - String

The serial number of the JTAG ICE MK II.

Current

Property Description

Hardware Version

. . The hardware version of the target interface.
har dwar eVer si on - String

Software Version

. . The software version of the target interface.
sof t war eVer si on - String

Target

Property Description
Device Type The detected type of the currently connected target
devi ce_i d - String device.
Target Volt
arget vottage The target voltage.

oper at i ngVol t age - String

270

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (Serial Port to ISP) Target Interface

Connection

Property

Baud Rate
baudRat e — Enumeration

Device Name
devi ceNane - String

ISP Freq (Actual)
Act ual | spFr eq - String

ISP Freq (Desired)
| spFr eq - String

Port Name
por t Nanme - String

Serial Number
connect edSeri al Nunber - String

Use Target As Device Name
useTar get AsDevi ceName - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description

The speed of the serial communication.

The name of the device to be programmed.

The actual ISP frequency which must be less than 1/4
of the target frequency.

The desired ISP frequency which must be less than 1/4
of the target frequency.

The name of the serial port connected to the JTAGICE
mkll (Serial Port to ISP). On windows hosts you can
right click to select from the set of COM ports available.

The serial number of the JTAG ICE MK II.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

The target voltage.

271

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (Serial Port to PDI) Target Interface

Connection

Property

Baud Rate
baudRat e — Enumeration

Hardware Breakpoints
useHar dwar eBr eakpoi nt s - Boolean

Port Name
por t Nanme - String

Serial Number
connect edSeri al Nunber - String

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description
The speed of the serial communication.

Always use hardware breakpoints i.e. don't set
software breakpoints.

The name of the serial port connected to the JTAGICE
mkll (Serial Port to PDI). On windows hosts you can
right click to select from the set of COM ports available.

The serial number of the JTAG ICE MK II.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

The target voltage.

272

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (USB to JTAG) Target Interface

Connection

Property

External Reset Required

ext er nal Reset Requi r ed - Boolean

Hardware Breakpoints

useHar dwar eBr eakpoi nt s - Boolean

Serial Number

connect edSeri al Nunber - String

Target Clock Frequency
t ar get G ock — Enumeration

Current

Property

Hardware Version
har dwar eVer si on - String

JTAGID
JTAG D- IntegerHex

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description
Apply external reset on connect.

Always use hardware breakpoints i.e. don't set
software breakpoints.

The serial number of the JTAG ICE MK II.

The nearest clock frequency of the target - used for the
JTAG clock frequency.

Description

The hardware version of the target interface.

The JTAG ID.

The software version of the target interface.

Description

The USB serial number of the AVR JTAGICE mkll to
connect to.

The detected type of the currently connected target
device.

The target voltage.

273

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (USB to debugWIRE) Target Interface

Connection

Property

Serial Number

connect edSeri al Nunber - String

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description

The serial number of the JTAG ICE MK II.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR JTAGICE mkll to
connect to.

The detected type of the currently connected target
device.

The target voltage.

274

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (USB to ISP) Target Interface

Connection

Property

Device Name
devi ceNane - String

ISP Freq (Actual)
Act ual | spFr eq - String

ISP Freq (Desired)
| spFr eq - String

Serial Number
connect edSeri al Nunber - String

Use Target As Device Name
useTar get AsDevi ceName - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description
The name of the device to be programmed.

The actual ISP frequency which must be less than 1/4
of the target frequency.

The desired ISP frequency which must be less than 1/4
of the target frequency.

The serial number of the JTAG ICE MK II.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR JTAGICE mkll to
connect to.

The detected type of the currently connected target
device.

The target voltage.

275

CrossWorks for AVR Reference Manual

CrossStudio User Guide

JTAGICE mkll (USB to PDI) Target Interface

Connection

Property

Hardware Breakpoints

useHar dwar eBr eakpoi nt s - Boolean

Serial Number

connect edSeri al Nunmber - String

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage

oper at i ngVol t age - String

Description

Always use hardware breakpoints i.e. don't set
software breakpoints.

The serial number of the JTAG ICE MK II.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR JTAGICE mkll to
connect to.

The detected type of the currently connected target
device.

The target voltage.

276

CrossWorks for AVR Reference Manual

CrossStudio User Guide

AVRDragon (JTAG) Target Interface

Connection

Property

External Reset Required

ext er nal Reset Requi r ed - Boolean

Hardware Breakpoints

useHar dwar eBr eakpoi nt s - Boolean

Serial Number

connect edSeri al Nunber - String

Target Clock Frequency
t ar get G ock — Enumeration

Current

Property

Hardware Version
har dwar eVer si on - String

JTAGID
JTAG D- IntegerHex

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description
Apply external reset on connect.

Always use hardware breakpoints i.e. don't set
software breakpoints.

The serial number of the JTAG ICE MK II.

The nearest clock frequency of the target - used for the
JTAG clock frequency.

Description

The hardware version of the target interface.

The JTAG ID.

The software version of the target interface.

Description

The USB serial number of the AVR Dragon to connect
to.

The detected type of the currently connected target
device.

The target voltage.

277

CrossWorks for AVR Reference Manual

CrossStudio User Guide

AVRDragon (debugWIRE) Target Interface

Connection

Property

Serial Number

connect edSeri al Nunber - String

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description

The serial number of the JTAG ICE MK II.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR Dragon to connect
to.

The detected type of the currently connected target
device.

The target voltage.

278

CrossWorks for AVR Reference Manual

CrossStudio User Guide

AVRDragon (ISP) Target Interface

Connection

Property

Device Name
devi ceNane - String

ISP Freq (Actual)
Act ual | spFr eq - String

ISP Freq (Desired)
| spFr eq - String

Serial Number
connect edSeri al Nunber - String

Use Target As Device Name
useTar get AsDevi ceName - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Target Voltage
oper at i ngVol t age - String

Description
The name of the device to be programmed.

The actual ISP frequency which must be less than 1/4
of the target frequency.

The desired ISP frequency which must be less than 1/4
of the target frequency.

The serial number of the JTAG ICE MK II.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR Dragon to connect
to.

The detected type of the currently connected target
device.

The target voltage.

279

CrossWorks for AVR Reference Manual

CrossStudio User Guide

STK500-High Voltage Target Interface

Connection

Property
Device Name

devi ceNane - String

Port Name
por t Nane - String

Use Target As Device Name
useTar get AsDevi ceNane - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Description

The name of the device to be programmed.

The name of the serial port connected to the STK500-
High Voltage. On windows hosts you can right click to

select from the set of COM ports available.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

280

CrossWorks for AVR Reference Manual

CrossStudio User Guide

STK500-ISP Target Interface

Connection

Property
Device Name

devi ceNane - String

Port Name
por t Nane - String

Use Target As Device Name
useTar get AsDevi ceNane - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Device Type
devi ce_i d - String

Description

The name of the device to be programmed.

The name of the serial port connected to the STK500-
High Voltage. On windows hosts you can right click to

select from the set of COM ports available.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The detected type of the currently connected target
device.

281

CrossWorks for AVR Reference Manual CrossStudio User Guide

AVRISP Target Interface

Connection

Property Description

Device Name

. . The name of the device to be programmed.
devi ceNane - String

ISP Freq (Actual) The actual ISP frequency which must be less than 1/4
Act ual | spFr eq - String of the target frequency.

ISP Freq (Desired) The desired ISP frequency which must be less than 1/4
| spFr eq - String of the target frequency.

The name of the serial port connected to the AVRISP.
On windows hosts you can right click to select from
the set of COM ports available.

Port Name
port Name - String

Use Target As Device Name

. Use the projects Target property as the device name.
useTar get AsDevi ceName - Boolean

Current

Property Description

Hardware Version

. . The hardware version of the target interface.
har dwar eVer si on - String

Software Version

. . The software version of the target interface.
sof t war eVer si on - String

Target

Property Description
Device Type The detected type of the currently connected target
devi ce_i d - String device.

282

CrossWorks for AVR Reference Manual

CrossStudio User Guide

AVRISP mkll Target Interface

Connection

Property

Device Name
devi ceNane - String

ISP Freq (Actual)
Act ual | spFr eq - String

ISP Freq (Desired)
| spFr eq - String

Use Target As Device Name
useTar get AsDevi ceName - Boolean

Current

Property

Hardware Version
har dwar eVer si on - String

Software Version
sof t war eVer si on - String

Target

Property

Connection
Connect i on - String

Device Type
devi ce_i d - String

Description
The name of the device to be programmed.

The actual ISP frequency which must be less than 1/4
of the target frequency.

The desired ISP frequency which must be less than 1/4
of the target frequency.

Use the projects Target property as the device name.

Description

The hardware version of the target interface.

The software version of the target interface.

Description

The USB serial number of the AVR Dragon to connect
to.

The detected type of the currently connected target
device.

283

CrossWorks for AVR Reference Manual

CrossStudio User Guide

Parallel Port JTAG Target Interface

Connection

Property

External Reset Required
ext er nal Reset Requi r ed - Boolean

Hardware Breakpoints
useHar dwar eBr eakpoi nt s - Boolean

JTAG Cable Type
connect or Type — Enumeration

JTAG Clock Divider
JTAGDI vi der - IntegerRange

JTAG Clock Divider (Debug)
JTAGDI vi der 2 - IntegerRange

Parallel Port
por t Nane - String

Parallel Port Sharing
port Shari ng - Boolean

Description
Apply external reset on connect.

Always use hardware breakpoints i.e. don't set
software breakpoints.

Is the JTAG cable an ARM 20 Pin or a AVR/MAXQ 10
Pin.

The JTAG clock delay

The JTAG clock delay when in debug mode on a JTAG
Mega device.

The name of the parallel port to use.

Specifies whether sharing of the parallel port with
other device drivers or programs is permitted.

284

CrossWorks for AVR Reference Manual CrossStudio User Guide

CrossConnect JTAG Target Interface

Connection

Property Description

External Reset Required

. Apply external reset on connect.
ext er nal Reset Requi r ed - Boolean

Hardware Breakpoints Always use hardware breakpoints i.e. don't set
useHar dwar eBr eakpoi nt s - Boolean software breakpoints.
JTAG Clock Divider

The JTAG clock del
JTAGDI vi der - IntegerRange e JTAG clock delay
JTAG Clock Divider (Debug) The JTAG clock delay when in debug mode on a JTAG
JTAGD vi der 2 - IntegerRange Mega device.

Target

Property Description
Connection The USB serial number of the CrossConnect to connect
Connect i on - String to.

285

CrossWorks for AVR Reference Manual CrossStudio User Guide

Arduino Target Interface

Connection

Property Description

Baud Rate

. The speed of the serial communication.
baudRat e - Enumeration

The name of the serial port connected to the Arduino.
On windows hosts you can right click to select from
the set of COM ports available.

Port Name
por t Nane - String

286

CrossWorks for AVR Reference Manual CrossStudio User Guide

Using an external AVR GCC toolchain

You can use CrossStudio for AVR with a third party supplied AVR GCC toolchain. To do this you must start
CrossStudio for AVR from the command line with the -gcc command line option.

crossstudi o -gcc

The location of the AVR GCC toolchain is determined by the global macro AVRGCCDIR. To set this use the Project
> Macros... dialog and specify the AVRGCCDIR value in the global macros editor.

AVRCGCCDI R=C: / W nAVR- 20100110/ bi n

Note that no CrossWorks libraries are usable when CrossStudio for AVR is used in this way.

287

CrossWorks for AVR Reference Manual CrossStudio User Guide

288

CrossWorks for AVR Reference Manual C Compiler User Guide

C Compiler User Guide

CrossWorks C is a faithful implementation of the ANSI and ISO standards for the programming language C. This

manual describes the C language as implemented by the CrossWorks C compiler.

289

CrossWorks for AVR Reference Manual C Compiler User Guide

Command line options

This section describes the command line options accepted by the CrossWorks C compiler.

290

CrossWorks for AVR Reference Manual C Compiler User Guide

-ansi (Warn about potential ANSI problems)

Syntax

-ansi

Description

Warn about potential problems that conflict with the relevant ANSI or ISO standard for the files that are
compiled.

Project property

Compiler Options > Enforce ANSI Checking

291

CrossWorks for AVR Reference Manual C Compiler User Guide

-D (Define macro symbol)

Syntax
-Dname
-Dname=value
Description

You can define preprocessor macros using the -D option. The macro definitions are passed on to the respective
language compiler which is responsible for interpreting the definitions and providing them to the programmer
within the language.

The first form above defines the macro name but without an associated replacement value, and the second

defines the same macro with the replacement value value.

Project property

Preprocessor Options > Preprocessor Definitions

Example

The following defines two macros, SUPPORT_FLOAT with a value of 1 and LITTLE_ENDIAN with no replacement

value.

- DSUPPORT_FLOAT=1 - DLI TTLE_ENDI AN

292

CrossWorks for AVR Reference Manual C Compiler User Guide

-g (Generate debugging information)

Syntax

-9

Description

The -g option instructs the compiler to generate debugging information (line numbers and data type
information) for the debugger to use.

Project property

Build Options > Include Debug Information

293

CrossWorks for AVR Reference Manual C Compiler User Guide

- (Define user include directories)

Syntax

-ldirectory

Description

In order to find include files the compiler driver arranges for the compilers to search a number of standard
directories. You can add directories to the search path using the -l switch which is passed on to each of the

language processors.

Project property
Preprocessor Options > User Include Directories

You can specify more than one include directory by separating each directory component with either a comma

or semicolon.

294

CrossWorks for AVR Reference Manual C Compiler User Guide

-J (Define system include directories)

Syntax

-Jdirectory

Description

The -J option adds directory to the end of the list of directories to search for source files included (using
triangular brackets) by the #i ncl ude preprocessor command.

Project property

Preprocessor Options > System Include Directories

You can specify more than one include directory by separating each directory component with either a comma

or semicolon in the property

295

CrossWorks for AVR Reference Manual C Compiler User Guide

-mxmega (Enable XMEGA processor)

Syntax

-mxmega

Description

This option instructs the compiler to generate code for the XMEGA AVR core. By default the compiler generates
code for the standard AVR core. Note that it is not possible to mix code generated for the XMEGA with code
generated for the standard AVR.

Project property

The correct CPU type is selected when you select or change your project's target processor. You can override this
but we strongly discourage you from doing so.

296

CrossWorks for AVR Reference Manual C Compiler User Guide

-m (Set AVR code memory size)

Syntax

-m8k
-m128k
-m8m

Description

This option instructs the compiler to generate code for a standard AVR core with 8 kilobytes, 128 kilobytes, or
8 megabytes of code memory. The compiler uses this information to select the correct size of jump and call
instructions for the selected code size.

Project property

The correct CPU type is selected when you select or change your project's target processor. You can override this
but we strongly discourage you from doing so.

297

CrossWorks for AVR Reference Manual C Compiler User Guide

-msd (Treat double as float)

Syntax

-msd

Description

This option directs the compiler to treat double as float and not to support 64-bit floating point arithmetic.

Project property
Compiler Options > Treat 'double’ as 'float’

It is not possible to set this option on a per-file basis.

298

CrossWorks for AVR Reference Manual C Compiler User Guide

-0 (Set output file name)

Syntax

-o filename

Description

The -0 option instructs the compiler to write its object file to filename.

299

CrossWorks for AVR Reference Manual C Compiler User Guide

-O (Optimize code generation)

Syntax

-Olevel

Description

Optimize at level level which must be between -9 and +9. Negative values of level optimize code space at the
expense of speed, whereas positive values of level optimize for speed at the expense of code space. The '+’ sign

for positive optimization levels is accepted but not required.

The exact strategies used by the compiler to perform the optimization will vary from release to release and are

not described here.

300

CrossWorks for AVR Reference Manual C Compiler User Guide

-Or (Optimize register allocation)

Syntax

-Or{g|1]-}

Description
This selects the way that registers are allocated:

» -Org enables allocation of local variables and addresses of global variables and functions to processor
registers for the lifetime of a function. This form of register allocation will always reduce code size but
may reduce execution speed for some paths through the function.

* -Orl enables allocation of local variables (but not addresses of global variables and functions) to processor
registers for the lifetime of a function. Register allocation of locals to processor registers will always
reduce code size and increase execution speed.

» -Or- disables all allocation of values and addresses to processor registers.

Project property

Code Generation Options > Register Allocation

301

CrossWorks for AVR Reference Manual C Compiler User Guide

-Rc (Set default code section name)

Syntax

-Rc,name

Description

The -Rc command line option sets the name of the section that the compiler emits code into. If no other options

are given, the default name for the section is CODE.

You can control the name of the code section used by the compiler within a source file using the #pragma

codeseg or by using CrossStudio to set the Code Section Name property of the file or project.

Project property

Section Options > Code Section Name

302

CrossWorks for AVR Reference Manual C Compiler User Guide

-Rd (Set default initialized data section name)

Syntax

-Rd,name

Description

The -Rd command line option sets the name of the section that the compiler emits code into. If no other options

are given, the default name for the section is IDATAO.

You can control the name of the code section used by the compiler within a source file using the #pragma

dataseg or by using CrossStudio to set the Data Section Name property of the file or project.

Project property

Section Options > Data Section Name

303

CrossWorks for AVR Reference Manual C Compiler User Guide

-Ri (Set default ISR section name)

Syntax

-Ri,name

Description

The -Ri command line option sets the name of the section that the compiler emits interrupt service routine (ISR)

code into. If no other options are given, the default name for the section is ISR.

You can control the name of the code section used by the compiler within a source file using the #pragma

isrseg or by using CrossStudio to set the ISR Section Name property of the file or project.

Project property

Section Options > ISR Section Name

304

CrossWorks for AVR Reference Manual C Compiler User Guide

-Rk (Set default read-only section name)

Syntax

-Rk,name

Description

The -Rk command line option sets the name of the section that the compiler emits read-only data into. If no

other options are given, the default name for the section is CONST.

You can control the name of the code section used by the compiler within a source file using the #pragma

constseg or by using CrossStudio to set the Constant Section Name property of the file or project.

Project property

Section Options > Constant Section Name

305

CrossWorks for AVR Reference Manual C Compiler User Guide

-Rv (Set default vector section name)

Syntax

-Rv,name

Description

The -Rv command line option sets the name of the section that the compiler emits interrupt vectors into. If no

other options are given, the default name for the section is INTVEC.

You can control the name of the code section used by the compiler within a source file using the #pragma

vectorseg or by using CrossStudio to set the Vector Section Name property of the file or project.

Project property

Section Options > Vector Section Name

306

CrossWorks for AVR Reference Manual C Compiler User Guide

-Rz (Set default zeroed section name)

Syntax

-Rz,name

Description

The -Rz command line option sets the name of the section that the compiler emits zero-initialized data into. If no

other options are given, the default name for the section is UDATAO.

You can control the name of the code section used by the compiler within a source file using the #pragma

zeroedseg or by using CrossStudio to set the Zeroed Section Name property of the file or project.

Project property

Section Options > Zeroed Section Name

307

CrossWorks for AVR Reference Manual C Compiler User Guide

-V (Version information)

Syntax

-V

Description

The -V switch instructs the compiler to display its version information.

308

CrossWorks for AVR Reference Manual

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the compiler not to issue any warnings.

Project property

Build Options > Suppress Warnings

309

C Compiler User Guide

CrossWorks for AVR Reference Manual

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the compiler to treat all warnings as errors.

Project property

Build Options > Treat Warnings as Errors

310

C Compiler User Guide

CrossWorks for AVR Reference Manual C Compiler User Guide

Preprocessor predefined symbols

Standard pre-processor symbols
The C preprocessor defines the following macro names:

__DATE
The date of translation of the program unit. This expands to a string constant of the form " Mhm dd yy".

__FILE _

The name of the current source file. _ FI LE___ expands to a string constant.

__LINE__
The line number of the current source line in the current source file. LI NE__ expands to an integer

constant.

__STDC__

The integer constant 1 as CrossWorks C conforms to the ISO/IEC 9899 standard. The integer constant 0

denotes that the implementation does not conform to the relevant standard.

__STDC _HOSTED
The integer constant 0 as CrossWorks C is not a hosted implementation. The integer constant 1 denotes

that the implementation is a hosted implementation.

__STDC VERSI ON__
The integer constant 199409L as CrossWorks C conforms to ISO/IEC 9899:1990 with the changes required
by ISO/IEC 9899/AMD1:1995. For standard C compilers conforming to ISO/IEC 9899:1999, this constant is
199901L.

_TIME__

The time of translation of the program unit. This expands to a string constant of the form " hh: mm ss".

The following macro names are not defined by CrossWorks C as the implementation is still in the process of

being upgraded to the 1999 standard.

. _STDC | EC 599
« __STDC_| EC 599 COWPLEX__
- __STDC | SO 10646__

Architecture-dependent pre-processor symbols

The following symbols are set by the compiler (and, in fact, the assembler also) so that you can conditionally-

compile your code.

311

CrossWorks for AVR Reference Manual

-mxmega

e AVR XMEGAdefinedto 1.

-m8k

e AVR FLASH SI ZE defined to 8

-m128k

« __AVR FLASH_SI ZE defined to 128

-m8m

« __AVR FLASH_SI ZE defined to 8192

-mboot

* __ AVR BOOTLQOADERdefined.

-msd

* __SHORT_DOUBLES defined.

312

C Compiler User Guide

CrossWorks for AVR Reference Manual C Compiler User Guide

Pragmas

The C #pragma mechanism allows vendors to provide additional capabilities that extend or enhance the C
standard. CrossWorks offers a number of pragmas to control section placement and compatibility with other
products.

#pragma codeseg
Set the section name used for code.

#pragma dataseg
Set the section name used for initialized data.

#pragma constseg
Set the section name used for read-only data.

#pragma zeroedseg
Set the section name used for uninitialized, zeroed data.

#pragma vectorseg
Set the section name used for interrupt vector tables.

#pragma isrseg
Set the section name used for interrupt service routine code.

#pragma vector
Define a vector for an interrupt function.

313

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma codeseg

Synopsis

#pragma codeseg("name" | default)

Description

The codeseg pragma sets the name of the section that the compiler emits code into. If the argument to the
codeseg pragma is a string, a section of that name is created and the compiler emits code for all function
definitions following the pragma into that section. If the argument to codeseg is the reserved word default, the
compiler selects the default code section name.

The default code section name, if no other directives have been given, is CODE. You can change the default code
section name for the whole compilation unit by using the -Rc (Set default code section name) command-line

option or by setting the Code Section Name property of the file or project.

314

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma dataseg

Synopsis

#pragma dataseg("name" | default)

Description

The dataseg pragma sets the name of the section that the compiler emits initialized data into. If the argument
to the dataseg pragma is a string, a section of that name is created and the compiler emits initialized data for all
following initialized statics or externals following the pragma into that section. If the argument to dataseg is the
reserved word default, the compiler selects the default data section name.

The default data section name, if no other directives have been given, is | DATAQ. You can change the default
data section name for the whole compilation unit by using the -Rd (Set default initialized data section name)
command-line option or by setting the Data Section Name property of the file or project.

315

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma constseg

Synopsis

#pragma constseg("name" | default)

Description

The constseg pragma sets the name of the section that the compiler emits read-only data into. If the argument
to the constseg pragma is a string, a section of that name is created and the compiler emits all following read-
only data into that section. If the argument to constseg is the reserved word default, the compiler selects the
default read-only section name.

The default read-only data section name, if no other directives have been given, is CONST. You can change the
default read-only data section name for the whole compilation unit by using the -Rk (Set default read-only
section name) command-line option or by setting the Const Section Name property of the file or project.

316

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma zeroedseg

Synopsis

#pragma zeroedseg("'name" | default)

Description

The zeroedseg pragma sets the name of the section that the compiler emits zero-initialized data into. If the
argument to the zeroedseg pragma is a string, a section of that name is created and the compiler emits zero-
initialized data for all uninitialized statics or externals following the pragma into that section. If the argument to
zeroedseg is the reserved word default, the compiler selects the default zeroed data section name.

The default zeroed data section name, if no other directives have been given, is UDATAQ. You can change the
default zeroed data section name for the whole compilation unit by using the -Rz (Set default zeroed section
name) command-line option or by setting the Zeroed Section Name property of the file or project.

317

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma vectorseg

Synopsis

#pragma vectorseg("name" | default)

Description

The zeroedseg pragma sets the name of the section that the compiler emits interrupt vector tables into. If the
argument to the vectorseg pragma is a string, a section of that name is created and the compiler emits interrupt
vector tables for all following interrupt functions into that section. If the argument to vectorseg is the reserved
word default, the compiler selects the default interrupt vector table section name.

The default interrupt vector table section name, if no other directives have been given, is | NTVEC. You can
change the default interrupt vector tables section name for the whole compilation unit by using the -Rv (Set
default vector section name) command-line option or by setting the Vector Section Name property of the file
or project.

318

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma isrseg

Synopsis

#pragma isrseg("name" | default)

Description

The isrseg pragma sets the name of the section that the compiler emits interrupt service routine code into. If
the argument to the isrseg pragma is a string, a section of that name is created and the compiler emits code
for all interrupt functions following the pragma into that section. If the argument to isrseg is the reserved word
default, the compiler selects the default code section name.

The default ISR code section name, if no other directives have been given, is | SR You can change the default
interrupt code section name for the whole compilation unit by using the -Ri (Set default ISR section name)
command-line option or by setting the ISR Section Name property of the file or project.

319

CrossWorks for AVR Reference Manual C Compiler User Guide

#pragma vector

Synopsis

#pragma vector=expr

Description

The vector pragma sets the interrupt service routine vector for the following function definition, if that function

is an interrupt function.

Example

#pragma vect or =14*2

void isr(void) __interrupt
{

/1 Interrupt service routine code
}

This form of providing an interrupt vector makes CrossWorks C compatible with IAR's C compiler and the vast

range of example code written for that compiler.

320

CrossWorks for AVR Reference Manual C Compiler User Guide

Section control

The CrossWorks C compiler separates generated code and data into sections so that they can be individually
placed by the linker. It's the linker's job to combine, and make contiguous, sections of the same name from
multiple object files.

You can change the sections that the compiler uses for individual data objects or functions using appropriate
pragmas. The default section names and their use by the compiler are:

» CODE contains code generated for functions. See -Rc (Set default code section name).

I SR contains code generated for interrupt service routines that may need special placement. See -Ri (Set

default ISR section name).

| DATAO contains static initialized data. See -Rd (Set default initialized data section name).

UDATAQ contains static zeroed (uninitialized) data. See -Rz (Set default zeroed section name).

» CONST contains read-only constant data. See -Rk (Set default read-only section name).

I NTVEC contains interrupt vector tables data. See -Rv (Set default vector section name).

321

CrossWorks for AVR Reference Manual C Compiler User Guide

Section overrides

The pragmas that allow you to change the default section names may well be a little cumbersome for some
uses. The CrossWorks C compiler allows you to specify the section name to use for both data items and functions

using the __at keyword.

Placing data objects in sections
To define the variable config and place it in the section CONFIGVARS, you would use:
int config __at "CONFI GVARS";

This will allocate space for the variable config in the CONFIGVARS section.

Placing functions in sections

To define the function startup and place it in section BOOTSTRAP, you would use:

void startup(void) __ at "BOOTSTRAP"
{

/| Bootstrap code

}

322

CrossWorks for AVR Reference Manual C Compiler User Guide

Absolute data object placement

In addition to placing data into sections, the CrossWorks C compiler allows you to specify an absolute address for
avariable using __at:

int version __at 0x200

Note that this form of declaration does not allocate space for the variable. That is, the variable is not passed to the
linker for placement and data will not flow around the variable using the linker's intelligent placement schemes.
This syntax is provided only as a way to make code more readable and is somewhat equivalent to...

#define version (*(int *)0x200)

...but without using the C preprocessor.

323

CrossWorks for AVR Reference Manual C Compiler User Guide

Type-based enumerations

CrossWorks offers type-based enumerations, an extension to the I1SO standard to set the size of enumeration
types. You can use type-based enumerations to select the base type for your enumeration. Using type-based
enumeration you can reduce the size of your application by using enumerations that match the size of the
underlying data rather than using the default int-based enumeration.

Syntax

enum [base-type]

Where base-type is either a plain, signed, or unsigned variant of char, int, long, or long long.

Example

Use an 8-bit unsigned character to define an enumeration that maps onto a single byte and map that onto a

byte at location 10014:

enum unsi gned char TOCN_t {

M = 1<<0,
ML = 1<<I,
CT = 1<<2,
GATE = 1<<3,
TRO = 1<<4,
TFO = 1<<5,
TOM = 1<<6,
ETO = 1<<7

}s

enum TOCN_t TOCN __at 0x100;

324

CrossWorks for AVR Reference Manual C Compiler User Guide

Code-space strings

Harvard machines such as the Atmel AVR and Dallas Semiconductor MAXQ require special compiler support
for addressing data held in code space—and so CrossWorks provides the __code keyword to store data in code
space rather than data space. This does, however, lead to some inconvenient programming when dealing with
constant string data because each string needs to be named and stored into code space using __code. The
CrossWorks compiler offers a solution using the C qualifier to store strings into code space rather than data

space. The type of a ‘C’-qualified string is __code const char *.

Example
Without using C-qualified strings you would write:

voi d sign_on(void)

{
static const _ code char nmessage[] = "Tynadyne wi per w dget, v1.0";
printf_c(nmessage);

}
Using the CrossWorks extension you can write:

voi d sign_on(void)

{
printf_c(C'Tynadyne w per wi dget, v1.0");
}

325

CrossWorks for AVR Reference Manual C Compiler User Guide

Special functions

This section describes the way in which code is generated and the models that the CrossWorks compiler uses.

326

CrossWorks for AVR Reference Manual C Compiler User Guide

Interrupt functions

It's common for embedded systems to be real time systems which need to process information as it arrives
and take some action immediately. Processors provide interrupts specifically for this, where normal program
execution is suspended whilst an interrupt service routine is executed, finally returning to normal program

execution when the interrupt is finished.
Interrupt sources are chip-specific and you can find the exact interrupt sources from each processor's data sheet.

You define an interrupt function just like a standard C function, but in addition you tell the compiler that it is an
interrupt function and optionally which vectors to use. The compiler generates the correct return sequence for
the interrupt and saves any registers that are used by the function. Note that the name of the interrupt function

is not significant in any way.

Initializing a single interrupt vector

This constructs an interrupt function called handle_timer_interrupt and initializes TIMER_VECTOR in the

processor's interrupt vector table to point to handle_timer_interrupt.

void handl e_timer_interrupt(void) __interrupt[TlI MER VECTCR]

{
/* Handl e interrupt here */

}

Initializing multiple interrupt vectors

This constructs an interrupt function called handle_spurious_interrupt and initializes the three vectors
UARTORX_VECTOR, UARTO_TX_VECTOR, and ACCVIO_VECTOR in the processor's interrupt vector table to

point to handle_spurious_interrupt.

voi d

handl e_spurious_interrupt(void) __interrupt[UARTO_RX VECTOR,
UARTO_TX_VECTOR,
ACCVI O_VECTCR]

{
/* Handl e interrupt here */

}

A plain interrupt handler

This constructs an interrupt function called handle_pluggable_interrupt but does not initialize the interrupt
vector table. This style of interrupt function is useful when you plug different interrupt routines into a RAM-

based table to dynamically change interrupt handlers when the application runs.

327

CrossWorks for AVR Reference Manual

voi d handl e_pl uggabl e_i nterrupt (void) __interrupt

{
/* Handl e interrupt here */

}

Alternative form

C Compiler User Guide

The CrossWorks C compiler provides an alternative form to specify interrupt vectors; see #pragma vector.

328

CrossWorks for AVR Reference Manual C Compiler User Guide

Monitor functions

In embedded systems it's common for access to critical system structures to be protected by disabling and the
enabling interrupts so that interrupt service routines are not executed during the update. You can write your

own code to do this using the __disable_interrupt and __set_interrupt intrinsic functions like this:

voi d update_critical _resource(void)

{
/! Disable interrupts and save previous interrupt enable state
unsigned state = __disable_interrupt();

/1 Update your critical resource here...
task_list = task_list->next; // just an exanple

/] Restore interrupt state on entry
__set_interrupt(state);

}

If you disabled and enabled interrupts using __disable_interrupt and __enable_interrupt, rather than using
__disable_interrupt and __set_interrupt as above, calling the function with interrupts disabled would re-
enable interrupts on return which is usually not what you want. If you write your code in the same fashion as
above you can call the function and be sure that it's run with interrupts disabled and that on return the interrupt

enable state is as it was before the call.

Because this type of function is so common, CrossWorks provides the __monitor keyword. Using __monitor the
example above becomes:
voi d update_critical _resource(void) _ nonitor

/1 Update your critical resource here...

task_list = task_list->next; // just an exanple

}

329

CrossWorks for AVR Reference Manual C Compiler User Guide

Top-level functions

Usually the compiler saves and restores registers in a function according to the calling convention and, in almost
all cases, this is exactly what you want. However, there are some cases where it's just not necessary to save
registers on entry to a function as it is a top-level function and will not be called directly from code. The compiler
can't easily detect these cases so you can point them out using the __toplevel attribute.

The most common function, main, is a good example of a top-level function: it's only called by the runtime
startup code, runs, and usually never terminates in an embedded system. As such, CrossWorks automatically
marks main as a top-level function which instructs the code generator not to save and restore registers on entry

and exit because their values are not required.

Another good example is top-level task functions when you're using the CrossWorks tasking library; in this case,
you can safely declare all your task functions with the top-level attribute because none of their registers are
unimportant on entry and exit. Using the top-level attribute in this way will reduce the stack requirement of the
task.

Example

voi d taskl(void *p) _ toplevel

{
}

/'l task code

voi d task2(void *p) _ toplevel
{

}

/'l task code

voi d mai n(voi d)

{
ctl _task_run(& asklTask, 1, taskl, 0, "taskl", sizeof(tasklStack)/sizeof (unsigned),
t ask1St ack) ;
ctl _task run(& ask2Task, 1, task2, 0, "task2", sizeof(task2Stack)/sizeof (unsigned),
t ask2St ack) ;
}

330

CrossWorks for AVR Reference Manual C Compiler User Guide

External naming convention

CrossWorks makes a distinction between the low-level symbol names used for C objects and the names of the C
objects themselves. The CrossWorks compiler always prepends an underscore character ‘_’ to the name of any

externally visible C function or variable when constructing its low-level symbol name.

For example, an external variable declared at the C level ‘extern int x’ will be accessible at the assembly level

using the name ’_x'.

When compiling for the MSP430X in the 1TMB addressing mode using -m1m, function pointers are still
represented in a 16-bit pointer but are ‘thunked’. That is, the compiler uses an indirect call through the 16-bit
address to anywhere in the 20-bit address range.

As a C programmer this has no impact on the way that you write your code, but if you are passing function
pointers to assembly code or are dealing with function pointers at a low-level, such as porting an RTOS, then you

need to be aware that function pointers are not held as 20-bit addresses.

331

CrossWorks for AVR Reference Manual C Compiler User Guide

Data representation

All data items are held in the native byte order of the AVR processor. The plain character type is signed by
default. The floating-point types float and double are implemented as 32-bit and 64-bit IEEE floating-point.

Data Type Size in bytes Alignment in bytes
char, signed char, and unsigned 1 1
char

int and unsigned int 2 1
short and unsigned short 2 1
long and unsigned long 4 1
long long and unsigned longlong 8 1
float and double (compiled with- 4 1
msd)

double and long double 8 1
type * (pointer) 2 1
enum (enumeration) 2 1

332

CrossWorks for AVR Reference Manual C Compiler User Guide

Register use

The compiler partitions the AVR general purpose registers into three sets.

» The registers in the first set, R20 through R27, are used for parameter passing and returning function
results and are not preserved across functions calls.

» Theregisters in the second set, R1 and R30-R31 are used for temporary results and are not preserved
across functions calls.

* Theregisters in the third set, R2-R19, are used for register variables, working storage, and temporary

results and must be preserved across function calls.

Fixed registers

The C compiler requires that RO be zero when entering a C function. It can momentarily take non-zero values,
but must be zero at the point you call a C function. The standard entry code that the C compiler lays down for an
interrupt function sets RO to zero by default.

Parameter passing

The compiler uses the scratch registers to pass values to the called routine for all parameters of simple data type.
If there are not enough scratch registers to hold all parameter data to be passed to the called routine, the excess
data are passed on the stack.

Simple data types which require more than a single word of storage are passed in register pairs or register
quads. The register requirement for the basic data types are:

* The eight-bit typechar requires one register.

» The 16-bit types int, short, enumerations, and any pointer type require two registers.

* The 32-bit types long and float (and double if compiled withdouble equivalent to float) require four
registers.

* The 64-bit types long long and double require eight registers.

Allocation of the scratch registers for function calls proceeds in a left-to-right fashion, starting with register R27
and progressing in reverse order to R2. The compiler tries to fit each parameter into the scratch registers and,
if it can, allocates those registers to the incoming parameter. If the parameter requires more scratch registers
than are free, it is noted and is passed on the stack. All parameters which are passed on the stack are pushed in

reverse order.

Function return values

The compiler uses the scratch registers to return values to the caller.

333

CrossWorks for AVR Reference Manual C Compiler User Guide

* An eight-bit type is returned in register R27.

* A 16-bit type is returned in R27-R26 with R27 holding the most significant byte of the result and R26 the
least-significant byte.

* A 32-bit type is returned in the register quad R27-R24, with R27 holding the most-significant byte of the
result and R24 the least-significant byte.

* A 64-bit type is returned in the register set R27-R20 with R27 holding the most-significant byte of the
result and R20 the least-significant byte.

Examples

This section contains some examples of the calling convention in use.

Example #1

void funl(char u, char v);

Reading from left to right, the parameter u is passed in register R27 and v is passed in R26. The scratch registers
R20 through R25 are not used to pass parameters and can be used in fun1 without needing to be preserved.
Example #2

void funl(char u, int v, char w;

The parameter u is passed in register R27. Because v requires two registers to hold its value it is passed in the
register pair R26-R25 with R26 holding the high part of v and R24 the low part. The final parameter w is passed
in R23.

Example #3

void funl(int u, long v, int w, int x);

The parameter u is passed in register pair R27-R26. Because v requires four registers to hold its value, it is passed
in the register quad R25-R22 with R25 holding the high byte of v and R22 the low byte. Parameter w is passed

in register pair R21-R20. As all scratch registers are now used, x is placed onto the stack.

Example #4

void funl(int u, long v, long w;

The parameter u is passed in register pair R27-R26. Because v requires four registers to hold its value it is passed
in the register quad R25-R22. When considering w, there are only two free registers left for passing parameters,
R21 and R20. The compiler cannot fit w into this register pair and therefore places the argument onto the stack

—the compiler does not split the value into two and pass half in registers and half on the stack.

334

CrossWorks for AVR Reference Manual C Compiler User Guide

Example #5

void funl(int u, long v, long w, int x, int y);

The parameter u is passed in registers R27-R26. The parameter v is passed in the register quad R25-R22. When
considering w, there are only two free parameter passing registers left, R21 and R20. The compiler cannot fit

w into the register pair R21-R20 and therefore places the argument onto the stack. When considering x, the
compiler sees that R21 and R20 are unused and so passes X in the register pair R21-R20. All parameter registers
are used when considering y, so the argument is placed onto the stack. The parameters w and x are pushed onto
the stack before the call and are pushed in reverse order, with y pushed before w.

This example shows two parameters, w and y, that are passed to the called routine on the stack, but they are
separated by a parameter x that is passed in a register.

335

CrossWorks for AVR Reference Manual C Compiler User Guide

336

CrossWorks for AVR Reference Manual Assembler User Guide

Assembler User Guide

This manual is a reference for the CrossWorks assembler. It does not explain the architecture of the process

machine or teach how to construct an application in assembly code.

The assembler converts assembly source code to relocatable object code in object code files. The linker combines

object code files to form an application containing the final instructions.

337

CrossWorks for AVR Reference Manual Assembler User Guide

Command-line syntax

To invoke the assembler, use the following syntax:
has [option...] file

file is the source file to assemble and option is a command-line option. Options are case sensitive and cannot be
abbreviated.

In this section

338

CrossWorks for AVR Reference Manual Assembler User Guide

-D (Define macro symbol)

Syntax
-Dname
-Dname=value
Description

This option instructs the assembler to define a symbol for the compilation unit. If no value is given, the symbol is

assigned the value -1.

339

CrossWorks for AVR Reference Manual Assembler User Guide

-g (Generate debugging information)

Syntax
-9
Description

The -g option instructs the assembler to insert debugging information into the output file. This allows you to
single step through assembly language files at the source level, with all its annotation, rather than studying a
disassembly of the code. And declared, typed data is displayed rather than simply its addresses.

340

CrossWorks for AVR Reference Manual Assembler User Guide

- (Define user include directories)

Syntax
-ldirectory

The -1 option adds directory to the end of the list of directories, to search for source files included (using
quotation marks) by the INCLUDE and INCLUDEBIN directives.

341

CrossWorks for AVR Reference Manual Assembler User Guide

-J (Define system include directories)

Syntax
-Jdirectory

The -J option adds directory to the end of the list of directories, to search for source files included (using
triangular brackets) by the INCLUDE and INCLUDEBIN directives.

342

CrossWorks for AVR Reference Manual Assembler User Guide

-0 (Set output file name)

Syntax

-o filename

Description

The -0 option instructs the assembler to write its object file to filename.

343

CrossWorks for AVR Reference Manual Assembler User Guide

-Rc (Set default code section name)

Syntax

-Rc,name

Description

The -Rc command-line option sets the name of the section the assembler uses with the TEXT directive. If it is not
specified, the default name for the section is CODE.

Project property

Section Options > Code Section Name

344

CrossWorks for AVR Reference Manual Assembler User Guide

-Rd (Set default initialized data section name)

Syntax

-Rd,name

Description

The -Rd command-line option sets the name of the section the assembler uses for the DATA directive. If it is not
specified, the default name for the section is IDATAO.

Project property

Section Options > Data Section Name

345

CrossWorks for AVR Reference Manual Assembler User Guide

-Ri (Set default ISR section name)

Syntax

-Ri,name

Description

The -Ri command-line option sets the name of the section the assembler uses for the ISR directive. If it is not

specified, the default name for the section is ISR.

Project property

Section Options > ISR Section Name

346

CrossWorks for AVR Reference Manual Assembler User Guide

-Rk (Set default read-only section name)

-Rk,name

Description

The -Rk command-line option sets the name of the section the assembler uses for the CONST directive. If it is not
specified, the default name for the section is CONST.

Project property

Section Options > Constant Section Name

347

CrossWorks for AVR Reference Manual Assembler User Guide

-Rv (Set default vector section name)

-Rv,name

Description

The -Rv command-line option sets the name of the section the assembler uses for the VECTORS directive. If it is
not specified, the default name for the section is INTVEC.

Project property

Section Options > Vector Section Name

348

CrossWorks for AVR Reference Manual Assembler User Guide

-Rz (Set default zeroed section name)

-Rz,name

Description

The -Rz command-line option sets the name of the section the assembler uses for the BSS directive. If it is not
specified, the default name for the section is UDATAO.

Project property

Section Options > Zeroed Section Name

349

CrossWorks for AVR Reference Manual Assembler User Guide

-V (Version information)

Syntax

-V

Description

The -V switch instructs the assembler to display its version information.

350

CrossWorks for AVR Reference Manual

-w (Suppress warnings)

Syntax

-w

Description

This option instructs the assembler not to issue any warnings.

Project property

General Options > Suppress Warnings

351

Assembler User Guide

CrossWorks for AVR Reference Manual

-we (Treat warnings as errors)

Syntax

-we

Description

This option directs the assembler to treat all warnings as errors.

Project property

General Options > Treat Warnings as Errors

352

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

Source format

A statement is a combination of mnemonics, operands, and comments that defines the object code to be

created at assembly time. Each line of source code contains a single statement.

Assembler source lines

Assembler statements take the form:
[label] [operation] [operands] [comment]

All fields are optional, although the operand or label fields may be required if certain directives or instructions
are used in the operation field.

Label Field

The label field starts at the left of the line, with no preceding spaces. A label name is a sequence of alphanumeric
characters, starting with a letter. You can also use the dollar sign '$' and underline character'_"in label names. A
colon may be placed directly after the label, or it can be omitted. If a colon is placed after a label, it defines that
label to have the value of the location counter in the current section.

Operation field

The operation field contains either a machine instruction or an assembler directive. You must write these in
either all uppercase or all lowercase—mixed case is not allowed. The operation field must not start at the
leftmost position of the line; at least one space must precede it, if there is no label field. At least one space must
separate the label field and the operation field.

Operand field

The contents of the operand depend upon the instruction or directive in the operation field. Different
instructions and directives have different operand field formats. Please refer to the specific directive
documentation for details of the operand field.

Comment field

The comment field is optional. It contains information that is not essential to the assembler but is useful for

documentation. The comment field must be separated from any preceding fields by at least one space.

Comments

To help others better understand some particularly tricky piece of code, you can insert comments into the
source code. Comments are informational and have no significance for the assembler. They come in two forms:

single-line comments and multi-line comments.

353

CrossWorks for AVR Reference Manual Assembler User Guide

Single-line comments

A single-line comment is introduced either by the single character ; or by the two consecutive characters //.

Syntax

// character...

; character...

The assembler ignores all characters from the comment introducer to the end of the line. This type of comment

is particularly good when you want to comment a single assembler line.

Multi-line coomments

A multi-line comment resembles a standard C comment, it is introduced by the characters /* and is terminated
by */.

Syntax

/* character... */

Anything between these delimiters is ignored by the assembler. You can use this type of comment to place large

amounts of commentary, such as copyright notices or functional descriptions, into your code.

354

CrossWorks for AVR Reference Manual Assembler User Guide

Types

In contrast to most assemblers, the CrossWorks assembler fully understands data types. The most well-known
and widely used assembler that uses data typing extensively is Microsoft's MASM and its many clones. If you've
used MASM, you should be comfortable with the concept of data types in an assembler and with the CrossWorks
implementation of data typing.

If you haven't used MASM, you may wonder why data typing should be put into an assembler, given that many
assembly programs are written without the help of data types. But there are many good reasons to do so, even
without the precedent set by Microsoft, and the two most valuable benefits are:

* The ability to catch potential or real errors at assembly time rather than letting them go undetected until
applications are deployed.

 Data typing is an additional and effective source of program documentation, describing the way data are
grouped and represented.

We don't expect you to fully appreciate the usefulness of assembly-level data typing until you use it in an
application and gain first-hand experience of both the benefits mentioned above. Of course, it's still possible to
write (almost) typeless assembly code using the CrossWorks assembler, if you should wish to do so, but effective
use of data typing is a real programmer aid when writing code. Lastly, we should mention another important
benefit data typing brings: the interaction between properly typed assembly code and the debugger. If you
correctly type your data, the debugger will present the values held in memory, using a format based on the type
of the object rather than as a string of hexadecimal bytes. Having source-level debugging information displayed
in a human-readable format is another way to improve productivity.

355

CrossWorks for AVR Reference Manual

Built-in types

Assembler User Guide

The CrossWorks assembler provides a number of built-in or predefined data types. They correspond to those in

a high-level language such as C. You can use them to allocate data storage; for instance, the following allocates

one byte of data for the count symbol:

count DV BYTE

The directive DV allocates one byte of space for count in the current section and sets count's type to BYTE.

Type name Size in bytes

BYTE 1

WORD processor-dependent
LONG 4

CHAR 1

ADDR processor-dependent

356

Description
Unsigned 8-bit byte

Unsigned word, dependent upon
processor word size

Unsigned 32-bit word
8-bit character

Address

CrossWorks for AVR Reference Manual Assembler User Guide

Array types

You can declare arrays of any predefined or user-defined type. Arrays are used extensively in high-level
languages; therefore, we decided they should be available in the CrossWorks assembler for easier integration
with C.

An array type is constructed by specifying the number of array elements in brackets after the data type.

Syntax
type [array-size]

This declares an array of array-size elements, each of data type type. The array size must be an absolute constant
known at assembly time.

Example
The type...
BYTE] 8]

...declares an array of eight bytes.

357

CrossWorks for AVR Reference Manual Assembler User Guide

Pointer types

You can declare pointers to types, as in most high-level languages.

Syntax
type PTR

This declares a pointer to the data type type.

Example
The type...
CHAR PTR

...declares a pointer to a character. The built-in type ADDR is identical to the type BYTE PTR.

358

CrossWorks for AVR Reference Manual Assembler User Guide

Structure types

Using the STRUC, UNION, and FIELD directives, you can define data items that are grouped together. Such a
group is called a structure and can be thought of in the same way as a structure or union in C. Structured types
are bracketed between STRUC and ENDSTRUC, and should contain only FIELD directives; similarly, unions are
bracketed between UNION and ENDUNION, and should only contain FIELD directives.

Example
We could declare a structure type called Amount that has two members, Dollars and Cents, like this:

Amount STRUC

Dol I ars FI ELD LONG

Centse FIELD BYTE
ENDSTRUC

The field Dollars is declared to be of type LONG and Cents is of type BYTE (so we can count lots of Dollars, and a
small amount of loose change).

In structures, fields are allocated one after another, increasing the size of the structure for each field added. For a
union, all fields are overlaid, and the size of the union is the size of the largest field within the union.

Example

For a 32-bit, big-endian machine, we could overlay four bytes over a 32-bit word like this:

Wor d UNI ON

asWrd FI ELD WORD

asBytes FI ELD BYTE[4]
ENDUNI ON

The most useful thing about user-defined structures is that they act like any built-in data type, so you can

allocate space for variables of the structure type:

Bal ance DV Anmount

Here we've declared enough storage for the variable Balance to hold an Amount, and the assembler (and

debugger) knows that Balance is of type Amount.

359

CrossWorks for AVR Reference Manual Assembler User Guide

Compilation units and libraries

When applications grow large, they are usually broken into smaller, manageable pieces called compilation
units. Each piece is compiled separately, then the pieces are stitched together by the linker to produce the final

application.

When you partition a application into separate compilation units, you will need to indicate how a symbol
defined in one unit is referenced by the code in other units. This section will show how to declare exported and

imported symbols that can be used in more than one unit.

When building applications, you often find pieces of code that can be reused in other applications. Rather than

duplicating such source code, you can package these units into a library.

The CrossWorks tools were designed to be flexible and let you to easily write space-efficient programs using
libraries and separate compilation. To that end, the assembler-and-linker combination provides a number of

features not found in many compilation systems.

* Optimum-sized branches — The linker automatically resizes branches to labels too far away to be
reached by a branch instruction. This is completely transparent to the programmer—when you use
branch instructions, your linked program will always use the smallest possible branch. This capability is

deferred to the linker so even branches across compilation units are optimized.

* Removing dead code and data — The most important feature of the linker is its ability to leave
unreferenced code and data out of the final application. The linker discards all code and data fragments

that cannot be reached from any entry symbols.

* Whole-program optimization — The linker can optimize the application as a whole, rather than on a per-

function or per-compilation-unit basis.

360

CrossWorks for AVR Reference Manual Assembler User Guide

Directive reference

This section describes the directives supported by the assembler.

361

CrossWorks for AVR Reference Manual Assembler User Guide

ALIGN

Syntax
ALIGN type | number

The operand given after the directive defines the alignment requirement. If a type is given, the location counter
is adjusted to be divisible by the size of the type with no remainder. If a number is given, the location counter is

number

adjusted to be divisible by 2 with no remainder.

Example

ALI GN LONG

This aligns the location counter to lie on a 4-byte boundary (because the type LONG is 4 bytes in size).

Example

ALIGN 3

This aligns the location counter to lie on an 8-byte boundary (because 23 equals 8).

362

CrossWorks for AVR Reference Manual

BREAK

Syntax

BREAK
SEGEND

Description

Assembler User Guide

The SEGEND and BREAK directives start a new fragment within the current section. A fragment is set of

instructions the linker will elect to include in its output if a reference is made to one of the instructionsin the

fragment}. If no reference is made to a fragment, the linker will not include that fragment in the output.

363

CrossWorks for AVR Reference Manual Assembler User Guide

BSS

Syntax

BSS

Description

The BSS and ZDATA directives select the default, zeroed data section. The section is named UDATAO unless it

has been renamed via the -Rz command-line option.

364

CrossWorks for AVR Reference Manual Assembler User Guide

CODE

Syntax

CODE

Description

The CODE and TEXT directives select the default code section. The section is named CODE unless it has been

renamed via the -Rc command-line option.

365

CrossWorks for AVR Reference Manual Assembler User Guide

CONST

Syntax

CONST

Description

The CONST directive selects the default, read-only data section. The section is named CONST unless it has been

renamed via the -Rk command-line option.

366

CrossWorks for AVR Reference Manual Assembler User Guide

DATA

Syntax

DATA

Description

The DATA directive selects the default, initialized-data section. The section is named IDATAO unless it has been

renamed via the -Rk command-line option.

367

CrossWorks for AVR Reference Manual

DB

Syntax

DB initializer [, initializer]...

Description

A synonym for DC.B, see DC.B.

368

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

DC.B

Syntax

DC.B initializer [, initializer]...

Description

The DC.B directive defines an object as an initialized array of bytes. If the directive is labeled, the label is assigned
the location counter of the current section before the data is placed in that section. If a single initializer is
present, the label's data type is set to BYTE; otherwise, it is set to be a fixed array of BYTE, the bounds of which
are set by the number of elements defined.

Example

Mask DC. B 0x01, 0x03, 0x07, OxOf, Ox1f, Ox3f, Ox7f, Oxff

This defines the label Mask and allocates eight bytes with the given values. The type of Mask is set to BYTE[8],
an array of eight bytes, because eight values are listed.

You use the DB directive to define string data. When the assembler sees a string, it expands it into a series of
bytes and places those into the current section.

Example

Buf Ovfl DC. B 13, 10, "WARNING buffer overflow', 0

This emits the bytes 13 and 10 into the current section, followed by the ASCII bytes comprising the string, and
finally a trailing zero byte.

369

CrossWorks for AVR Reference Manual Assembler User Guide

DC.W

Syntax

DC.W initializer [, initializer]...
DW initializer [, initializer]...
Description

The DC.W directive defines an object as an initialized array of words. If the directive is labeled, the label is
assigned the location counter of the current section before the data is placed in that section. If a single initializer
is present, the label's data type is set to WORD; otherwise, it is set to be a fixed array of WORD, the bounds of
which are set by the number of elements defined.

The number of bytes per word is defined by the target processor. For 32-bit processors, one word is usually four
bytes, and for 8-bit and 16-bit processors, one word is usually two bytes.

Note

The location counter is not aligned before allocating space.

370

CrossWorks for AVR Reference Manual Assembler User Guide

DC.L

Syntax

DC.L initializer [, initializer]...
DL initializer [, initializer]...
Description2

The {DC.L} directive defines an object as an initialized array of longs. If the directive is labeled, the label is
assigned the location counter of the current section before the data is placed in that section. If a single initializer
is present, the label's data type is set to LONG; otherwise, it is set to be a fixed array of LONG values, the bounds
of which are set by the number of elements defined.

Note

The location counter is not aligned before allocating space.

371

CrossWorks for AVR Reference Manual

DL

Syntax

DL initializer [, initializer]...

Description

A synonym for DC.L, see DC.L.

372

Assembler User Guide

CrossWorks for AVR Reference Manual

DS.B

Syntax

DS.Bn
RMB n

Description

Assembler User Guide

These directives generate n bytes of zeros into the current section and adjusts the location counter accordingly.

If the directive is labeled, the label is assigned the location counter of the current section before the space is

allocated in that section. If n is one, the label's data type is set to BYTE; otherwise, it is set to be a fixed array of

BYTE[n] elements.

373

CrossWorks for AVR Reference Manual

DSECT

Syntax

DSECT "section-name"

Description

Assembler User Guide

The DSECT directive creates a new, initialized-data section named section-name. Subsequent data-allocation

directives are directed to this section.

Example

DSECT " CALI BRATI ON'

374

CrossWorks for AVR Reference Manual

DS.L

Syntax

DS.Ln

Description

Assembler User Guide

These directives generate n long words of zeros in the current section and adjust the location counter

accordingly. If the directive is labeled, the label is assigned the location counter of the current section before

the space is allocated. If n is one, the label's data type is set to LONG; otherwise, it is set to be a fixed array of

LONGI(n] elements.

Note

The location counter is not aligned before allocating space.

375

CrossWorks for AVR Reference Manual Assembler User Guide

DS.W

Syntax
DS.Wn

RMW n
Description

These directives generate n words of zeros in the current section and adjust the location counter accordingly.
If the directive is labeled, the label is assigned the location counter of the current section before the space is
allocated. If n is one, the label's data type is set to WORD; otherwise, it is set to be a fixed array of WORD[n]
elements.

The number of bytes per word is determined by the target processor. For 32-bit processors, one word is four
bytes; for 8-bit and 16-bit processors, one word is two bytes.

Note

The location counter is not aligned before allocating space.

376

CrossWorks for AVR Reference Manual Assembler User Guide

DV

Syntax

DV datatype [=initializer]

Description

This directive reserves space for a data item of type datatype and, optionally, initializes it to a value. The initializer
is a comma-separated list of numbers and strings.

Note

The location counter is not aligned before allocating space.

377

CrossWorks for AVR Reference Manual

DW

Syntax

DW initializer [, initializer]...

Description

A synonym for DC.W, see DC.W.

378

Assembler User Guide

CrossWorks for AVR Reference Manual

ELSE

Syntax

ELSE

Description

Assembler User Guide

The ELSE directive introduces the ‘else’ part of an IF construct. See IF for more information.

379

CrossWorks for AVR Reference Manual

END

Syntax

END

Description

Assembler User Guide

The optional END directive indicates the end of assembly—no text beyond END is processed.

380

CrossWorks for AVR Reference Manual

ENDIF

Syntax

ENDIF

Description

The ENDIF directive closes the innermost IF construct. See IF for more information.

381

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

EQU

Syntax

symbol EQU expression symbol = expression

Description

The assembler evaluates the expression and assigns its value to the symbol. The expression need not be
constant or even known at assembly time; it can be any value and may include complex operations involving

external symbols.

382

CrossWorks for AVR Reference Manual

EVEN

Syntax

EVEN

Description

Assembler User Guide

The EVEN directive is equivalent to ALIGN 1 and aligns the location counter to the next even address.

383

CrossWorks for AVR Reference Manual

EXPORT

Syntax

EXPORT symbol
PUBLIC symbol

Description

Assembler User Guide

The EXPORT and PUBLIC directives export the definition of symbol, making it available to other compilation

units.

384

CrossWorks for AVR Reference Manual Assembler User Guide

FILL

Syntax

FILL size, value

Description

The FILL directive generates size bytes of value into the current section and adjusts the location counter
accordingly.

Example

FILL 5,

This generates five spaces in the current section.

385

CrossWorks for AVR Reference Manual Assembler User Guide

IF

Syntax
IF expression
The IF directive provides a conditional-assembly feature.

The structure of conditional assembly is much like that used by high-level language conditional constructs and
by the C pre-processor. The directives IF, IFDEF, IFNDEF, ELIF, and ENDIF are available.

These directives may be prefixed with a # and can start in the first column, thus enabling them to look like C pre-

processor directives.

The controlling expression must be an absolute assembly-time constant. When the expression is non-zero, the

true conditional arm is assembled; when the expression is zero, the false conditional body, if any, is assembled.

The IFDEF and IFNDEF directives are specialized forms of the IF directive. IFDEF tests for the existence of the
supplied symbol, IFNDEF tests for the non-existence of the supplied symbol.

Example

IF type ==
CALL typel
ELSE
IF type == 2
CALL type2
ELSE
CALL type3
ENDI F
ENDI F

The nested conditional can be replaced by using the ELIF directive, which acts like ELSE IF:

IF type == 1
CALL typel
ELIF type == 2
CALL type2
ELSE
CALL type3
ENDI F
Example

The usual practice is to use a symbol, DEBUG, as a flag to either include or exclude debugging code. Now you
can use IFDEF to conditionally assemble some parts of your application, depending on whether the _DEBUG

symbol is defined.

| FDEF _DEBUG
CALL DunpAppSt at e
ENDI F

386

CrossWorks for AVR Reference Manual

IMPORT

Syntax

IMPORT symbol, symbol, ...
EXTERN symbol, symbol, ...
EXTRN symbol, symbol, ...

Description

Assembler User Guide

The IMPORT directive defines symbol as being external, that is, defined by another compilation unit.

387

CrossWorks for AVR Reference Manual Assembler User Guide

INCLUDE

Syntax

INCLUDE "filename"
INCLUDE <filename>
Description

The INCLUDE directive inserts the contents of the source file filename into the assembly. If filename is enclosed
in quotation marks, the user include directories are searched; if filename is enclosed in triangular brackets, the
system include directories are searched.

388

CrossWorks for AVR Reference Manual

INCLUDEBIN

Syntax

INCLUDEBIN "filename"
INCLUDEBIN <filename>

Description

Assembler User Guide

The INCLUDEBIN directive inserts the contents of the file filename into the current section as binary data. If

filename is enclosed in quotation marks, the user include directories are searched; if filename is enclosed in

triangular brackets, the system include directories are searched.

389

CrossWorks for AVR Reference Manual

INIT

Syntax

INIT "section-name"

Description

Assembler User Guide

The INIT directive places a copy of the section denoted by name into the current section. This directive can be

used, for example, to copy initialized-data sections from read-only memory into writable memory.

390

CrossWorks for AVR Reference Manual

ISR

Syntax

ISR

Description

Assembler User Guide

The ISR directive selects the default ISR section. The section is named ISR unless it has been renamed via the -Ri

command-line option.

391

CrossWorks for AVR Reference Manual

KEEP

Syntax

KEEP

Description

A synonym for ROOT, see ROOT.

392

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

PSECT

Syntax

PSECT "section-name"

Description

The PSECT directive creates a new program section with the name section-name. Subsequent instructions and
data-allocation directives are directed to this section.

Example

PSECT " BOOT"

393

CrossWorks for AVR Reference Manual

RMB

Syntax

RMB n

Description

A synonym for DS.B, see DS.B.

394

Assembler User Guide

CrossWorks for AVR Reference Manual

RML

Syntax

RML n

Description

A synonym for DS.L, see DS.L.

395

Assembler User Guide

CrossWorks for AVR Reference Manual

RMW

Syntax

RMW n

Description

A synonym for DS.W, see DS.W.

396

Assembler User Guide

CrossWorks for AVR Reference Manual

RODATA

Syntax

RODATA

Description

A synonym for CONST, see CONST.

397

Assembler User Guide

CrossWorks for AVR Reference Manual

ROOT

Syntax

ROOT

Description

Assembler User Guide

The ROOT directive instructs the linker that this is a root fragment and must not be discarded when constructing

the output file. Normally, only startup code and vector sections use this facility.

398

CrossWorks for AVR Reference Manual

RSEG

Syntax

RSEG name [:type] [(alignment)]

Description

Assembler User Guide

The RSEG directive creates a named section called name, with an optional type, and aligns the section at the
optional alignment. The section type can be one of CODE, DATA, BSS, CONST, or UNTYPED. The alignment value

is an assemble-time constant expression that is the power of 2 upon which to align the section: an alignment

value of 1 will cause the section to be aligned on even byte locations.

399

CrossWorks for AVR Reference Manual

SET

Syntax

symbol SET expression

Description

Assembler User Guide

SET evaluates the expression, which must be an assemble-time constant. The SET directive allows redefinition of

an existing symbol, whereas the EQU directive does not.

400

CrossWorks for AVR Reference Manual

TEXT

Syntax

TEXT

Description

A synonym for CODE, see CODE.

401

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

USECT

Syntax

USECT "section-name"

Description

The USECT directive creates a new, uninitialized-data section with the name section-name. Subsequent data
allocation directives are directed to this section.

Example

USECT " SCRATCHPAD'

402

CrossWorks for AVR Reference Manual Assembler User Guide

VECTORS

Syntax

VECTORS

Description

The VECTORS directive selects the default, interrupt-vector section. The section is named INTVEC, unless it has

been renamed by the -Rv command-line option.

403

CrossWorks for AVR Reference Manual

ZDATA

Syntax

ZDATA

Description

A synonym for BSS, see BSS.

404

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

Expressions

The assembler can manipulate constants and relocatable values at assembly time. If the assembler cannot
resolve these to a constant value (for example, an expression involving the value of an external symbol cannot

be resolved at assembly time), the expression is passed to the linker to resolve.

Integer constants

Integer constants represent integer values and can be represented in binary, octal, decimal, or hexadecimal. You
can specify the radix for the integer constant by adding a radix, specified as a suffix to the number. If no radix
specifier is given, the constant is decimal.

Syntax

decimal-digit digit... [B| O | Q| D | H]

The radix suffix B denotes binary, O and Q denote octal, D denotes decimal, and H denotes hexadecimal. Radix

suffixes can be given either in lowercase or uppercase letters.

Hexadecimal constants must always start with a decimal digit (0 to 9), otherwise the assembler will mistake the
constant for a symbol—for example, OFCH is interpreted as a hexadecimal constant but FCH is interpreted as a

symbol.

You can specify hexadecimal constants in two other formats common with many assemblers:

Syntax

Ox digit digit...
$ digit digit...

The Ox notation is exactly how hexadecimal constants are written in C, and the $ notation is common in many

assemblers for Motorola parts.

String constants

A string constant consists of one or more ASCII characters enclosed in single or double quotation marks.

Syntax
"character..."

You can specify non-printable characters in string constants using escape sequences. An escape sequence is

introduced by the backslash character '\'.

405

CrossWorks for AVR Reference Manual

The following escape sequences are supported:

Sequence
\"

\

\

\b

\f

\n

\r

\v

\ooo

\xhh

Assembler User Guide

Description

Double quotation mark

Single quotation mark

Backslash

Backspace, ASCIl code 8

Form feed, ASCll code 12

New line, ASCIl code 10

Carriage return, ASCll code 13

Vertical tab, ASCIl code 11

Octal code of character where o is an octal digit

Hexadecimal code of character where his a
hexadecimal digit

406

CrossWorks for AVR Reference Manual Assembler User Guide

Labels

Use labels to give symbolic names to addresses of instructions or data. The most common form are code labels,
which can be used—as the operands of call, branch, and jump instructions—to transfer program control to a
new instruction. Also common are data labels that label data-storage areas.

Syntax

label [: | 2] [directive | instruction]

The label field starts at the leftmost position of the line, with no preceding spaces. The colon after the label
is optional; if it is present, the assembler immediately defines the label as a code label or data label. Some
directives, such as EQU, require that you do not place a colon after the label.

Example

ExitPt: RET
This defines ExitPt as a code label for the RET instruction.

A label followed by a double colon makes the label public.

407

CrossWorks for AVR Reference Manual Assembler User Guide

Operators

Each operator has a precedence, and the following table lists the precedence of the operators, from highest to
lowest:

Operator Group

DEFINED SIZEOF Monadic prefix operators
HBYTE LBYTE HWORD LWORD

STARTOF ENDOF

SFB SFE NOT ! LNOT ' THIS $

*/ % Multiplicative operators
+- Additive operators

SHL SHR ASHR << >> Shifting operators
LTGTLEGE < > <=>= Relational operators
EQNE==I!= Equality operators

AND & Bit-wise and

XOR A Bit-wise exclusive-or
OR| Bit-wise inclusive-or
LAND && Logical and

LOR || Logical or

All integer operands are considered as unsigned 64-bit values.

408

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

L expression

Description

True if expression is false, and false if expression is true.

Example

13 ; evaluates to false, O

409

CrossWorks for AVR Reference Manual Assembler User Guide

$

Syntax

Description

The $ operator returns an expression that denotes the location counter at the start of the source line.

Note

The location counter returned by $ does not change, even if code is emitted for the source line.

Example
A typical use of $ is to compute the size of a string or of a block of memory:

MyString DB "Wy woul d you count the nunber of characters"
DB "in a string when the assenbler can do it?"
MyStringbken EQU $-MString

410

CrossWorks for AVR Reference Manual

+

Syntax

expression-1 + expression-2

Description

Add expression-1 to expression-2.

Example

1+2 ; evaluates to 3

411

Assembler User Guide

CrossWorks for AVR Reference Manual

Syntax

expression-1 — expression-2

Description

Add expression-1 to expression-2.

Example

1-5 ; evaluates to -4

412

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

expression-1* expression-2

Description

Multiplies expression-1 by expression-2.

Example

7*5 ; evaluates to 35

413

CrossWorks for AVR Reference Manual

Syntax

expression-1/ expression-2

Description

Assembler User Guide

Divides expression-1 by expression-2, producing an integer quotient. If expression-2 is zero, the quotient is

defined to be zero.

Example

71 5 ; evaluates to 1

414

CrossWorks for AVR Reference Manual

%

Syntax

expression-1 % expression-2

Description

Assembler User Guide

Produces the remainder after division of expression-1 by expression-2. If expression-2 is zero, the remainder is

defined to be zero.

Example

7 %5 ; evaluates to 2

415

CrossWorks for AVR Reference Manual Assembler User Guide

AN

Syntax

expression-1 A\ expression-2

Description

Produces the bit-wise exclusive-or of expression-1 and expression-2.

Example

0AAH OFOH ; evaluates to 05AH

416

CrossWorks for AVR Reference Manual Assembler User Guide

&

Syntax

expression-1 & expression-2

Description

Produces the bit-wise conjunction (and) of expression-1 and expression-2.

Example

0AAH & OFOH ; evaluates to 0AOH

417

CrossWorks for AVR Reference Manual Assembler User Guide

&&

Syntax

expression-1 && expression-2

Description

True if both expression-1 and expression-2 are true.

Example

1&% 0 ; evaluates to false (0)

418

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

expression-1 = expression-2

Description

True if expression-1 and expression-2 are equal.

Example

1 == ; evaluates to false, 0O

419

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

expression-1 == expression-2

Description

True expression-1 and expression-2 are not equal.

Example

11!=3 ; evaluates to true, 1

420

CrossWorks for AVR Reference Manual Assembler User Guide

<

Syntax

expression-1 < expression-2

Description

True if expression-1 is less than expression-2.

Example

1<3 ; evaluates to true, 1

421

CrossWorks for AVR Reference Manual Assembler User Guide

<=

Syntax

expression-1 <= expression-2

Description

True if expression-1 is less than or equal to expression-2.

Example

3 <=3 ; evaluates to true, 1

422

CrossWorks for AVR Reference Manual Assembler User Guide

<<

Syntax

expression-1 << expression-2

Description

Shifts expression-1 left by expression-2 bits.

Example

1 <<7 ; evaluates to 128

423

CrossWorks for AVR Reference Manual Assembler User Guide

>

Syntax

expression-1> expression-2

Description

True if expression-1 is greater than expression-2.

Example

1 >3 ; evaluates to false, O

424

CrossWorks for AVR Reference Manual Assembler User Guide

>=

Syntax

expression-1>= expression-2

Description

True if expression-1 is greater than or equal to expression-2.

Example

3>=3 ; evaluates to true, 1

425

CrossWorks for AVR Reference Manual Assembler User Guide

>>

Syntax

expression-1>> expression-2

Description

Shifts expression-1 right by expression-2 bits.

Example

128 >> 7 ; evaluates to 1

426

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

expression-1 | expression-2

Description

Produces the bit-wise disjunction (or) of expression-1 and expression-2.

Example

OAAH | OFOH ; evaluates to OFAH

427

CrossWorks for AVR Reference Manual Assembler User Guide

Syntax

expression-1 || expression-2

Description

True if either expression-1 or expression-2 is true.

Example

11]] 0 ; evaluates to true (1)

428

CrossWorks for AVR Reference Manual

ASHR

Syntax

expression-1 ASHR expression-2

Description

Shifts expression-1 arithmetically right (propagating the sign bit) by expression-2 bits.

Example

-3 ASHR 4 ; evaluates to -1 as sign bit is propagated

429

Assembler User Guide

CrossWorks for AVR Reference Manual

DEFINED

Syntax

DEFINED symbol

You can use the DEFINED operator to see whether a symbol is defined. Typically, this is used with conditional

directives to control whether a portion of a file will be assembled.

The DEFINED operator returns a Boolean result which is true if the symbol is defined at that point in the file,
and is false otherwise. Note that this operator only inquires whether the symbol is known to the assembler, not

whether it has a known value: imported symbols are considered to be defined even though the assembler does

not know their value.

DEFINED cannot detect whether a macro has been defined.

Example

The following shows how DEFINED works in a number of cases.

B1
B2

NEB

.1 MPORT X

EQU 10

EQU DEFINED X
EQU DEFINED Y
EQU DEFINED Z
EQU DEFINED U
EQU 100

true (1)

true (1)

fal se (0) —not defined yet
fal se (0) —never defined

430

Assembler User Guide

CrossWorks for AVR Reference Manual

ENDOF

Syntax

ENDOF section-name

SFE section-name

Description

Assembler User Guide

If the argument to ENDOF is a section name, the result of ENDOF is a link-time expression representing the start

of the given section. It is an error if the section name is not known to the assembler.

431

CrossWorks for AVR Reference Manual

EQ

Syntax

expression-1 EQ expression-2

Description

A synonym for ==, see ==.

432

Assembler User Guide

CrossWorks for AVR Reference Manual

GE

Syntax

expression-1 GE expression-2

Description

A synonym for >=, see >=.

433

Assembler User Guide

CrossWorks for AVR Reference Manual

GT

Syntax

expression-1 GT expression-2

Description

A synonym for >, see >.

434

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

HBYTE

Syntax

HBYTE expression

Description

Extract bits 8 to 15 of expression.

Example

HBYTE $FEDCBA98 ; evaluates to $BA

435

CrossWorks for AVR Reference Manual

HIGH

Syntax

HIGH expression

Description

A synonym for HBYTE, see HBYTE.

436

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

HWORD

Syntax

HWORD expression

Description

Extract bits 16 to 31 of expression.

Example

HWORD $FEDCBA98 ; evaluates to $FEDC

437

CrossWorks for AVR Reference Manual

LAND

Syntax

expression-1 LAND expression-2

Description

A synonym for &&, see &&.

438

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

LBYTE

Syntax

LBYTE expression

Description

Extract the low-order 8 bits bits of expression.

Example

LBYTE $FEDCBA98 ; evaluates to $98

439

CrossWorks for AVR Reference Manual

LE

Syntax

expression-1 LE expression-2

Description

A synonym for <=, see <=.

440

Assembler User Guide

CrossWorks for AVR Reference Manual

LNOT

Syntax

LNOT expression

Description

A synonym for |}, see !

441

Assembler User Guide

CrossWorks for AVR Reference Manual

LOR

Syntax

expression-1 LOR expression-2

Description

A synonym for ||, see ||.

442

Assembler User Guide

CrossWorks for AVR Reference Manual

LT

Syntax

expression-1 LT expression-2

Description

A synonym for <, see <.

443

Assembler User Guide

CrossWorks for AVR Reference Manual

LHALF

Syntax

LHALF expression

Description

Synonym for LWORD, LWORD.

444

Assembler User Guide

CrossWorks for AVR Reference Manual

LOW

Syntax

LOW expression

Description

A synonym for LBYTE, see LBYTE.

445

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

LWORD

Syntax

LWORD expression

Description

Extract the low-order 16 bits of expression.

Example

LWORD $FEDCBA98 ; evaluates to $BA98

446

CrossWorks for AVR Reference Manual

NE

Syntax

expression-1 NE expression-2

Description

A synonym for =, see !=.

447

Assembler User Guide

CrossWorks for AVR Reference Manual

OR

Syntax

expression-1 OR expression-2

Description

A synonym for |, see OR.

448

Assembler User Guide

CrossWorks for AVR Reference Manual

SHL

Syntax

expression-1 SHL expression-2

Description

A synonym for <<, see <<.

449

Assembler User Guide

CrossWorks for AVR Reference Manual

SHR

Syntax

expression-1 SHR expression-2

Description

A synonym for >>, see >>.

450

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

SIZEOF

Syntax

SIZEOF (expression)
SIZEOF section-name
Description

If the argument to SIZEOF is a parenthesized expression, the result of SIZEOF is an integer value that is the size

of the type associated with the expression. The assembler reports an error if the expression has no type.

If the argument to SIZEOF is a section name, the result of SIZEOF is a link-time expression representing the size

of the given section. It is an error if the section name is not known to the assembler.

Example

X VAR LONG 100]

XSl ZE EQU SI ZECF X ; 400, 100 four byte el enents
X0SI ZE EQU SI ZEOF X[0] ; 4, size of LONG

451

CrossWorks for AVR Reference Manual

STARTOF

Syntax

STARTOF section-name

SFB section-name

Description

Assembler User Guide

If the argument to STARTOF is a section name, the result of STARTOF is a link-time expression representing the

start of the given section. It is an error if the section name is not known to the assembler.

452

CrossWorks for AVR Reference Manual

THIS

Syntax

THIS

Description

A synonym for $, see $.

453

Assembler User Guide

CrossWorks for AVR Reference Manual

UHALF

Syntax

UHALF expression

Description

Synonym for HWORD, HWORD.

454

Assembler User Guide

CrossWorks for AVR Reference Manual

XOR

Syntax

expression-1 XOR expression-2

Description

A synonym for A, see A,

455

Assembler User Guide

CrossWorks for AVR Reference Manual Assembler User Guide

Macros

The structure of a macro definition consists of a name, some optional arguments, the body of the macro, and a

termination keyword. The syntax to define a macro is:

Syntax

{name} MACRO arg,, args, ..., argn

{macro-body}
ENDMACRO | ENDM

The name of the macro has the same requirements as a label name (in particular, it must start in the first
column). The arguments are a comma-separated list of identifiers. The body of the macro can have arbitrary
assembly-language text, including other macro definitions and invocations, and conditional and file-inclusion
directives. A macro is instantiated by using its name together with optional, actual argument values. A macro
instantiation has to occur on its own line—it cannot be used within an expression or as an argument to an

assembly-code mnemonic or directive. The syntax to invoke a macro is:

Syntax

name actualy, actual,, ..., actual,, // comment

When a macro is instantiated, the macro body is inserted into the assembly text with actual values replacing the

arguments that were in the body of the macro definition.

Labels in macros

When labels are used in macros, they must be unique for each instantiation to avoid duplicate-label-definition
errors. The assembler provides a label-generation mechanism, for situations where the label name isn't

significant, and a mechanism for constructing specific label names.

If a macro definition contains a jump to other instructions in the macro definition, it is likely that the actual name

of the label isn't important. To facilitate this, a label of the form name? can be used.

In some instances, invoking a macro should result in the definition of a label. In the simplest case, the label can
be passed as an argument to the macro; however, there are cases when the label name should be constructed
from other tokens. The macro definition facility provides two constructs to enable this:

» Tokens can be concatenated by putting ## between them.

* The value of a constant symbol can be used by prefixing the label with $$.

Loops

If multiple definitions are required, a loop structure can be used. This can be achieved either by recursive macro
definitions or by the use of the LOOP directive.

456

CrossWorks for AVR Reference Manual Assembler User Guide

Example

P2TAB MACRO N

I F N
P2TAB N1
ENDI F

DW 1<<N
ENDMACRO

PONERS: PONER2TAB 10

This creates a table of ten powers of 2—that is: 1, 2, 4, 8, and so on, up to 1024,

If the loop counter is a large number, a recursive macro may consume considerable machine resources. Use the

LOOP directive to avoid this, because it is an iterative rather than recursive solution.

Syntax

LOOP expr essi on
| oop- body
ENDL COP

The loop-control expression must be a compile-time constant. The loop body can contain any assembly text
(including further loop constructs) except macro definitions (because that would result in multiple definitions of
the same macro). The above recursive definition can be recast in an iterative style:

Example
POVERS:
X SET 0
LOOP x <= 10
DC. W 1<<x
X SET X+1
ENDL OOP

Note that the label-naming capabilities using ?, $$, and ## are not available within the body of a loop. If the loop
body is to declare labels, a recursive macro definition should be used; or use a combination of macro invocation
to define the labels and use the loops to define the text of the label.

457

CrossWorks for AVR Reference Manual Assembler User Guide

458

CrossWorks for AVR Reference Manual C Library User Guide

C Library User Guide

This section describes the library and how to use and customize it.

The libraries supplied with CrossWorks have all the support necessary for input and output using the standard C
functions printf and scanf, support for the assert function, both 32-bit and 64-bit floating point, and are capable
of being used in a multi-threaded environment. However, to use these facilities effectively you will need to
customize the low-level details of how to input and output characters, what to do when an assertion fails, how
to provide protection in a multithreaded environment, and how to use the available hardware to the best of its
ability.

459

CrossWorks for AVR Reference Manual C Library User Guide

Floating point

The CrossWorks C library uses IEEE floating point format as specified by the ISO 60559 standard with restrictions.

This library favors code size and execution speed above absolute precision. It is suitable for applications
that need to run quickly and not consume precious resources in limited environments. The library does not
implement features rarely used by simple applications: floating point exceptions, rounding modes, and

subnormals.

NaNs and infinities are supported and correctly generated. The only rounding mode supported is round-to-
nearest. Subnormals are always flushed to a correctly-signed zero. The mathematical functions use stable
approximations and do their best to cater ill-conditioned inputs.

460

CrossWorks for AVR Reference Manual C Library User Guide

Single and double precision

CrossWorks C allows you to choose whether the double data type uses the IEC 60559 32-bit or 64-bit format. The
following sections describe the details of why you would want to choose a 32-bit double rather than a 64-bit

double in many circumstances.

Why choose 32-bit doubles?

Many users are surprised when using float variables exclusively that sometimes their calculations are compiled
into code that calls for double arithmetic. They point out that the C standard allows float arithmetic to be carried

out only using float operations and not to automatically promote to the double data type of classic K&R C.

This is valid point. However, upon examination, even the simplest calculations can lead to double arithmetic.
Consider:

/1 Conpute sin(2x)
float sin_two_x(float x)

{

return sinf(2.0 * x);

}

This looks simple enough. We're using the sinf function which computes the sine of a float and returns a float
result. There appears to be no mention of a double anywhere, yet the compiler generates code that calls double
support routines—but why?

The answer is that the constant 2.0 is a double constant, not a float constant. That is enough to force the
compiler to convert both operands of the multiplication to double format, perform the multiplication in double
precision, and then convert the result back to float precision. To avoid this surprise, the code should have been

written:

/1 Conpute sin(2x)
float sin_two_x(float x)

{

return sinf(2.0F * x);

}

This uses a single precision floating-point constant 2.0F. It's all too easy to forget to correctly type your floating-
point constants, so if you compile your program with double meaning the same as float, you can forget all

about adding the 'F' suffix to your floating point constants.

As an aside, the C99 standard is very strict about the way that floating-point is implemented and the latitude the
compiler has to rearrange and manipulate expressions that have floating-point operands. The compiler cannot
second-guess user intention and use a number of useful mathematical identities and algebraic simplifications
because in the world of IEC 60559 arithmetic many algebraic identities, such as x * 1 = x, do not hold when x
takes one of the special values NaN, infinity, or negative zero.

461

CrossWorks for AVR Reference Manual C Library User Guide

More reasons to choose 32-bit doubles

Floating-point constants are not the only silent way that double creeps into your program. Consider this:

void wite results(float x)

{
}

printf("After all that x=%\\n", x);

Again, no mention of a double anywhere, but double support routines are now required. The reason is that ISO
C requires that float arguments are promoted to double when they are passed to the non-fixed part of variadic
functions such as printf. So, even though your application may never mention double, double arithmetic may
be required simply because you use printf or one of its near relatives.

If, however, you compile your code with 32-bit doubles, then there is no requirement to promote a float to a

double as they share the same internal format.

Why choose 64-bit doubles?

If your application requires very accurate floating-point, more precise than the seven decimal digits supported
by the float format, then you have little option but to use double arithmetic as there is no simple way to
increase the precision of the float format. The double format delivers approximately 15 decimal digits of
precision.

462

CrossWorks for AVR Reference Manual C Library User Guide

Multithreading

The CrossWorks libraries support multithreading, for example, where you are using CTL or a third-party real-time
operating system (RTOS).

Where you have single-threaded processes, there is a single flow of control. However, in multithreaded
applications there may be several flows of control which access the same functions, or the same resources,
concurrently. To protect the integrity of resources, any code you write for multithreaded applications must be
reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application handle

resources.

Reentrant functions

A reentrant function does not hold static data over successive calls and does not return a pointer to static data.
For this type of function, the caller provides all the data that the function requires, such as pointers to any
workspace. This means that multiple concurrent calls to the function do not interfere with each other, that the

function can be called in mainline code, and that the function can be called from an interrupt service routine.

Thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks. In C, local variables are
held in processor registers or are on the stack. Any function that does not use static data, or other shared
resources, is thread-safe. In general, thread-safe functions are safe to call from any thread but cannot be called

directly, or indirectly, from an interrupt service routine.

463

CrossWorks for AVR Reference Manual C Library User Guide

Thread safety in the CrossWorks library

In the CrossWorks C library:

» some functions are inherently thread-safe, for example strcmp.

» some functions, such as malloc, are not thread-safe by default but can be made thread-safe by
implementing appropriate lock functions.

« other functions are only thread-safe if passed appropriate arguments, for example tmpnam.

» some functions are never thread-safe, for example setlocale.

We define how the functions in the C library can be made thread-safe if needed. If you use a third-party library
in a multi-threaded system and combine it with the CrossWorks C library, you will need to ensure that the third-
party library can be made thread-safe in just the same way that the CrossWorks C library can be made thread-
safe.

464

CrossWorks for AVR Reference Manual C Library User Guide

Implementing mutual exclusion in the C library

The CrossWorks C library ships as standard with callouts to functions that provide thread-safety in a
multithreaded application. If your application has a single thread of execution, the default implementation of

these functions does nothing and your application will run without modification.

If your application is intended for a multithreaded environment and you wish to use the CrossWorks C library,

you must implement the following locking functions:

* __heap_lock and __heap_unlock to provide thread-safety for all heap operations such as malloc, free,
and realloc.

e __printf_lock and __printf_unlock to provide thread-safety for printf and relatives.

» _ scanf_lock and __scanf_unlock to provide thread-safety for scanf and relatives.

* __debug_io_lock and __debug_io_unlock to provide thread-safety for semi-hosting support in the
CrossStudio I/0 function.

If you create a CTL project using the New Project wizard, CrossWorks provides implementations of these using

CTL event sets. You're free to reimplement them as you see fit.

If you use a third-party RTOS with the CrossWorks C library, you will need to use whatever your RTOS provides for
mutual exclusion, typically a semaphore, a mutex, or an event set.

465

CrossWorks for AVR Reference Manual C Library User Guide

Input and output

The Clibrary provides all the standard C functions for input and output except for the essential items of where to
output characters printed to stdout and where to read characters from stdin.

If you want to output to a UART, to an LCD, or input from a keyboard using the standard library print and scan

functions, you need to customize the low-level input and output functions.

466

CrossWorks for AVR Reference Manual C Library User Guide

Customizing putchar

To use the standard output functions putchar, puts, and printf, you need to customize the way that characters
are written to the standard output device. These output functions rely on a function __putchar that outputs a

character and returns an indication of whether it was successfully written.
The prototype for __putchar is

int __putchar(int ch);

Sending all output to the CrossStudio virtual terminal

You can send all output to the CrossStudio virtual terminal by supplying the following implementation of
the__putchar function in your code:
#i ncl ude <__cross_studio_io. h>

int _ putchar(int ch)

{
}

return debug_put char(ch);

This hands off output of the character ch to the low-level debug output routine, debug_putchar.

Whilst this is an adequate implementation of __putchar, it does consume stack space for an unnecessary nested
call and associated register saving. A better way of achieving the same result is to define the low-level symbol for
__putchar to be equivalent to the low-level symbol for debug_putchar. To do this, we need to instruct the linker

to make the symbols equivalent.

To do this using the HCC environment:

* Select the project node in the Project Explorer.

* Display the Properties Window.

* Enterthetext- D___ put char =_debug_put char into the Additional Options property of the Linker
Options group.

Note that there are three leading underscores in ___putchar and a single leading underscore in
_debug_putchar because the C compiler automatically prepends an underscore to all global symbols.
To do this using the GCC environment:

* Select the project node in the Project Explorer.

* Display the Properties Window.

» Enterthetext __put char =debug_put char into the Linker > Linker Symbol Definitions property of
the Linker Options group.

467

CrossWorks for AVR Reference Manual C Library User Guide

Sending all output to another device

If you need to output to a physical device, such as a UART, the following notes will help you:

* If the character cannot be written for any reason, putchar must return EOF. Just because a character can't
be written immediately is not a reason to return EOF: you can busy-wait or tasking (if applicable) to wait
until the character is ready to be written.

* The higher layers of the library do not translate C's end of line character \\n' before passing it to putchar.
If you are directing output to a serial line connected to a terminal, for instance, you will most likely need
to output a carriage return and line feed when given the character '\\n' (ASCll code 10).

The standard functions that perform input and output are the printf and scanf functions.These functions
convert between internal binary and external printable data. In some cases, though, you need to read and write
formatted data on other channels, such as other RS232 ports. This section shows how you can extend the I/0

library to best implement these function.

Classic custom printf-style output

Assume that we need to output formatted data to two UARTs, numbered 0 and 1, and we have a functions

uartO_putc and uart1_putc that do just that and whose prototypes are:

int uartO_putc(int ch, __printf_t *ctx);
int vartl putc(int ch, __printf_t *ctx);

These functions return a positive value if there is no error outputting the character and EOF if there was an
error. The second parameter, Ct X, is the context that the high-level formatting routines use to implement the C

standard library functions.
Using a classic implementation, you would use sprintf to format the string for output and then output it:

void uartO_printf(const char *fm, ...)

{
char buf[80], *p;
va_list ap;
va_start(ap, fnt);
vsnprintf (buf, sizeof(buf), fnt, ap);
for (p = buf; *p; ++p)
uart0_putc(*p, 0); // null context
va_end(ap);

We would, of course, need an identical routine for outputting to the other UART. This code is portable, but it
requires an intermediate buffer of 80 characters. On small systems, this is quite an overhead, so we could reduce
the buffer size to compensate. Of course, the trouble with that means that the maximum number of characters
that can be output by a single call to uart0_printf is also reduced. What would be good is a way to output

characters to one of the UARTs without requiring an intermediate buffer.

468

CrossWorks for AVR Reference Manual C Library User Guide

CrossWorks printf-style output

CrossWorks provides a solution for just this case by using some internal functions and data types in the

CrossWorks library. These functions and types are define in the header file <__vfprintf.h>.

The first thing to introduce is the __printf_t type which captures the current state and parameters of the format

conversion:

typedef struct _ _printf_tag
{

size_t charcount;
size_t maxchars;
char *string;
int (*output_fn)(int, struct _ printf_tag *ctx);
} __printf_t;

This type is used by the library functions to direct what the formatting routines do with each character they need
to output. If st r i ng is non-zero, the character is appended is appended to the string pointed to by string; if
out put _f nis non-zero, the character is output through the function output_fn with the context passed as the
second parameter.

The member charcount counts the number of characters currently output, and maxchars defines the maximum
number of characters output by the formatting routine __vfprintf.

We can use this type and function to rewrite uartO_printf:

int uartO_printf(const char *fnt, ...)
{
int n;
va_list ap;
__printf_t iod,;
va_start(ap, fnt);
iod.string = 0;
i od. maxchars = | NT_NMAX;
iod.output_fn = uartO_putc;
n=_vfprintf(\& od, fnt, ap);
va_end(ap);
return n;

This function has no intermediate buffer: when a character is ready to be output by the formatting routine, it
calls the output_fn function in the descriptor iod to output it immediately. The maximum number of characters
isn't limited as the maxchars member is set to INT_MAX. if you wanted to limit the number of characters output

you can simply set the maxchars member to the appropriate value before calling __vfprintf.
We can adapt this function to take a UART number as a parameter:

int uvart_printf(int uvart, const char *fnt, ...)
{

int n;

va_list ap;

__printf_t iod,;

va_start(ap, fnt);

469

CrossWorks for AVR Reference Manual C Library User Guide

iod.is_string = 0;

i od. maxchars = | NT_NMAX;

iod.output_fn = uart ? uartl_putc : uartO_putc;
n=_vfprintf(\& od, fnt, ap);

va_end(ap);

return n;

Now we can use:

vart_printf(0, "This is uart %\n...", 0);
vart_printf(1, "..and this is vart %\n", 1);

__vfprintf returns the actual number of characters printed, which you may wish to dispense with and make the

uart_printf routine return void.

Extending input functions

The formatted input functions would be implemented in the same manner as the output functions: read a
string into an intermediate buffer and parse using sscanf. However, we can use the low-level routines in the

CrossWorks library for formatted input without requiring the intermediate buffer.
The type __stream_scanf_t is:

typedef struct
{

char is_string;

int (*getc_fn)(void);

int (*ungetc_fn)(int);
} __streamscanf t;

The function getc_fn reads a single character from the UART, and ungetc_fn pushes back a character to the

UART. You can push at most one character back onto the stream.
Here's an implementation of functions to read and write from a single UART:

static int uartO_ungot = EOF;

int uart0_getc(void)

{ if (uartO_ungot)

{ int ¢ = uart0_ungot;
uart0_ungot = EOF;
return c;

}

el se
return read_char_fromuart (0);
}
int uart0_ungetc{int c)
{
uart 0_ungot = c;
}

470

CrossWorks for AVR Reference Manual C Library User Guide

You can use these two functions to perform formatted input using the UART:

int uartO_scanf(const char *fnt, ...)
{

__stream scanf _t iod;

va_list a;

int n;

va_start(a, fnt);

iod.is_string = 0;

iod.getc_fn = uart0_getc;

iod.ungetc_fn = uartO_ungetc;

n = _ vfscanf((__scanf_t *)\& od, (const unsigned char *)fnt, a);
va_end(a);

return n;

Using this template, we can add functions to do additional formatted input from other UARTSs or devices, just as
we did for formatted output.

471

CrossWorks for AVR Reference Manual C Library User Guide

Complete API reference

This section contains a complete reference to the CrossWorks C library API.

File Description

Describes the diagnostic facilities which you can build

<assert.h> . .o
into your application.

<cross_studio_io.h> Describes the virtual console services and semi-
hosting support that CrossStudio provides to help you
when developing your applications.

<cruntime.h> Defines the interface to functions that the C compiler
calls when generating code. For instance, it contains
the runtime routines for all floating point operators
and conversion, and shifts, multiplies, and divides.for
each of the integer types. In general, you do not need
to call these routines yourself directly, but they are
documented here should you need to call them from
assembly language. These functions abide by the
standard calling conventions of the compiler.

<ctype.h> Describes the character classification and
manipulation functions.

<errno.h> Describes the macros and error values returned by the
Clibrary.

<float.h> Defines macros that expand to various limits and
parameters of the standard floating point types.

<ina90.h> Describes intrinsic functions of general use for the AVR
processor. This file is written to be compatible, and in
some cases an enhancement of, the corresponding
file in version 2 of IAR's Embedded Workbench for AVR
(EWA90) product.

<inavr.h> Describes intrinsic functions of general use for the AVR
processor. This file is written to be compatible, and in
some cases an enhancement of, the corresponding
file in version 3 of IAR's Embedded Workbench for AVR
(EWAVR) product.

<limits.h> Describes the macros that define the extreme values of
underlying C types.

<locale.h> Describes support for localization specific settings.

<math.h> Describes the mathematical functions provided by the
Clibrary.

472

CrossWorks for AVR Reference Manual

<pgmspace.h>

<setjmp.h>

<stdarg.h>

<stddef.h>
<stdio.h>

<stdio_c.h>

<stdlib.h>

<string.h>

<string_c.h>

<time.h>

<wchar.h>

C Library User Guide

Describes functions to access data in code (program)
space. This file written to be compatible with the
corresponding file in IAR's Embedded Workbench for
AVR products EWA90 and EWAVR.}

Describes the non-local goto capabilities of the C
library.

Describes the way in which variable parameter lists are
accessed.

Describes standard type definitions.
Describes the formatted input and output functions.

Describes functions to format and output values with
formatting strings stored in code (program) space.

Describes the general utility functions provided by the
Clibrary.

Describes the string handling functions provided by
the Clibrary.

Describes functions that operate on arrays that
are interpreted as null-terminated strings in code
(program) space.

Describes the functions to get and manipulate date
and time information provided by the C library.

Describes the facilities you can use to manipulate wide
characters.

473

CrossWorks for AVR Reference Manual

<assert.h>

APl Summary

Macros

assert

Functions

__assert

C Library User Guide

Allows you to place assertions and diagnostic tests into
programs

User defined behaviour for the assert macro

474

CrossWorks for AVR Reference Manual C Library User Guide

__assert

Synopsis

void __assert(const char *expression,
const char *filenane,
int line);

Description

There is no default implementation of __assert. Keeping __assert out of the library means that you can can
customize its behaviour without rebuilding the library. You must implement this function where expression
is the stringized expression, filename is the filename of the source file and line is the linenumber of the failed

assertion.

475

CrossWorks for AVR Reference Manual C Library User Guide

assert

Synopsis

#defi ne assert(e)

Description

If NDEBUG is defined as a macro name at the point in the source file where <assert.h> is included, the assert
macro is defined as:

#defi ne assert (ignore) ((void)O0)

If NDEBUG is not defined as a macro name at the point in the source file where <assert.h> is included, the assert

macro expands to a void expression that calls __assert.
#define assert(e) ((e) ? (void)O : _ assert(#e, __FILE , _ LINE))

When such an assert is executed and e is false, assert calls the __assert function with information about the
particular call that failed: the text of the argument, the name of the source file, and the source line number.

These are the stringized expression and the values of the preprocessing macros __FILE__and __LINE__.

Note

The assert macro is redefined according to the current state of NDEBUG each time that <assert.h> is included.

476

CrossWorks for AVR Reference Manual C Library User Guide

<cross_studio_io.h>

APl Summary

File Functions
debug_clearerr
debug_fclose
debug_feof
debug_ferror
debug_fflush
debug_fgetc
debug_fgetpos
debug_fgets
debug_filesize
debug_fopen
debug_fprintf
debug_fprintf_c
debug_fputc
debug_fputs
debug_fread
debug_freopen
debug_fscanf
debug_fscanf _c
debug_fseek
debug_fsetpos
debug_ftell
debug_fwrite
debug_remove
debug_rename
debug_rewind
debug_tmpfile
debug_tmpnam
debug_ungetc
debug_vfprintf
debug_vfscanf

Clear error indicator

Closes an open stream

Check end of file condition
Check error indicator

Flushes buffered output
Read a character from a stream
Return file position

Read a string

Return the size of afile
Opens a file on the host PC
Formatted write

Formatted write

Write a character

Write a string

Read data

Reopens a file on the host PC
Formatted read

Formatted read

Set file position

Teturn file position

Return file position

Write data

Deletes a file on the host PC
Renames a file on the host PC
Set file position to the beginning
Open a temporary file
Generate temporary filename
Push a character

Formatted write

Formatted read

477

CrossWorks for AVR Reference Manual

Debug Terminal Output Functions
debug_printf
debug_printf_c
debug_putchar
debug_puts
debug_vprintf

Debug Terminal Input Functions
debug_getch
debug_getchar
debug_getd
debug_getf
debug_geti
debug_getl
debug_getll
debug_gets
debug_getu
debug_getul
debug_getull
debug_kbhit
debug_scanf
debug_scanf c
debug_vscanf
Debugger Functions
debug_abort
debug_break
debug_enabled
debug_exit
debug_getargs
debug_loadsymbols
debug_runtime_error
debug_unloadsymbols
Misc Functions
debug_getenv
debug_perror

debug_system

C Library User Guide

Formatted write
Formatted write
Write a character
Write a string

Formatted write

Blocking character read
Line-buffered character read
Line-buffered double read
Line-buffered float read
Line-buffered integer read
Line-buffered long read
Line-buffered long long read
String read

Line-buffered unsigned integer
Line-buffered unsigned long read
Line-buffered unsigned long long read
Polled character read

Formatted read

Formatted read

Formatted read

Stop debugging

Stop target

Test if debug input/output is enabled
Stop debugging

Get arguments

Load debugging symbols

Stop and report error

Unload debugging symbols

Get environment variable value
Display error

Execute command

478

CrossWorks for AVR Reference Manual C Library User Guide

debug_time get time

479

CrossWorks for AVR Reference Manual

debug_abort

Synopsis

voi d debug_abort (void);

Description

debug_abort causes the debugger to exit and a failure result is returned to the user.

480

C Library User Guide

CrossWorks for AVR Reference Manual

debug_break

Synopsis

voi d debug_break(void);

Description

C Library User Guide

debug_break causes the debugger to stop the target and position the cursor at the line that called

debug_break.

481

CrossWorks for AVR Reference Manual C Library User Guide

debug_clearerr

Synopsis

voi d debug_cl earerr (DEBUG FI LE *streamn;

Description

debug_clearerr clears any error indicator or end of file condition for the stream.

482

CrossWorks for AVR Reference Manual

debug_enabled

Synopsis

i nt debug_enabl ed(voi d);

Description

C Library User Guide

debug_enabled returns non-zero if the debugger is connected - you can use this to test if a debug input/output

functions will work.

483

CrossWorks for AVR Reference Manual

debug_exit

Synopsis

voi d debug _exit(int result);

Description

debug_exit causes the debugger to exit and result is returned to the user.

484

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

debug_fclose

Synopsis

i nt debug fcl ose(DEBUG FI LE *strean);

Description
debug_fclose flushes any buffered output of the stream and then closes the stream.

debug_fclose returns 0 on success or -1 if there was an error.

485

CrossWorks for AVR Reference Manual C Library User Guide

debug_feof

Synopsis

i nt debug_f eof (DEBUG FI LE *strean;

Description

debug_feof returns non-zero if the end of file condition is set for the stream.

486

CrossWorks for AVR Reference Manual C Library User Guide

debug_ferror

Synopsis

int debug ferror(DEBUG FI LE *strean);

Description

debug_ferror returns non-zero if the error indicator is set for the stream.

487

CrossWorks for AVR Reference Manual

debug_fflush

Synopsis

int debug fflush(DEBUG FI LE *strean);

Description

debug_fflush flushes any buffered output of the stream.

debug_fflush returns 0 on success or -1 if there was an error.

488

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

debug_fgetc

Synopsis

i nt debug_f get c(DEBUG FI LE *stream;

Description

debug_fgetc reads and returns the next character on stream or -1 if no character is available.

489

CrossWorks for AVR Reference Manual

debug_fgetpos
Synopsis
i nt debug fget pos(DEBUG FI LE *stream

| ong *pos);

Description

debug_fgetpos is equivalent to debug_fseek .

490

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

debug_fgets

Synopsis

char *debug_fgets(char *s,
int n,
DEBUG FI LE *strean);

Description

debug_fgets reads at most n-1 characters or the characters up to (and including) a newline from the input
stream into the array pointed to by s. A null character is written to the array after the input characters.

debug_fgets returns s on success, or 0 on error or end of file.

491

CrossWorks for AVR Reference Manual C Library User Guide

debug_filesize

Synopsis

int debug filesize(DEBUG FILE *strean;

Description
debug_filesize returns the size of the file associated with the stream in bytes.

debug_filesize returns -1 on error.

492

CrossWorks for AVR Reference Manual C Library User Guide

debug_fopen

Synopsis

DEBUG FI LE *debug_f open(const char *fil enaneg,
const char *node);

Description

debug_fopen opens the filename on the host PC and returns a stream or 0 if the open fails. The filename is a
host PC filename which is opened relative to the debugger working directory. The mode is a string containing

one of:

* ropenfile for reading.

» w create file for writing.

 aopen or create file for writing and position at the end of the file.

* r+ open file for reading and writing.

» w+ create file for reading and writing.

* a+ open or create text file for reading and writing and position at the end of the file.

followed by one of:

 tfor atextfile.

* b for a binary file.

debug_fopen returns a stream that can be used to access the file or 0 if the open fails.

493

CrossWorks for AVR Reference Manual C Library User Guide

debug_fprintf

Synopsis

int debug fprintf(DEBUG FILE *stream
const char *format,

)5

Description

debug_fprintf writes to stream, under control of the string pointed to by format that specifies how subsequent
arguments are converted for output. The format string is a standard C printf format string. The actual formatting
is performed on the host by the debugger and therefore debug_fprintf consumes only a very small amount of

code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fprintf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

494

CrossWorks for AVR Reference Manual C Library User Guide

debug_fprintf_c

Synopsis

int debug fprintf_c(DEBUG FI LE *stream
__code const char *format,

20)¢

Description

debug_fprintf_cis equivalent to debug_fprintf with the format string in code memory.

495

CrossWorks for AVR Reference Manual

debug_fputc

Synopsis

int debug fputc(int c,
DEBUG FI LE *strean);

Description

debug_fputc writes the character c to the output stream.

debug_fputc returns the character written or -1 if an error occurred.

496

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

debug_fputs

Synopsis

i nt debug_fputs(const char *s,
DEBUG FI LE *strean);

Description

debug_fputs writes the string pointed to by s to the output stream and appends a new-line character. The

terminating null character is not written.

debug_fputs returns -1 if a write error occurs; otherwise it returns a nonnegative value.

497

CrossWorks for AVR Reference Manual C Library User Guide

debug_fread

Synopsis

int debug fread(void *ptr,
int size,
int nobj,

DEBUG FI LE *strean);

Description
debug_fread reads from the input stream into the array ptr at most nobj objects of size size.

debug_fread returns the number of objects read. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

498

CrossWorks for AVR Reference Manual C Library User Guide

debug_freopen

Synopsis

DEBUG FI LE *debug_freopen(const char *fil enane,
const char *node,
DEBUG FI LE *strean);

Description

debug_freopen is the same as debug_open except the file associated with the stream is closed and the opened
file is then associated with the stream.

499

CrossWorks for AVR Reference Manual C Library User Guide

debug_fscanf

Synopsis

i nt debug_fscanf (DEBUG FI LE *stream
const char *format,

)i
Description

debug_fscanf reads from the input stream, under control of the string pointed to by format, that specifies how
subsequent arguments are converted for input. The format string is a standard C scanf format string. The actual
formatting is performed on the host by the debugger and therefore debug_fscanf consumes only a very small

amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_fscanf returns number of characters read, or a negative value if an output or encoding error occurred.

500

CrossWorks for AVR Reference Manual C Library User Guide

debug_fscanf ¢

Synopsis

i nt debug_fscanf_c(DEBUG FI LE *stream
__code const char *format,

20)t

Description

debug_fscanf_cis equivalent to debug_fscanf with the format string in code memory.

501

CrossWorks for AVR Reference Manual C Library User Guide

debug_fseek

Synopsis

i nt debug_fseek(DEBUG FI LE *stream
| ong of f set,
int origin);

Description

debug_fseek sets the file position for the stream. A subsequent read or write will access data at that position.
The origin can be one of:

* 0 sets the position to offset bytes from the beginning of the file.
* 1 sets the position to offset bytes relative to the current position.
* 2 sets the position to offset bytes from the end of the file.

Note that for text files offset must be zero. debug_fseek returns zero on success, non-zero on error.

502

CrossWorks for AVR Reference Manual C Library User Guide

debug_fsetpos

Synopsis

i nt debug fsetpos(DEBUG FI LE *stream
const |ong *pos);

Description

debug_fsetpos is equivalent to debug_fseek with 0 as the origin.

503

CrossWorks for AVR Reference Manual C Library User Guide

debug_ftell

Synopsis

| ong debug_ftell (DEBUG FI LE *strean);

Description
debug_ftell returns the current file position of the stream.

debug_ftell returns -1 on error.

504

CrossWorks for AVR Reference Manual C Library User Guide

debug_fwrite

Synopsis

int debug fwite(void *ptr,
int size,
int nobj,

DEBUG FI LE *strean);

Description
debug_fwrite write to the output stream from the array ptr at most nobj objects of size size.

debug_fwrite returns the number of objects written. If this number is different from nobj then debug_feof and

debug_ferror can be used to determine status.

505

CrossWorks for AVR Reference Manual C Library User Guide

debug_getargs

Synopsis

i nt debug_get args(unsi gned bufsi ze,
unsi gned char *buf);

Description

debug_getargs stores the debugger command line arguments into the memory pointed at by buf up to a
maximum of bufsize bytes. The command line is stored as a C argc array of null terminated string and the
number of entries is returned as the result.

506

CrossWorks for AVR Reference Manual

debug_getch

Synopsis

i nt debug_getch(void);

Description

C Library User Guide

debug_getch reads one character from the Debug Terminal. This function will block until a character is

available.

507

CrossWorks for AVR Reference Manual

debug_getchar

Synopsis

i nt debug_getchar (void);

Description

C Library User Guide

debug_getchar reads one character from the Debug Terminal. This function uses line input and will therefore

block until characters are available and ENTER has been pressed.

debug_getchar returns the character that has been read.

508

CrossWorks for AVR Reference Manual C Library User Guide

debug_getd

Synopsis

i nt debug_getd(double *);

Description

debug_getd reads a double from the Debug Terminal. The number is written to the double object pointed to
by d.

debug_getd returns zero on success or -1 on error.

509

CrossWorks for AVR Reference Manual

debug_getenv

Synopsis

char *debug_get env(char *nane);

Description

C Library User Guide

debug_getenv returns the value of the environment variable name or 0 if the environment variable cannot be

found.

510

CrossWorks for AVR Reference Manual C Library User Guide

debug_getf

Synopsis

int debug getf(float *f);

Description
debug_getf reads an float from the Debug Terminal. The number is written to the float object pointed to by f.

debug_getf returns zero on success or -1 on error.

511

CrossWorks for AVR Reference Manual C Library User Guide

debug_geti

Synopsis

int debug geti(int *i);

Description

debug_geti reads an integer from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the integer object
pointed to by i.

debug_geti returns zero on success or -1 on error.

512

CrossWorks for AVR Reference Manual C Library User Guide

debug_getli

Synopsis

int debug getl (long *I);

Description

debug_getl reads a long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object
pointed to by I.

debug_getl returns zero on success or -1 on error.

513

CrossWorks for AVR Reference Manual C Library User Guide

debug_getli

Synopsis

int debug getll(long long *I1);

Description

debug_getll reads a long long from the Debug Terminal. If the number starts with Ox it is interpreted as a
hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted as
a binary number, otherwise it is interpreted as a decimal number. The number is written to the long long object
pointed to by II.

debug_getll returns zero on success or -1 on error.

514

CrossWorks for AVR Reference Manual

debug_gets

Synopsis

char *debug_gets(char *s);

Description

C Library User Guide

debug_gets reads a string from the Debug Terminal in memory pointed at by s. This function will block until

ENTER has been pressed.

debug_gets returns the value of s.

515

CrossWorks for AVR Reference Manual C Library User Guide

debug_getu

Synopsis

i nt debug_getu(unsi gned *u);

Description

debug_getu reads an unsigned integer from the Debug Terminal. If the number starts with Ox it is interpreted
as a hexadecimal number, if it starts with Q it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the unsigned
integer object pointed to by u.

debug_getu returns zero on success or -1 on error.

516

CrossWorks for AVR Reference Manual C Library User Guide

debug_getul

Synopsis

i nt debug_getul (unsi gned | ong *ul);

Description

debug_getul reads an unsigned long from the Debug Terminal. If the number starts with Ox it is interpreted as
a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it is interpreted
as a binary number, otherwise it is interpreted as a decimal number. The number is written to the long object
pointed to by ul.

debug_getul returns zero on success or -1 on error.

517

CrossWorks for AVR Reference Manual C Library User Guide

debug_getull

Synopsis

i nt debug_getull (unsigned |long |long *ull);

Description

debug_getull reads an unsigned long long from the Debug Terminal. If the number starts with 0x it is
interpreted as a hexadecimal number, if it starts with 0 it is interpreted as an octal number, if it starts with Ob it
is interpreted as a binary number, otherwise it is interpreted as a decimal number. The number is written to the
long long object pointed to by ull.

debug_getull returns zero on success or -1 on error.

518

CrossWorks for AVR Reference Manual

debug_kbhit

Synopsis

int debug_kbhi t (voi d);

Description

C Library User Guide

debug_kbhit polls the Debug Terminal for a character and returns a non-zero value if a character is available or 0

if not.

519

CrossWorks for AVR Reference Manual C Library User Guide

debug_loadsymbols

Synopsis

voi d debug_| oadsynbol s(const char *fil enane,
const void *address,
const char *breaksynbol);

Description

debug_loadsymbols instructs the debugger to load the debugging symbols in the file denoted by filename.
The filename is a (macro expanded) host PC filename which is relative to the debugger working directory. The
address is the load address which is required for debugging position independent executables, supply NULL for
regular executables. The breaksymbol is the name of a symbol in the filename to set a temporary breakpoint on
or NULL.

520

CrossWorks for AVR Reference Manual C Library User Guide

debug_perror

Synopsis

voi d debug_perror(const char *s);

Description

debug_perror displays the optional string s on the Debug Terminal together with a string corresponding to the
errno value of the last Debug IO operation.

521

CrossWorks for AVR Reference Manual C Library User Guide

debug_printf

Synopsis

int debug_printf(const char *fornmat,
)i

Description

debug_printf writes to the Debug Terminal, under control of the string pointed to by format that specifies
how subsequent arguments are converted for output. The format string is a standard C printf format string. The
actual formatting is performed on the host by the debugger and therefore debug_printf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_printf returns the number of characters transmitted, or a negative value if an output or encoding error

occurred.

522

CrossWorks for AVR Reference Manual C Library User Guide

debug_printf_c
Synopsis
int debug printf_c(__code const char *format,

)

Description

debug_printf_cis equivalent to debug_printf with the format string in code memory.

523

CrossWorks for AVR Reference Manual

debug_putchar

Synopsis

i nt debug_putchar(int c);

Description

debug_putchar write the character c to the Debug Terminal.

debug_putchar returns the character written or -1 if a write error occurs.

524

C Library User Guide

CrossWorks for AVR Reference Manual

debug_puts

Synopsis

i nt debug_puts(const char *);

Description

debug_puts writes the string s to the Debug Terminal followed by a new-line character.

debug_puts returns -1 if a write error occurs, otherwise it returns a nonnegative value.

525

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

debug_remove

Synopsis

i nt debug_renove(const char *fil enane);

Description

debug_remove removes the filename denoted by filename and returns 0 on success or -1 on error. The

filename is a host PC filename which is relative to the debugger working directory.

526

CrossWorks for AVR Reference Manual C Library User Guide

debug_rename

Synopsis

i nt debug_renane(const char *ol dfil enane,
const char *newfil enane);

Description

debug_rename renames the file denoted by oldpath to newpath and returns zero on success or non-zero on

error. The oldpath and newpath are host PC filenames which are relative to the debugger working directory.

527

CrossWorks for AVR Reference Manual C Library User Guide

debug_rewind

Synopsis

voi d debug_r ew nd(DEBUG FI LE *strean);

Description

debug_rewind sets the current file position of the stream to the beginning of the file and clears any error and
end of file conditions.

528

CrossWorks for AVR Reference Manual C Library User Guide

debug_runtime_error

Synopsis

voi d debug_runtinme_error(const char *error);

Description

debug_runtime_error causes the debugger to stop the target, position the cursor at the line that called

debug_runtime_error, and display the null-terminated string pointed to by error.

529

CrossWorks for AVR Reference Manual C Library User Guide

debug_scanf

Synopsis

i nt debug_scanf(const char *format,
)i

Description

debug_scanf reads from the Debug Terminal, under control of the string pointed to by format that specifies
how subsequent arguments are converted for input. The format string is a standard C scanf format string. The
actual formatting is performed on the host by the debugger and therefore debug_scanf consumes only a very

small amount of code and data space, only the overhead to call the function.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

debug_scanf returns number of characters read, or a negative value if an output or encoding error occurred.

530

CrossWorks for AVR Reference Manual C Library User Guide

debug_scanf_c

Synopsis

i nt debug_scanf_c(__code const char *fornmat,

)i

Description

debug_scanf_cis equivalent to debug_scanf with the format string in code memory.

531

CrossWorks for AVR Reference Manual

debug_system

Synopsis

i nt debug_systen{char *command);

Description

C Library User Guide

debug_system executes the command with the host command line interpreter and returns the commands exit

status.

532

CrossWorks for AVR Reference Manual C Library User Guide

debug_time

Synopsis

unsi gned | ong debug_ti me(unsi gned | ong *ptr);

Description

debug_time returns the number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC), according to the system clock of the host computer. The return value is stored in *ptr if ptr
is not NULL.

533

CrossWorks for AVR Reference Manual

debug_tmpfile

Synopsis

DEBUG FI LE *debug_t nmpfil e(voi d);

Description

C Library User Guide

debug_tmpfile creates a temporary file on the host PC which is deleted when the stream is closed.

534

CrossWorks for AVR Reference Manual

debug_tmpnam

Synopsis

char *debug_t mpnan(char *str);

Description

C Library User Guide

debug_tmpnam returns a unique temporary filename. If stris NULL then a static buffer is used to store the

filename, otherwise the filename is stored in str. On success a pointer to the string is returned, on failure 0 is

returned.

535

CrossWorks for AVR Reference Manual

debug_ungetc

Synopsis

i nt debug_ungetc(int c,

DEBUG FI LE *strean);

Description

C Library User Guide

debug_ungetc pushes the character c onto the input stream. If successful c is returned, otherwise -1 is returned.

536

CrossWorks for AVR Reference Manual C Library User Guide

debug_unloadsymbols

Synopsis

voi d debug_unl oadsynbol s(const char *fil enane);

Description

debug_unloadsymbols instructs the debugger to unload the debugging symbols (previously loaded by a call to
debug_loadsymbols) in the file denoted by filename. The filename is a host PC filename which is relative to the

debugger working directory.

537

CrossWorks for AVR Reference Manual C Library User Guide

debug_vfprintf

Synopsis

i nt debug_vfprintf(DEBUG FI LE *stream
const char *format,
va list);

Description

debug_vfprintf is equivalent to debug_fprintf with arguments passed using stdarg.h rather than a variable
number of arguments.

538

CrossWorks for AVR Reference Manual C Library User Guide

debug_vfscanf

Synopsis

i nt debug_vfscanf (DEBUG FI LE *stream
const char *format,
_va_list);

Description

debug_vfscanf is equivalent to debug_fscanf with arguments passed using stdarg.h rather than a variable
number of arguments.

539

CrossWorks for AVR Reference Manual C Library User Guide

debug_vprintf

Synopsis

int debug vprintf(const char *format,
_va_list);

Description

debug_vprintf is equivalent to debug_printf with arguments passed using stdarg.h rather than a variable
number of arguments.

540

CrossWorks for AVR Reference Manual C Library User Guide

debug_vscanf

Synopsis

i nt debug_vscanf (const char *format,
_va_list);

Description

debug_vscanf is equivalent to debug_scanf with arguments passed using stdarg.h rather than a variable
number of arguments.

541

CrossWorks for AVR Reference Manual C Library User Guide

<cruntime.h>

The header file <cruntime.h> defines the interface to functions that the C compiler calls when generating

code. For instance, it contains the runtime routines for floating point operations and conversion, with shifts,
multiplies, and divides for each of the integer types. In general, you do not need to call these routines directly
from your own C code. These functions are are documented here should you need to call them from assembly
language. These functions abide by the standard calling conventions of the compiler. Not every implementation

of CrossWorks will provide all these functions.

APl Summary

Integer multiplication

__int16_mul Multiply two 16-bit signed or unsigned integers
forming a 16-bit product

__int16_mul_8x8 Multiply two 8-bit signed integers forming a 16-bit
signed product

__int16_mul_asgn Multiply a 16-bit signed or unsigned integer in
memory by a 16-bit integer

__int32_mul Multiply two 32-bit signed or unsigned integers
forming a 32-bit product

__int32_mul_16x16 Multiply two 16-bit signed integers forming a 32-bit
signed product

__int32_mul_asgn Multiply a 32-bit signed or unsigned integer in
memory by a 32-bit integer

__int64_mul Multiply two 64-bit signed or unsigned integers
forming a 64-bit product

__int64_mul_32x32 Multiply two 32-bit signed integers forming a 64-bit
signed product

__int64_mul_asgn Multiply a 64-bit signed or unsigned integer in
memory by a 64-bit integer

__uint16_mul_8x8 Multiply two 8-bit unsigned integers forming a 16-bit
unsigned product

__uint32_mul_16x16 Multiply two 16-bit unsigned integers forming a 32-bit
unsigned product

__uint64_mul_32x32 Multiply two 32-bit unsigned integers forming a 64-bit
unsigned product

Integer division

__int16_div Divide two 16-bit signed integers and return the 16-bit
signed quotient

542

CrossWorks for AVR Reference Manual

__int16_div_asgn

__int16_mod

__int16_mod_asgn

__int32_div

__int32_div_asgn

__int32_mod

__int32_mod_asgn

__int64_div

__int64_div_asgn

__int64_mod

__int64_mod_asgn

__uint16_div

__uint16_div_asgn

__uint16_mod

__uint16_mod_asgn

__uint32_div

__uint32_div_asgn

__uint32_mod

__uint32_mod_asgn

__uint64_div

C Library User Guide

Divide a 16-bit signed integer in memory by a 16-bit
signed integer

Divide two 16-bit signed integers and return the 16-bit
signed remainder after division

Divide a 16-bit signed integer in memory by a 16-bit
signed integer and assign it the 16-bit remainder
Divide two 32-bit signed integers and return the 32-bit
signed quotient

Divide a 32-bit signed integer in memory by a 32-bit
signed integer

Divide two 32-bit signed integers and return the 32-bit
signed remainder after division

Divide a 32-bit signed integer in memory by a 32-bit
signed integer and assign it the 32-bit remainder
Divide two 64-bit signed integers and return the 64-bit
signed quotient

Divide a 64-bit signed integer in memory by a 64-bit
signed integer

Divide two 64-bit signed integers and return the 64-bit
signed remainder after division

Divide a 64-bit signed integer in memory by a 64-bit
signed integer and assign it the 64-bit remainder

Divide two 16-bit unsigned integers and return the 16-
bit unsigned quotient

Divide a 16-bit unsigned integer in memory by a 16-bit
unsigned integer

Divide two 16-bit unsigned integers and return the 16-
bit unsigned remainder after division

Divide a 16-bit unsigned integer in memory by a 16-bit
unsigned integer and assign it the 16-bit remainder

Divide two 32-bit unsigned integers and return the 32-
bit unsigned quotient

Divide a 32-bit unsigned integer in memory by a 32-bit
unsigned integer

Divide two 32-bit unsigned integers and return the 32-
bit unsigned remainder after division

Divide a 32-bit unsigned integer in memory by a 32-bit
unsigned integer and assign it the 32-bit remainder

Divide two 64-bit unsigned integers and return the 64-
bit unsigned quotient

543

CrossWorks for AVR Reference Manual

__uint64_div_asgn

__uinté4_mod

__uint64_mod_asgn

Integer shifts

__int16_asr

__int16_asr_asgn

__int16_lIsl

__int16_Isl_asgn

__int16_lsr

__int16_lIsr_asgn

__int32_asr

__int32_asr_asgn

__int32_Isl

__int32_Isl_asgn

__int32_Isr

__int32_lIsr_asgn

__int64_asr

__int64_asr_asgn

__int64_Isl

__int64_lIsl_asgn

C Library User Guide

Divide a 64-bit unsigned integer in memory by a 64-bit
unsigned integer

Divide two 64-bit unsigned integers and return the 64-
bit unsigned remainder after division

Divide a 64-bit unsigned integer in memory by a 64-bit
unsigned integer and assign it the 64-bit remainder

Shift a 16-bit signed integer arithmetically right by a
variable number of bit positions

Shift a 16-bit signed integer in memory arithmetically
right by a variable number of bit positions

Shift a 16-bit signed integer left by a variable number
of bit positions

Shift a 16-bit signed integer in memory left by a
variable number of bit positions

Shift a 16-bit unsigned integer logically right by a
variable number of bit positions

Shift a 16-bit unsigned integer in memory logically
right by a variable number of bit positions

Shift a 32-bit signed integer arithmetically right by a
variable number of bit positions

Shift a 32-bit signed integer in memory arithmetically
right by a variable number of bit positions

Shift a 32-bit signed integer left by a variable number
of bit positions

Shift a 32-bit signed integer in memory left by a
variable number of bit positions

Shift a 32-bit unsigned integer logically right by a
variable number of bit positions

Shift a 32-bit unsigned integer in memory logically
right by a variable number of bit positions

Shift a 64-bit signed integer arithmetically right by a
variable number of bit positions

Shift a 64-bit signed integer in memory arithmetically
right by a variable number of bit positions

Shift a 64-bit signed integer left by a variable number
of bit positions

Shift a 64-bit signed integer in memory left by a
variable number of bit positions

544

CrossWorks for AVR Reference Manual

__int64_lsr

__int64_lsr_asgn

Floating-point arithmetic
__float32_add

_ float32_add_1

_ float32_add_asgn

__ float32_div

_ float32_div_asgn

__float32_mul

__float32_mul_asgn

__float32_neg
_ float32_sqr
_ float32_sub

_ float32_sub_asgn

_ float64_add
__ float64_add_1
_ float64_add_asgn

_ float64_div

_ float64_div_asgn

_ float64_mul

_ float6é4_mul_asgn

_ float64_neg
_ float64_sqr
__ float64_sub

__float64_sub_asgn

Floating point comparison
_ float32_eq
_ float32_eq_0

C Library User Guide

Shift a 64-bit unsigned integer logically right by a
variable number of bit positions

Shift a 64-bit unsigned integer in memory logically
right by a variable number of bit positions

Add two 32-bit floating point values
Add one to a 32-bit floating point value

Add a 32-bit floating point value to a 32-bit floating
point value in memory

Divide two 32-bit floating point values

Divide a 32-bit floating point value in memory by a 32-
bit floating point value

Multiply two 32-bit floating point values

Multiply a 32-bit floating point value in memory by a
32-bit floating point value

Negate a 32-bit floating point value
Square a 32-bit floating point value
Subtract two 32-bit floating point values

Subtract a 32-bit floating point value from a 32-bit
floating point value in memory

Add two 64-bit floating point values
Add one to a 64-bit floating point value

Add a 64-bit floating point value to a 64-bit floating
point value in memory

Divide two 64-bit floating point values

Divide a 64-bit floating point value in memory by a 64-
bit floating point value

Multiply two 64-bit floating point values

Multiply a 64-bit floating point value in memory by a
64-bit floating point value

Negate a 64-bit floating point value
Square a 64-bit floating point value
Subtract two 64-bit floating point values

Subtract a 64-bit floating point value from a 64-bit
floating point value in memory

Compare two 32-bit floating point values for equality

Compare 32-bit floating point value to zero

545

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_lIt Compare two 32-bit floating point values

_ float32_It_0 Compare 32-bit floating point value with zero
__float64_eq Compare two 64-bit floating point values for equality
_ float64_eq_0 Compare 64-bit floating point value to zero

_ float64_lIt Compare two 64-bit floating point values

_ float64_It_0 Compare 64-bit floating point value with zero

Integer to floating point conversions

__int16_to_float32 Convert a 16-bit signed integer to a 32-bit floating
point value

__int16_to_float64 Convert a 16-bit signed integer to a 64-bit floating
point value

__int32_to_float32 Convert a 32-bit signed integer to a 32-bit floating
point value

__int32_to_float64 Convert a 32-bit signed integer to a 64-bit floating
point value

__int64_to_float32 Convert a 64-bit signed integer to a 32-bit floating
point value

__int64_to_float64 Convert a 64-bit signed integer to a 64-bit floating
point value

__uint16_to_float32 Convert a 16-bit unsigned integer to a 32-bit floating
point value

__uint16_to_float64 Convert a 16-bit unsigned integer to a 64-bit floating
point value

__uint32_to_float32 Convert a 32-bit unsigned integer to a 32-bit floating
point value

__uint32_to_float64 Convert a 32-bit unsigned integer to a 64-bit floating
point value

__uint64_to_float32 Convert a 64-bit unsigned integer to a 32-bit floating
point value

__uint64_to_float64 Convert a 64-bit unsigned integer to a 64-bit floating
point value

Floating point to integer conversions

_ float32_to_int16 Convert a 32-bit floating point value to a 16-bit signed
integer

__float32_to_int32 Convert a 32-bit floating point value to a 32-bit signed
integer

__float32_to_int64 Convert a 32-bit floating point value to a 64-bit signed
integer

546

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_to_uint16 Convert a 32-bit floating point value to a 16-bit
unsigned integer

__float32_to_uint32 Convert a 32-bit floating point value to a 32-bit
unsigned integer

_ float32_to_uint64 Convert a 32-bit floating point value to a 64-bit
unsigned integer

Floating point conversions

_ float32_to_float64 Convert a 32-bit floating point value to a 64-bit
floating point value

__ float64_to_float32 Convert a 64-bit floating point value to a 32-bit
floating point value

547

CrossWorks for AVR Reference Manual C Library User Guide

__float32_add

Synopsis

float32_t _ float32_add(float32_t augend,
float32_t addend);

Description

_ float32_add adds addend to augend and returns the sum as the result.

548

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_add 1

Synopsis

float32_t _ float32 add_1(float32_t augend);

Description

__float32_add_1 adds one to augend and returns the sum as the result.

549

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_add_asgn

Synopsis

float32_t _ float32_add_asgn(float32_t *augend,
float32_t addend);

Description

__float32_add_asgn updates the floating-point value pointed to by augend by adding addend to it. The stored
sum is returned as the result.

550

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_div

Synopsis

float32_t _ float32_div(float32_t dividend,
float32_t divisor);

Description

__float32_div divides dividend by divisor and returns the quotient as the result.

551

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_div_asgn

Synopsis

float32_t _ float32 div_asgn(float32_t *dividend,
float32_t divisor);

Description

__float32_div_asgn updates the floating-point value pointed to by dividend by dividing it by divisor. The
stored quotient is returned as the result.

552

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_eq

Synopsis

int _ float32 eq(float32_t argo,
float32_t argl);

Description

__float32_eq compares arg0 to arg1. __float32_eq returns zero if arg0 is different from arg1, and a non-zero
value if arg0 is equal to arg1.

553

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_eq_0

Synopsis

int _float32_eq_O(float32_t arg);

Description

__float32_eq_0 compares arg to zero. __float32_eq_0 returns a non-zero value if arg is zero, and a zero value if
arg is non-zero.

554

CrossWorks for AVR Reference Manual

_ float32_It

Synopsis

int _float32_ It(float32_t argo,

float32_t argl);

Description

C Library User Guide

__float32_It compares arg0 to arg1. __float32_It returns a non-zero value if arg0 is less than arg1, and zero if

argO0 is equal to or greater than arg1.

555

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_1t_0

Synopsis

int float32_It_O(float32_t argO,
float32_t argl);

Description

__float32_It_0 compares arg to zero. __float32_It_0 returns a non-zero value if arg is less than zero, and zero if
arg0 is equal to or greater than zero.

556

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_mul

Synopsis

float32_t _ float32_mul (float32_t muliplicand,
float32_t multiplier);

Description

__float32_mul multiplies multiplicand by multiplier and returns the product as the result.

557

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_mul_asgn

Synopsis

float32_t _ float32 mul _asgn(float32_t *nultiplicand,
float32_t multiplier);

Description

__float32_mul_asgn updates the floating-point value pointed to by multiplicand by multiplying it by
multiplier. The stored product is returned as the result.

558

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_neg

Synopsis

float32_t _ float32 neg(float32_t arg);

Description

__float32_neg negates arg and returns the result.

559

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_sqr

Synopsis

float32_t _ float32 sqr(float32_t arg);

Description

__float32_sqr squares arg by multiplying arg by itself.

560

CrossWorks for AVR Reference Manual C Library User Guide

__float32_sub

Synopsis

float32_t _ float32_ sub(float32_t m nuend,
float32_t subtrahend);

Description

_ float32_sub subtracts subtrahend from minuend and returns the difference as the result.

561

CrossWorks for AVR Reference Manual C Library User Guide

_ float32_sub_asgn

Synopsis

float32_t _ float32 sub_asgn(float32_t *ninuend,
float32_t subtrahend);

Description

__float32_sub_asgn updates the floating-point value pointed to by minuend by subtracting subtrahend from
it. The stored difference is returned as the result.

562

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to_float64

Synopsis

float64 t _ float32 to float64(float32_t arg);

Description

__float32_to_float64 converts the 32-bit floating value arg to a 64-bit floating point value and returns the
converted value as the result.

563

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to_int16

Synopsis

intl6 t _float32 to_ intl16(float32_t arg);

Description

__float32_to_int16 converts the floating value arg> to a 16-bit signed integer, truncating towards zero, and
returns the truncated value as the result.

564

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to_int32

Synopsis

int32_t float32 to_int32(float32_t arg);

Description

__float32_to_int32 converts the floating value arg> to a 32-bit signed integer, truncating towards zero, and
returns the truncated value as the result.

565

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to_int64

Synopsis

int64 t float32 to_int64(float32_t arg);

Description

__float32_to_int64 converts the floating value arg> to a 64-bit signed integer, truncating towards zero, and
returns the truncated value as the result.

566

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to_uint16

Synopsis

uintl6_ t _ float32 to_uint16(float32_t arg);

Description

__float32_to_uint16 converts the floating value arg> to a 16-bit unsigned integer, truncating towards zero, and
returns the truncated value as the result.

567

CrossWorks for AVR Reference Manual C Library User Guide

__float32 to _uint32

Synopsis

uint32_t _float32 to_uint32(float32_t arg);

Description

__float32_to_uint32 converts the floating value arg> to a 32-bit unsigned integer, truncating towards zero, and
returns the truncated value as the result.

568

CrossWorks for AVR Reference Manual C Library User Guide

__float32_to_uint64

Synopsis

uint64 t float32 to_uint64(float32_t arg);

Description

__float32_to_uint64 converts the floating value arg> to a 64-bit unsigned integer, truncating towards zero, and
returns the truncated value as the result.

569

CrossWorks for AVR Reference Manual C Library User Guide

__float64 add

Synopsis

float64 t _ float64_add(float64_t augend,
float64_t addend);

Description

__float64_add adds addend to augend and returns the sum as the result.

570

CrossWorks for AVR Reference Manual C Library User Guide

__float64 add 1

Synopsis

float64 t _ float64_add_1(float64_t augend);

Description

__float64_add_1 adds one to augend and returns the sum as the result.

571

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_add_asgn

Synopsis

float64_t _ float64_add_asgn(float64_t *augend,
float64_t addend);

Description

__float64_add_asgn updates the floating-point value pointed to by augend by adding addend to it. The stored
sum is returned as the result.

572

CrossWorks for AVR Reference Manual C Library User Guide

__float64 div

Synopsis

float64 t _ float64_div(float64_t dividend,
float64_t divisor);

Description

__float64_div divides dividend by divisor and returns the quotient as the result.

573

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_div_asgn

Synopsis

float64 t _ float64_div_asgn(float64_t *dividend,
float64_t divisor);

Description

__float64_div_asgn updates the floating-point value pointed to by dividend by dividing it by divisor. The
stored quotient is returned as the result.

574

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_eq

Synopsis

int _float64_eq(float64_t argo,
float64_t argl);

Description

__float64_eq compares arg0 to arg1. __float64_eq returns zero if arg0 is different from arg1, and a non-zero
value if arg0 is equal to arg1.

575

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_eq_0

Synopsis

int _float64_eq_O(float64_t arg);

Description

__float64_eq_0 compares arg to zero. __float64_eq_0 returns a non-zero value if arg is zero, and a zero value if
arg is non-zero.

576

CrossWorks for AVR Reference Manual

__float64 It

Synopsis

int _float64_It(float64_t argo,

float64_t argl);

Description

C Library User Guide

__float64_It compares arg0 to arg1. __float64_lt returns a non-zero value if arg0 is less than arg1, and zero if

argO0 is equal to or greater than arg1.

577

CrossWorks for AVR Reference Manual C Library User Guide

__floate4 It 0

Synopsis

int float64_It_O(float64_t argO,
float64_t argl);

Description

__float64_lt_0 compares arg to zero. __float64_It_0 returns a non-zero value if arg is less than zero, and zero if
arg0 is equal to or greater than zero.

578

CrossWorks for AVR Reference Manual C Library User Guide

__float64 _mul

Synopsis

float64 t _ float64_mul (float64_t muliplicand,
float64_t multiplier);

Description

__float64_mul multiplies multiplicand by multiplier and returns the product as the result.

579

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_mul_asgn

Synopsis

float64 t _ float64_mul asgn(float64_t *nultiplicand,
float64_t nultiplier);

Description

__float64_mul_asgn updates the floating-point value pointed to by multiplicand by multiplying it by
multiplier. The stored product is returned as the result.

580

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_neg

Synopsis

float64 t _ float64_neg(float64_t arg);

Description

__float64_neg negates arg and returns the result.

581

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_sqr

Synopsis

float64 t _ float64_sqr(float64_t arg);

Description

__float64_sqr squares arg by multiplying arg by itself.

582

CrossWorks for AVR Reference Manual C Library User Guide

__float64 sub

Synopsis

float64 t _ float64_sub(float64_t m nuend,
float64_t subtrahend);

Description

_ float64_sub subtracts subtrahend from minuend and returns the difference as the result.

583

CrossWorks for AVR Reference Manual C Library User Guide

_ float64_sub_asgn

Synopsis

float64_ t _ float64_sub_asgn(float64_t *mi nuend,
float64_t subtrahend);

Description

__float64_sub_asgn updates the floating-point value pointed to by minuend by subtracting subtrahend from
it. The stored difference is returned as the result.

584

CrossWorks for AVR Reference Manual C Library User Guide

__float64 to float32

Synopsis

float32_t _ float64_to float32(float64_t arg);

Description

__float64_to_float32 converts the 64-bit floating value arg to a 32-bit floating point value and returns the
converted value as the result.

585

CrossWorks for AVR Reference Manual

__int16_asr

Synopsis

intl6_ t _intl6_asr(intl6_t arg,
int bits);

Description

C Library User Guide

__int16_asr shifts arg arithmetically right by bits bit positions, replicating the sign bit, and returns the shifted

result.

586

CrossWorks for AVR Reference Manual C Library User Guide

__int16_asr_asgn

Synopsis

intl6_ t _intl6_asr_asgn(intl6_t *arg,
int bits);

Description

__int16_asr_asgn updates the 16-bit signed integer pointed to by arg by arithmetically shifting it right by its bit
positions, replicating the sign bit. The shifted value is returned as the result.

587

CrossWorks for AVR Reference Manual C Library User Guide

__int16_div

Synopsis

intl6 t _ intl1l6 _div(intl6_t dividend,
int16_t divisor);

Description

__int16_div divides dividend by divisor and returns the signed quotient, truncated towards zero, as the result.

588

CrossWorks for AVR Reference Manual C Library User Guide

__int16_div_asgn

Synopsis

intl6_ t _ intl6_div_asgn(intl6_t *dividend,
int16_t divisor);

Description

__int16_div_asgn updates the 16-bit signed integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

589

CrossWorks for AVR Reference Manual C Library User Guide

__int16_lsl

Synopsis

intle t _intl6 Isl(intl6_t arg,
int bits);

Description

__int16_lsl shifts arg left by bits bit positions, shifting zeros in from the left.

590

CrossWorks for AVR Reference Manual C Library User Guide

__int16_Isl_asgn

Synopsis

uintl6_t _ int16_Isl_asgn(uintl6_t *arg,
int bits);

Description

__int16_lIsl_asgn updates the 16-bit unsigned integer pointed to by arg by shifting it left by bits bit positions,
shifting in zeros in from the right. The shifted value is returned as the result.

591

CrossWorks for AVR Reference Manual

__int16_lIsr

Synopsis

uintl6 t _ int16 Isr(uintl6_t arg,
int bits);

Description

C Library User Guide

__int16_lsr shifts arg logically right by bits bit positions, shifting in zeros fro the left, and returns the shifted

result.

592

CrossWorks for AVR Reference Manual C Library User Guide

__int16_Isr_asgn

Synopsis

uintl6_ t _ intl16_Isr_asgn(uintl6_t *arg,
int bits);

Description

__int16_Isr_asgn updates the 16-bit unsigned integer pointed to by arg by logically shifting it right by bits bit
positions, shifting in zeros from the right. The shifted value is returned as the result.

593

CrossWorks for AVR Reference Manual C Library User Guide

__int16_mod

Synopsis

intl6 t _ int1l6 _nod(intl16_t dividend,
int16_t divisor);

Description

__int16_mod divides dividend by divisor and returns the signed remainder after division as the result.

594

CrossWorks for AVR Reference Manual C Library User Guide

__int16_mod_asgn

Synopsis

intl6_ t _ intl6_nod_asgn(intl6_t *dividend,
int16_t divisor);

Description

__int16_mod_asgn updates the 16-bit signed integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

595

CrossWorks for AVR Reference Manual C Library User Guide

__int16_mul
Synopsis
intl6_t _ int1l6_nul (int16_t muliplicand,

intl6_t multiplier);

Description

__int16_mul multiplies multiplicand by multiplier and returns the product as the result. As only the lower 16
bits of the product are returned, __int16_mul returns correct products, modulo 16 bits, for both signed and

unsigned arguments.

596

CrossWorks for AVR Reference Manual C Library User Guide

__int16_mul_8x8

Synopsis

intl6_ t _ int1l6_nul _8x8(int8_t muliplicand,
int8_t multiplier);

Description

__int16_mul_8x8 multiplies multiplicand by multiplier and returns the 16-bit signed product as the result.

597

CrossWorks for AVR Reference Manual C Library User Guide

__int16_mul_asgn

Synopsis

intl6_ t _ int1l6_nul _asgn(int16_t *nuliplicand,
intl6_t multiplier);

Description

__int16_mul_asgn updates the 16-bit signed integer pointed to by multiplicand by multiplying it by multiplier.
The product is returned as the result. As only the lower 16 bits of the product are returned, __int16_mul_asgn

returns correct products, modulo 16 bits, for both signed and unsigned arguments.

598

CrossWorks for AVR Reference Manual C Library User Guide

__int16_to float32

Synopsis

float32_t _ int1l6_to float32(int1l6_t arg);

Description

__int16_to_float32 converts the 16-bit signed integer arg to a 32-bit floating value and returns the floating
value as the result. As all 16-bit integers can be represented exactly in 32-bit floating point format, rounding is

never necessary.

599

CrossWorks for AVR Reference Manual C Library User Guide

__int16_to_float64

Synopsis

float64 t _ int16_to float64(intl6_t arg);

Description

__int16_to_float64 converts the 16-bit signed integer arg to a 64-bit floating value and returns the floating
value as the result. As all 16-bit integers can be represented exactly in 64-bit floating point format, rounding is

never necessary.

600

CrossWorks for AVR Reference Manual

__int32_asr

Synopsis

int32_t _ int32 asr(int32_t arg,
int bits);

Description

C Library User Guide

__int32_asr shifts arg arithmetically right by bits bit positions, replicating the sign bit, and returns the shifted

result.

601

CrossWorks for AVR Reference Manual C Library User Guide

__int32_asr_asgn

Synopsis

int32_t _ int32_asr_asgn(int32_t *arg,
int bits);

Description

__int32_asr_asgn updates the 32-bit signed integer pointed to by arg by arithmetically shifting it right by its bit
positions, replicating the sign bit. The shifted value is returned as the result.

602

CrossWorks for AVR Reference Manual C Library User Guide

__int32_div

Synopsis

int32_t _ int32_div(int32_t dividend,
int32_t divisor);

Description

__int32_div divides dividend by divisor and returns the signed quotient, truncated towards zero, as the result.

603

CrossWorks for AVR Reference Manual C Library User Guide

__int32_div_asgn

Synopsis

int32_t _ int32_div_asgn(int32_t *dividend,
int32_t divisor);

Description

__int32_div_asgn updates the 32-bit signed integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

604

CrossWorks for AVR Reference Manual C Library User Guide

__int32_ls|

Synopsis

int32_t _int32_ Isl(int32_t arg,
int bits);

Description

__int32_lsl shifts arg left by bits bit positions, shifting zeros in from the left.

605

CrossWorks for AVR Reference Manual C Library User Guide

__int32_Isl_asgn

Synopsis

uint32_t _ int32_Isl_asgn(uint32_t *arg,
int bits);

Description

__int32_Isl_asgn updates the 32-bit unsigned integer pointed to by arg by shifting it left by bits bit positions,
shifting in zeros in from the right. The shifted value is returned as the result.

606

CrossWorks for AVR Reference Manual

__int32_lIsr

Synopsis

uint32_t _ int32_ Isr(uint32_t arg,
int bits);

Description

C Library User Guide

__int32_lsr shifts arg logically right by bits bit positions, shifting in zeros fro the left, and returns the shifted

result.

607

CrossWorks for AVR Reference Manual C Library User Guide

__int32_Isr_asgn

Synopsis

uint32_t _ int32_Isr_asgn(uint32_t *arg,
int bits);

Description

__int32_Isr_asgn updates the 32-bit unsigned integer pointed to by arg by logically shifting it right by bits bit
positions, shifting in zeros from the right. The shifted value is returned as the result.

608

CrossWorks for AVR Reference Manual C Library User Guide

__int32_mod

Synopsis

int32_t _ int32_nod(int32_t dividend,
int32_t divisor);

Description

__int32_mod divides dividend by divisor and returns the signed remainder after division as the result.

609

CrossWorks for AVR Reference Manual C Library User Guide

__int32_mod_asgn

Synopsis

int32_t _ int32_nod_asgn(int32_t *dividend,
int32_t divisor);

Description

__int32_mod_asgn updates the 32-bit signed integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

610

CrossWorks for AVR Reference Manual C Library User Guide

__int32_mul
Synopsis
int32_t _ int32_nmul (int32_t muliplicand,

int32_t multiplier);

Description

__int32_mul multiplies multiplicand by multiplier and returns the product as the result. As only the lower 32
bits of the product are returned, __int32_mul returns correct products, modulo 32 bits, for both signed and

unsigned arguments.

611

CrossWorks for AVR Reference Manual C Library User Guide

__int32_mul_16x16

Synopsis

int32_t _ int32_nul _16x16(int16_t nuliplicand,
intl6_t multiplier);

Description

this multiplies multiplicand by multiplier and returns the 32-bit signed product as the result.

612

CrossWorks for AVR Reference Manual C Library User Guide

__int32_mul_asgn

Synopsis

int32_t _ int32_nul _asgn(int32_t *nuliplicand,
int32_t multiplier);

Description

__int32_mul_asgn updates the 32-bit signed integer pointed to by multiplicand by multiplying it by multiplier.
The product is returned as the result. As only the lower 32 bits of the product are returned, __int32_mul_asgn

returns correct products, modulo 32 bits, for both signed and unsigned arguments.

613

CrossWorks for AVR Reference Manual C Library User Guide

__int32_to float32

Synopsis

float32_t _ int32_to float32(int32_t arg);

Description

__int32_to_float32 converts the 32-bit signed integer arg to a 32-bit floating value, rounding if required, and
returns the appropriately rounded value as the result.

614

CrossWorks for AVR Reference Manual C Library User Guide

__int32_to float64

Synopsis

float64 t _ int32_to float64(int32_t arg);

Description

__int32_to_float64 converts the 32-bit signed integer arg to a 64-bit floating value and returns the floating
value as the result. As all 32-bit integers can be represented exactly in 64-bit floating point format, rounding is

never necessary.

615

CrossWorks for AVR Reference Manual

__int64_asr

Synopsis

inté4 t _ int64_asr(int64_t arg,
int bits);

Description

C Library User Guide

__int64_asr shifts arg arithmetically right by bits bit positions, replicating the sign bit, and returns the shifted

result.

616

CrossWorks for AVR Reference Manual C Library User Guide

__int64_asr_asgn

Synopsis

int64 t _ int64_asr_asgn(int64_t *arg,
int bits);

Description

__int64_asr_asgn updates the 64-bit signed integer pointed to by arg by arithmetically shifting it right by its bit
positions, replicating the sign bit. The shifted value is returned as the result.

617

CrossWorks for AVR Reference Manual C Library User Guide

__int64_div

Synopsis

int64 t _ int64_div(int64_t dividend,
int64_t divisor);

Description

__int64_div divides dividend by divisor and returns the signed quotient, truncated towards zero, as the result.

618

CrossWorks for AVR Reference Manual C Library User Guide

__int64_div_asgn

Synopsis

int64 t _ int64_div_asgn(int64_t *dividend,
int64_t divisor);

Description

__int64_div_asgn updates the 64-bit signed integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

619

CrossWorks for AVR Reference Manual C Library User Guide

__int64_lsl

Synopsis

inté4 t _ int64 Isl(int64_t arg,
int bits);

Description

__int64_lsl shifts arg left by bits bit positions, shifting zeros in from the left.

620

CrossWorks for AVR Reference Manual C Library User Guide

__int64_Isl_asgn

Synopsis

uint64 t _ int64_Isl_asgn(uint64_t *arg,
int bits);

Description

__int64_lsl_asgn updates the 64-bit unsigned integer pointed to by arg by shifting it left by bits bit positions,
shifting in zeros in from the right. The shifted value is returned as the result.

621

CrossWorks for AVR Reference Manual

__int64_lIsr

Synopsis

uinté4 t _ int64 Isr(uint64_t arg,
int bits);

Description

C Library User Guide

__int64_lsr shifts arg logically right by bits bit positions, shifting in zeros fro the left, and returns the shifted

result.

622

CrossWorks for AVR Reference Manual C Library User Guide

__int64_Isr_asgn

Synopsis

uint64 t _ int64_Isr_asgn(uint64_t *arg,
int bits);

Description

__int64_lsr_asgn updates the 64-bit unsigned integer pointed to by arg by logically shifting it right by bits bit
positions, shifting in zeros from the right. The shifted value is returned as the result.

623

CrossWorks for AVR Reference Manual C Library User Guide

__inté4_mod

Synopsis

int64 t _ int64_nod(int64_t dividend,
int64_t divisor);

Description

__int64_mod divides dividend by divisor and returns the signed remainder after division as the result.

624

CrossWorks for AVR Reference Manual C Library User Guide

__int64_mod_asgn

Synopsis

int64 t _ int64_nod_asgn(int64_t *dividend,
int64_t divisor);

Description

__int64_mod_asgn updates the 64-bit signed integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

625

CrossWorks for AVR Reference Manual C Library User Guide

__inté4_mul

Synopsis

int64 t _ int64_nmul (int64_t muliplicand,
int64_t multiplier);

Description

__int64_mul multiplies multiplicand by multiplier and returns the product as the result. As only the lower 64
bits of the product are returned, __int64_mul returns correct products, modulo 64 bits, for both signed and

unsigned arguments.

626

CrossWorks for AVR Reference Manual C Library User Guide

__inté4_mul 32x32

Synopsis

int64 t _ int64_nul _32x32(int32_t nuliplicand,
int32_t multiplier);

Description

this multiplies multiplicand by multiplier and returns the 64-bit signed product as the result.

627

CrossWorks for AVR Reference Manual C Library User Guide

__int64_mul_asgn

Synopsis

int64 t _ int64_nul _asgn(int64_t *nuliplicand,
int64_t multiplier);

Description

__int64_mul_asgn updates the 64-bit signed integer pointed to by multiplicand by multiplying it by multiplier.
The product is returned as the result. As only the lower 64 bits of the product are returned, __int64_mul_asgn

returns correct products, modulo 64 bits, for both signed and unsigned arguments.

628

CrossWorks for AVR Reference Manual C Library User Guide

__int64_to float32

Synopsis

float32_t _ int64_to float32(int64_t arg);

Description

__int64_to_float32 converts the 64-bit signed integer arg to a 32-bit floating value, rounding if required, and
returns the appropriately rounded value as the result.

629

CrossWorks for AVR Reference Manual C Library User Guide

__int64_to float6e4

Synopsis

float64 t _ int64 _to float64(int64_t arg);

Description

__int64_to_float64 converts the 64-bit signed integer arg to a 64-bit floating value, rounding if required, and
returns the appropriately rounded value as the result.

630

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_div

Synopsis

uint16_t _ uint16_di v(uint16_t dividend,
uint16_t divisor);

Description

__uint16_div divides dividend by divisor and returns the unsigned quotient, truncated towards zero, as the
result.

631

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_div_asgn

Synopsis

uint16_t _ uint16_div_asgn(uint16_t *dividend,
uint16_t divisor);

Description

__uint16_div_asgn updates the 16-bit unsigned integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

632

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_mod

Synopsis

uint16_t _ uint16_nod(uint16_t dividend,
uint16_t divisor);

Description

__uint16_mod divides dividend by divisor and returns the unsigned remainder after division as the result.

633

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_mod_asgn

Synopsis

uint16_t _ uint16_nmod_asgn(uint16_t *di vi dend,
uint16_t divisor);

Description

__uint16_mod_asgn updates the 16-bit unsigned integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

634

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_mul _8x8

Synopsis

uint16_t _ uint16_mul _8x8(uint8_t nuliplicand,
uint8 t nultiplier);

Description

__uint16_mul_8x8 multiplies multiplicand by multiplier and returns the 16-bit unsigned product as the result.

635

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_to_float32

Synopsis

float32_t _ uint16_to float32(uintl6_t arg);

Description

__uint16_to_float32 converts the 16-bit unsigned integer arg to a 32-bit floating value and returns the floating
value as the result. As all 16-bit unsigned integers can be represented exactly in 32-bit floating point format,

rounding is never necessary.

636

CrossWorks for AVR Reference Manual C Library User Guide

__uint16_to_float64

Synopsis

float64 t _ uintl6_to float64(uintl6_t arg);

Description

__uint16_to_float64 converts the 16-bit unsigned integer arg to a 64-bit floating value and returns the floating
value as the result. As all 16-bit unsigned integers can be represented exactly in 64-bit floating point format,

rounding is never necessary.

637

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_div

Synopsis

uint32_t _ uint32_div(uint32_t dividend,
uint32_t divisor);

Description

__uint32_div divides dividend by divisor and returns the unsigned quotient, truncated towards zero, as the
result.

638

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_div_asgn

Synopsis

uint32_t _ uint32_div_asgn(uint32_t *dividend,
ui nt32_t divisor);

Description

__uint32_div_asgn updates the 32-bit unsigned integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

639

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_mod

Synopsis

uint32_t _ uint32_nod(uint32_t dividend,
uint32_t divisor);

Description

__uint32_mod divides dividend by divisor and returns the unsigned remainder after division as the result.

640

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_mod_asgn

Synopsis

uint32_t _ uint32_nmod_asgn(uint32_t *divi dend,
ui nt32_t divisor);

Description

__uint32_mod_asgn updates the 32-bit unsigned integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

641

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_mul _16x16

Synopsis

uint32_t _ uint32_mul _16x16(uint16_t muli plicand,
uint16_t multiplier);

Description

__uint32_mul_16x16 multiplies multiplicand by multiplier and returns the 32-bit unsigned product as the
result.

642

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_to float32

Synopsis

float32_t _ uint32_to float32(uint32_t arg);

Description

__uint32_to_float32 converts the 32-bit unsigned integer arg to a 32-bit floating value, rounding if required,
and returns the appropriately rounded value as the result.

643

CrossWorks for AVR Reference Manual C Library User Guide

__uint32_to _float64

Synopsis

float64 t _ uint32_to float64(uint32_t arg);

Description

__uint32_to_float64 converts the 32-bit unsigned integer arg to a 64-bit floating value and returns the floating
value as the result. As all 32-bit unsigned integers can be represented exactly in 64-bit floating point format,

rounding is never necessary.

644

CrossWorks for AVR Reference Manual C Library User Guide

___uint64_div

Synopsis

uint64_t _ uint64_div(uint64_t dividend,
ui nt 64_t divisor);

Description

__uint64_div divides dividend by divisor and returns the unsigned quotient, truncated towards zero, as the
result.

645

CrossWorks for AVR Reference Manual C Library User Guide

__uint64_div_asgn

Synopsis

uint64_t _ uint64_div_asgn(uint64_t *dividend,
ui nt 64_t divisor);

Description

__uint64_div_asgn updates the 64-bit unsigned integer pointed to by dividend by dividing it by divisor and
truncated towards zero. The quotient is returned as the result.

646

CrossWorks for AVR Reference Manual C Library User Guide

__uint64_mod

Synopsis

uint64_t _ uint64_nod(uint64_t dividend,
ui nt 64_t divisor);

Description

__uint64_mod divides dividend by divisor and returns the unsigned remainder after division as the result.

647

CrossWorks for AVR Reference Manual C Library User Guide

__uint64_mod_asgn

Synopsis

uint64_t _ uint64_nmod_asgn(uint64_t *dividend,
ui nt 64_t divisor);

Description

__uint64_mod_asgn updates the 64-bit unsigned integer pointed to by dividend by assigning it the remainder
after division of dividend by divisor. The remainder is returned as the result.

648

CrossWorks for AVR Reference Manual C Library User Guide

__uint64 _mul 32x32

Synopsis

uint64_t _ uint64_mul 32x32(uint32_t muliplicand,
uint32_t multiplier);

Description

__uint64_mul_32x32 multiplies multiplicand by multiplier and returns the 64-bit unsigned product as the
result.

649

CrossWorks for AVR Reference Manual C Library User Guide

__uint64_to float32

Synopsis

float32_t _ uint64_to float32(uint64_t arg);

Description

__uint64_to_float32 converts the 64-bit unsigned integer arg to a 32-bit floating value, rounding if required,
and returns the appropriately rounded value as the result.

650

CrossWorks for AVR Reference Manual C Library User Guide

__uint64_to floate4

Synopsis

float64 t _ uint64_to float64(uint64_t arg);

Description

__uint64_to_float64 converts the 64-bit unsigned integer arg to a 64-bit floating value, rounding if required,
and returns the appropriately rounded value as the result.

651

CrossWorks for AVR Reference Manual C Library User Guide

<ctype.h>

APl Summary

Classification functions

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isblank Is character a space or horizontal tab?
iscntrl Is character a control character?
isdigit Is character a decimal digit?

isgraph Is character any printing character except space?
islower Is character a lowercase letter?
isprint Is character printable?

ispunct Is character a punctuation mark?
isspace Is character a whitespace character?
isupper Is character an uppercase letter?
isxdigit Is character a hexadecimal digit?

Conversion functions
tolower Convert uppercase character to lowercase

toupper Convert lowercase character to uppercase

652

CrossWorks for AVR Reference Manual C Library User Guide

isalnum

Synopsis

int isalnunmint c);

Description

isalnum returns nonzero (true) if and only if the value of the argument c is an alphabetic or numeric character.

653

CrossWorks for AVR Reference Manual C Library User Guide

isalpha

Synopsis

int isal pha(int c);

Description

isalpha returns nonzero (true) if and only if isupper or islower return true for value of the argument c.

654

CrossWorks for AVR Reference Manual C Library User Guide

isblank

Synopsis

int isblank(int c);

Description

isblank returns nonzero (true) if and only if the value of the argument c is either a space character (') or the
horizontal tab character (" \\ t').

655

CrossWorks for AVR Reference Manual C Library User Guide

iscntrl

Synopsis

int iscntrl(int c);

Description

iscntrl returns nonzero (true) if and only if the value of the argument c is a control character. Control characters
have values 0 through 31 and the single value 127.

656

CrossWorks for AVR Reference Manual C Library User Guide
isdigit

Synopsis

int isdigit(int c);

Description

isdigit returns nonzero (true) if and only if the value of the argument c is a digit.

657

CrossWorks for AVR Reference Manual

isgraph

Synopsis

int isgraph(int c);

Description

C Library User Guide

isgraph returns nonzero (true) if and only if the value of the argument c is any printing character except space ('

).

658

CrossWorks for AVR Reference Manual C Library User Guide

islower

Synopsis

int islower(int c);

Description

islower returns nonzero (true) if and only if the value of the argument c is an lowercase letter.

659

CrossWorks for AVR Reference Manual C Library User Guide

isprint

Synopsis

int isprint(int c);

Description

isprint returns nonzero (true) if and only if the value of the argument c is any printing character including space

¢ ")

660

CrossWorks for AVR Reference Manual C Library User Guide

ispunct

Synopsis

int ispunct(int c);

Description

ispunct returns nonzero (true) for every printing character for which neither isspace nor isalnum is true.

661

CrossWorks for AVR Reference Manual C Library User Guide

isspace

Synopsis

int isspace(int c);

Description

isspace returns nonzero (true) if and only if the value of the argument c is a standard white-space character.
The standard white-space characters are space (' '), formfeed (' \\ f'), new-line (' \\ n'), carriage return (' \
\r'), horizontaltab (" \\ t '), and verticaltab (" \ v').

662

CrossWorks for AVR Reference Manual C Library User Guide

isupper

Synopsis

int isupper(int c);

Description

isupper returns nonzero (true) if and only if the value of the argument c is an uppercase letter.

663

CrossWorks for AVR Reference Manual C Library User Guide
isxdigit

Synopsis

int isxdigit(int c);

Description

isxdigit returns nonzero (true) if and only if the value of the argument c is a hexadecimal digit.

664

CrossWorks for AVR Reference Manual

tolower

Synopsis

int tolower(int c);

Description

C Library User Guide

tolower converts an uppercase letter to a corresponding lowercase letter. If the argument c is a character for

which isupper is true, tolower returns the corresponding lowercase letter; otherwise, the argument is returned

unchanged.

665

CrossWorks for AVR Reference Manual

toupper

Synopsis

int toupper(int c);

Description

C Library User Guide

toupper converts a lowercase letter to a corresponding uppercase letter. If the argument c is a character for

which islower is true, toupper returns the corresponding uppercase letter; otherwise, the argument is returned

unchanged.

666

CrossWorks for AVR Reference Manual C Library User Guide

<errno.h>

APl Summary

Macros
errno Allows you to access the errno implementation

Error numbers

EDOM Domain error

EILSEQ lllegal byte sequence

ERANGE Result too large or too small

Functions

__errno User-defined behavior for the errno macro

667

CrossWorks for AVR Reference Manual

EDOM

Synopsis

#defi ne EDOM 0x01

Description

EDOM - an input argument is outside the defined domain of the mathematical function.

668

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

EILSEQ

Synopsis

#define EILSEQ 0x02

Description

EILSEQ - A wide-character code has been detected that does not correspond to a valid character, or a byte

sequence does not form a valid wide-character code.

669

CrossWorks for AVR Reference Manual

ERANGE

Synopsis

#define ERANGE 0x03

Description

C Library User Guide

ERANGE - the result of the function is too large (overflow) or too small (underflow) to be represented in the

available space.

670

CrossWorks for AVR Reference Manual C Library User Guide

__errno

Synopsis

int *_ errno(void);

Description

There is no default implementation of __errno. Keeping __errno out of the library means that you can can

customize its behavior without rebuilding the library. A default implementation could be
static int errno

int *_errno(void) { return &errno; }

671

CrossWorks for AVR Reference Manual C Library User Guide

errno

Synopsis

#define errno (*__errno())

Description

errno macro expands to a function call to __errno that returns a pointer to an int. This function can be

implemented by the application to provide a thread specific errno.

The value of errno is zero at program startup, but is never set to zero by any library function. The value of errno

may be set to a nonzero value by a library function, and this effect is documented in each function that does so.

Note

The ISO standard does not specify whether errno is a macro or an identifier declared with external linkage.

Portable programs must not make assumptions about the implementation of errno.

672

CrossWorks for AVR Reference Manual

<float.h>

APl Summary

Double exponent minimum and maximum values

DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN_10_EXP
DBL_MIN_EXP
Implementation
DBL_DIG
DBL_MANT_DIG
DECIMAL_DIG

FLT_DIG

FLT_EVAL_METHOD

FLT_MANT_DIG

FLT_RADIX

FLT_ROUNDS

Float exponent minimum and maximum values
FLT_MAX_10_EXP

FLT_MAX_EXP

FLT_MIN_10_EXP

FLT_MIN_EXP

Double minimum and maximum values

DBL_EPSILON

DBL_MAX
DBL_MIN
Float minimum and maximum values

FLT_EPSILON

FLT_MAX
FLT_MIN

C Library User Guide

The maximum exponent value in base 10 of a double
The maximum exponent value of a double
The minimal exponent value in base 10 of a double

The minimal exponent value of a double

The number of digits of precision of a double
The number of digits in a double

The number of decimal digits that can be rounded
without change

The number of digits of precision of a float
The evaluation format

The number of digits in a float

The radix of the exponent representation

The rounding mode

The maximum exponent value in base 10 of a float
The maximum exponent value of a float
The minimal exponent value in base 10 of a float

The minimal exponent value of a float

The difference between 1 and the least value greater
than 1 of a double

The maximum value of a double

The minimal value of a double

The difference between 1 and the least value greater
than 1 of a float

The maximum value of a float

The minimal value of a float

673

CrossWorks for AVR Reference Manual

DBL_DIG

Synopsis

#define DBL_DI G

Description

DBL_DIG specifies The number of digits of precision of a double.

15

674

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

DBL_EPSILON

Synopsis

#def i ne DBL_EPSI LON 2. 2204460492503131E- 16

Description

DBL_EPSILON the minimum positive number such that 1.0 + DBL_EPSILON != 1.0.

675

CrossWorks for AVR Reference Manual

DBL_MANT_DIG

Synopsis

#defi ne DBL_MANT DI G

Description

53

C Library User Guide

DBL_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a double.

676

CrossWorks for AVR Reference Manual

DBL_MAX

Synopsis

#def i ne DBL_MAX 1. 7976931348623157E+308

Description

DBL_MAX is the maximum value of a double.

677

C Library User Guide

CrossWorks for AVR Reference Manual

DBL_MAX_10_EXP

Synopsis

#define DBL_MAX_10_EXP

Description

DBL_MAX_10_EXP is the maximum value in base 10 of the exponent part of a double.

+308

678

C Library User Guide

CrossWorks for AVR Reference Manual

DBL_MAX_EXP

Synopsis

#defi ne DBL_MAX EXP

Description

DBL_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a double.

+1024

679

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

DBL_MIN

Synopsis

#define DBL_M N 2.2250738585072014E- 308

Description

DBL_MIN is the minimum value of a double.

680

CrossWorks for AVR Reference Manual

DBL_MIN_10_EXP

Synopsis

#define DBL_M N_10_EXP

Description

DBL_MIN_10_EXP is the minimum value in base 10 of the exponent part of a double.

-307

681

C Library User Guide

CrossWorks for AVR Reference Manual

DBL_MIN_EXP

Synopsis

#defi ne DBL_M N_EXP

Description

DBL_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a double.

-1021

682

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

DECIMAL_DIG

Synopsis

#defi ne DECI MAL_DI G 17

Description

DECIMAL_DIG specifies the number of decimal digits that can be rounded to a floating-point number without
change to the value.

683

CrossWorks for AVR Reference Manual C Library User Guide

FLT_DIG

Synopsis

#define FLT_DI G 6

Description

FLT_DIG specifies The number of digits of precision of a float.

684

CrossWorks for AVR Reference Manual C Library User Guide

FLT_EPSILON

Synopsis

#define FLT_EPSILON 1. 19209290E- 07F // deci mal constant

Description

FLT_EPSILON the minimum positive number such that 1.0 + FLT_EPSILON != 1.0.

685

CrossWorks for AVR Reference Manual C Library User Guide

FLT_EVAL_METHOD

Synopsis

#define FLT_EVAL_NMETHOD 0O

Description

FLT_EVAL_METHOD specifies that all operations and constants are evaluated to the range and precision of the

type.

686

CrossWorks for AVR Reference Manual C Library User Guide

FLT_MANT_DIG

Synopsis

#define FLT_MANT DI G 24

Description

FLT_MANT_DIG specifies the number of base FLT_RADIX digits in the mantissa part of a float.

687

CrossWorks for AVR Reference Manual

FLT_MAX

Synopsis

#def i ne FLT_MAX 3. 40282347E+38F

Description

FLT_MAX is the maximum value of a float.

688

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

FLT_MAX_10_EXP

Synopsis

#define FLT_MAX_10_EXP +38

Description

FLT_MAX_10_EXP is the maximum value in base 10 of the exponent part of a float.

689

CrossWorks for AVR Reference Manual

FLT_MAX_EXP

Synopsis

#define FLT_MAX_EXP +128

Description

FLT_MAX_EXP is the maximum value of base FLT_RADIX in the exponent part of a float.

690

C Library User Guide

CrossWorks for AVR Reference Manual

FLT_MIN

Synopsis

#define FLT_M N 1. 17549435E- 38F

Description

FLT_MIN is the minimum value of a float.

691

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

FLT_MIN_10_EXP

Synopsis

#define FLT_M N_10_EXP -37

Description

FLT_MIN_10_EXP is the minimum value in base 10 of the exponent part of a float.

692

CrossWorks for AVR Reference Manual

FLT_MIN_EXP

Synopsis

#define FLT_M N_EXP -125

Description

FLT_MIN_EXP is the minimum value of base FLT_RADIX in the exponent part of a float.

693

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

FLT_RADIX

Synopsis

#define FLT_RADI X 2

Description

FLT_RADIX specifies the radix of the exponent representation.

694

CrossWorks for AVR Reference Manual

FLT_ROUNDS

Synopsis

#define FLT_ROUNDS 1

Description

FLT_ROUNDS specifies the rounding mode of floating-point addition is round to nearest.

695

C Library User Guide

CrossWorks for AVR Reference Manual

<ina90.h>

APl Summary

Miscellaneous functions
_BREAK

_Nop

_OPC

_SLEEP

_WDR

Status register manipulation
_CLI

_SEI

disable_interrupt

enable_interrupt

C Library User Guide

Programmed breakpoint
NOP

Insert an opcode

Put processor to sleep

Reset the watchdog

Disable interrupts and return original status register
Enable interrupts and return original status register
Disable interrupts and return original status register

Enable interrupts and return original status register

696

CrossWorks for AVR Reference Manual

_BREAK

Synopsis

#defi ne _BREAK() __ breakpoint();

Description

see __breakpoint

697

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

CLI

Synopsis

#define _CLI() _ disable_interrupt()

Description

see __ disable_interrupt

698

CrossWorks for AVR Reference Manual

_NOP

Synopsis

#define _NOP() _ no_operation()

Description

see __no_operation

699

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

_OPC

Synopsis

#define _OPC(op) __insert_opcode(op)

Description

see __insert_opcode

700

CrossWorks for AVR Reference Manual C Library User Guide

SEI

Synopsis

#define _SElI() _ _enable_interrupt()

Description

see __enable_interrupt

701

CrossWorks for AVR Reference Manual

_SLEEP

Synopsis

#define _SLEEP() __sleep()

Description

see _ sleep

702

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

_WDR

Synopsis

#define _WDR() _ wat chdog_reset ()

Description

see __watchdog_reset

703

CrossWorks for AVR Reference Manual C Library User Guide

disable_interrupt

Synopsis

#define disable_interrupt() _ disable_interrupt()

Description

see __ disable_interrupt

704

CrossWorks for AVR Reference Manual C Library User Guide

enable_interrupt

Synopsis

#define enable_interrupt() _ _enable_interrupt()

Description

see __enable_interrupt

705

CrossWorks for AVR Reference Manual C Library User Guide

<inavr.h>

APl Summary

Miscellaneous functions

__breakpoint Programmed breakpoint
__delay_cycles Delay execution for a number of cycles
__insert_opcode Insert an opcode

__ho_operation NOP

_ sleep Put processor to sleep
__watchdog_reset Reset the watchdog

Status register manipulation

__bic_SR_register Clear bits in status register and return original status
register

__bis_SR_register Set bits in status register and return original status
register

__disable_interrupt Disable interrupts and return original status register

__enable_interrupt Enable interrupts and return original status register

__restore_interrupt Restore the interrupt enables

__save_interrupt Return the status register

Byte order manipulation

__swap_bytes Swap order of bytes in a word
__swap_bytes_long Swap order of bytes in a long
__swap_nibbles Swap nibble order within a byte
__swap_words Swap order of words in a long

706

CrossWorks for AVR Reference Manual C Library User Guide

__bic_SR_register

Synopsis

unsi gned char __bic_SR register(unsigned char mask);

Description

__bic_SR_register clears the bits specified in mask in the AVR status register (i.e. it bitwise ands the complement
of mask into the status register) and returns the value of the AVR status register before the update.

__bic_SR_register is an intrinsic function and produces inline code.

707

CrossWorks for AVR Reference Manual C Library User Guide

__bis_SR_register

Synopsis

unsi gned char __bis_SR register(unsigned char mask);

Description

__bis_SR_register sets the bits specified in mask in the AVR status register (i.e. it bitwise ors mask into the status

register) and returns the value of the AVR status register before the update.

__bis_SR_register is an intrinsic function and produces inline code.

708

CrossWorks for AVR Reference Manual C Library User Guide

__breakpoint

Synopsis

#define __breakpoint() _ _insert_opcode(0x9598);

Description
__breakpoint inserts a BREAKPOINT opcode into the code stream.

__breakpoint is an intrinsic function and produces inline code.

709

CrossWorks for AVR Reference Manual C Library User Guide

__delay_cycles

Synopsis

void __delay_cycl es(unsigned | ong n);

Description
__delay_cycles delays program execution for exactly n processor cycles. n must be a compile-time constant.

__delay_cycles is an intrinsic function and produces inline code.

710

CrossWorks for AVR Reference Manual C Library User Guide

__disable_interrupt

Synopsis

#define __disable_ interrupt() __ bic_SR register(0x80)

Description

__disable_interrupt disables global interrupts by clearing the I bit in the status register and returns the value of
the status register before the | bit is cleared. You can restore the state of the I bit from the value returned from

__disable_interrupt by using the __restore_interrupt intrinsic function.

__disable_interrupt is an intrinsic function and produces inline code.

711

CrossWorks for AVR Reference Manual C Library User Guide

__enable_interrupt

Synopsis

#define __enable_ interrupt() _ bis_SR register(0x80)

Description

__enable_interrupt enables global interrupts by setting the | bit in the status register and returns the value
of the status register before the | bit is set. You can restore the state of the I bit from the value returned from

__enable_interrupt by using the __restore_interrupt intrinsic function.

__enable_interrupt is an intrinsic function and produces inline code.

712

CrossWorks for AVR Reference Manual C Library User Guide

__insert_opcode

Synopsis

void _ _insert_opcode(unsi gned short op);

Description

__insert_opcode inserts op into the code stream and can be used to insert special instructions directly into
function code. op must be a compile-time constant.

__insert_opcode is an intrinsic function and produces inline code.

713

CrossWorks for AVR Reference Manual C Library User Guide

__ho_operation

Synopsis

#define __no_operation() __insert_opcode(0x0000);

Description
__no_operation inserts a NOP opcode into the code stream.

__no_operation is an intrinsic function and produces inline code.

714

CrossWorks for AVR Reference Manual C Library User Guide

__restore_interrupt

Description
__restore_interrupt restores the state of the | bit in the status register to the value saved in x.

The value of x is returned from the __disable_interrupt, __enable_interrupt,and __save_interrupt intrinsic

functions and is simply the previous value of the status register.

__restore_interrupt is an intrinsic function and produces inline code.

715

CrossWorks for AVR Reference Manual C Library User Guide

__save_interrupt

Synopsis

#define __save_interrupt() (__sr)

Description

__save_interrupt returns the current value of the AVR status register, including the I bit, without changing the

status register. You can restore the state of the interrupt flag using the __restore_interrupt intrinsic function.

__save_interrupt is an intrinsic function and produces inline code.

716

CrossWorks for AVR Reference Manual C Library User Guide

__sleep

Synopsis

#define __sleep() __insert_opcode(0x9588);

Description
__sleep inserts a SLEEP opcode into the code stream.

__sleep is an intrinsic function and produces inline code.

717

CrossWorks for AVR Reference Manual C Library User Guide

__swap_bytes

Synopsis

unsi gned __swap_byt es(unsi gned x);

Description
__swap_bytes swaps the order of high and low bytes of x and returns that as its result.

__swap_bytes is an intrinsic function and produces inline code.

718

CrossWorks for AVR Reference Manual C Library User Guide

__swap_bytes_long

Synopsis

unsi gned | ong __ swap_bytes_| ong(unsigned | ong x);

Description
__swap_bytes_long swaps the order of all bytes of x and returns that as its result.

__swap_bytes_long is an intrinsic function and produces inline code.

719

CrossWorks for AVR Reference Manual C Library User Guide

__swap_nibbles

Description

__swap_nibbles swaps the high and low nibbles of x and returns that as its result. __swap_nibbles is an intrinsic

function and produces inline code.

720

CrossWorks for AVR Reference Manual C Library User Guide

__swap_words

Synopsis

unsi gned | ong __swap_wor ds(unsi gned | ong);

Description
__swap_words swaps the order of the high and low words of x and returns that as its result.

__swap_words is an intrinsic function and produces inline code.

721

CrossWorks for AVR Reference Manual C Library User Guide

__watchdog_reset

Synopsis

#define __watchdog_reset() _ _insert_opcode(0x95a8);

Description
__watchdog_reset inserts a WDR opcode into the code stream.

__watchdog_reset is an intrinsic function and produces inline code.

722

CrossWorks for AVR Reference Manual C Library User Guide

<is0646.h>

Overview

The header <is0646.h> defines macros that expand to the corresponding tokens to ease writing C programs

with keyboards that do not have keys for frequently-used operators.

APl Summary

Macros

and Alternative spelling for logical and operator

and_eq Alternative spelling for logical and-equals operator
bitand Alternative spelling for bitwise and operator

bitor Alternative spelling for bitwise or operator

compl Alternative spelling for bitwise complement operator
not Alternative spelling for logical not operator

not_eq Alternative spelling for not-equal operator

or Alternative spelling for logical or operator

or_eq Alternative spelling for bitwise or-equals operator
Xor Alternative spelling for bitwise exclusive or operator
Xor_eq Alternative spelling for bitwise exclusive-or-equals

operator

723

CrossWorks for AVR Reference Manual C Library User Guide

and

Synopsis

#def i ne and &&

Description

and defines the alternative spelling for &&.

724

CrossWorks for AVR Reference Manual C Library User Guide

and_eq

Synopsis

#define and_eq &=

Description

and_eq defines the alternative spelling for &=.

725

CrossWorks for AVR Reference Manual C Library User Guide

bitand

Synopsis

#define bitand &

Description

bitand defines the alternative spelling for &

726

CrossWorks for AVR Reference Manual C Library User Guide

bitor

Synopsis

#defi ne bitor |

Description

bitor defines the alternative spelling for | .

727

CrossWorks for AVR Reference Manual C Library User Guide

compl

Synopsis

#defi ne conpl =

Description

compl defines the alternative spelling for ~.

728

CrossWorks for AVR Reference Manual C Library User Guide

hot

Synopsis

#def i ne not !

Description

not defines the alternative spelling for ! .

729

CrossWorks for AVR Reference Manual C Library User Guide

not_eq

Synopsis

#define not_eq !=

Description

not_eq defines the alternative spelling for ! =.

730

CrossWorks for AVR Reference Manual C Library User Guide

or

Synopsis

#defi ne or |]

Description

or defines the alternative spelling for | | .

731

CrossWorks for AVR Reference Manual C Library User Guide

or_eq

Synopsis

#define or_eq | =

Description

or_eq defines the alternative spelling for | =.

732

CrossWorks for AVR Reference Manual C Library User Guide

XOr

Synopsis

#defi ne xor 2

Description

xor defines the alternative spelling for .

733

CrossWorks for AVR Reference Manual C Library User Guide

Xor_eq

Synopsis

#define xor_eq "=

Description

xor_eq defines the alternative spelling for =.

734

CrossWorks for AVR Reference Manual C Library User Guide

<limits.h>

APl Summary

Long integer minimum and maximum values

LONG_MAX Maximum value of a long integer
LONG_MIN Minimum value of a long integer
ULONG_MAX Maximum value of an unsigned long integer

Character minimum and maximum values

CHAR_MAX Maximum value of a plain character
CHAR_MIN Minimum value of a plain character
SCHAR_MAX Maximum value of a signed character
SCHAR_MIN Minimum value of a signed character
UCHAR_MAX Maximum value of an unsigned char

Long long integer minimum and maximum values

LLONG_MAX Maximum value of a long long integer
LLONG_MIN Minimum value of a long long integer
ULLONG_MAX Maximum value of an unsigned long long integer

Short integer minimum and maximum values

SHRT_MAX Maximum value of a short integer
SHRT_MIN Minimum value of a short integer
USHRT_MAX Maximum value of an unsigned short integer

Integer minimum and maximum values

INT_MAX Maximum value of an integer

INT_MIN Minimum value of an integer
UINT_MAX Maximum value of an unsigned integer
Type sizes

CHAR_BIT Number of bits in a character

735

CrossWorks for AVR Reference Manual

CHAR_BIT

Synopsis

#define CHAR BIT 8

Description

CHAR_BIT is the number of bits for smallest object that is not a bit-field (byte).

736

C Library User Guide

CrossWorks for AVR Reference Manual

CHAR_MAX

Synopsis

#define CHAR MAX 255

Description

CHAR_MAX is the maximum value for an object of type char.

737

C Library User Guide

CrossWorks for AVR Reference Manual

CHAR_MIN

Synopsis

#define CHAR MN O

Description

CHAR_MIN is the minimum value for an object of type char.

738

C Library User Guide

CrossWorks for AVR Reference Manual

INT_MAX

Synopsis

#def i ne | NT_MAX 2147483647

Description

INT_MAX is the maximum value for an object of type int.

739

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

INT_MIN

Synopsis

#define INT_ MN (-2147483647 - 1)

Description

INT_MIN is the minimum value for an object of type int.

740

CrossWorks for AVR Reference Manual

LLONG_MAX

Synopsis

#define LLONG MAX 9223372036854775807LL

Description

LLONG_MAX is the maximum value for an object of type long long int.

741

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

LLONG_MIN

Synopsis

#define LLONG M N (-9223372036854775807LL - 1)

Description

LLONG_MIN is the minimum value for an object of type long long int.

742

CrossWorks for AVR Reference Manual

LONG_MAX

Synopsis

#define LONG MAX 2147483647L

Description

LONG_MAX is the maximum value for an object of type long int.

743

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

LONG_MIN

Synopsis

#define LONG MN (-2147483647L - 1)

Description

LONG_MIN is the minimum value for an object of type long int.

744

CrossWorks for AVR Reference Manual

SCHAR_MAX

Synopsis

#defi ne SCHAR MAX 127

Description

SCHAR_MAX is the maximum value for an object of type signed char.

745

C Library User Guide

CrossWorks for AVR Reference Manual

SCHAR_MIN

Synopsis

#define SCHAR M N (- 128)

Description

SCHAR_MIN is the minimum value for an object of type signed char.

746

C Library User Guide

CrossWorks for AVR Reference Manual

SHRT_MAX

Synopsis

#define SHRT_MAX 32767

Description

SHRT_MAX is the minimum value for an object of type short int.

747

C Library User Guide

CrossWorks for AVR Reference Manual

SHRT_MIN

Synopsis

#define SHRT MN (-32767 - 1)

Description

SHRT_MIN is the minimum value for an object of type short int.

748

C Library User Guide

CrossWorks for AVR Reference Manual

UCHAR_MAX

Synopsis

#defi ne UCHAR MAX 255

Description

UCHAR_MAX is the maximum value for an object of type unsigned char.

749

C Library User Guide

CrossWorks for AVR Reference Manual

UINT_MAX

Synopsis

#define U NT_MAX 4294967295V

Description

UINT_MAX is the maximum value for an object of type unsigned int.

750

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

ULLONG_MAX

Synopsis

#defi ne ULLONG MAX 18446744073709551615ULL

Description

ULLONG_MAX is the maximum value for an object of type unsigned long long int.

751

CrossWorks for AVR Reference Manual

ULONG_MAX

Synopsis

#defi ne ULONG MAX 4294967295UL

Description

ULONG_MAX is the maximum value for an object of type unsigned long int.

752

C Library User Guide

CrossWorks for AVR Reference Manual

USHRT_MAX

Synopsis

#def i ne USHRT_MAX 65535

Description

USHRT_MAX is the minimum value for an object of type unsigned short int.

753

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

<locale.h>

APl Summary

Functions

localeconv Get current locale data
setlocale Set Locale

Structures

Iconv Formatting info for numeric values

754

CrossWorks for AVR Reference Manual

Ilconv

Synopsis

t ypedef
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

struct {
*deci nal _poi nt ;

*t housands_sep;
*Qgroupi ng
*int_curr_synbol
*currency_synbol
*mon_deci mal _poi nt;
*mon_t housands_sep
*non_gr oupi ng
*posi tive_sign
*negative_sign
int_frac_digits;
frac_digits;
p_cs_precedes;
p_sep_by_ space
n_cs_precedes;
n_sep_by_space

char p_sign_posn;
char n_si gn_posn;
char int_p_cs_precedes
char int_n_cs_precedes
char int_p_sep_by_space
char int_n_sep_by_space
char int_p_sign_posn;
char int_n_sign_posn;

} I conv

Description

C Library User Guide

Iconv structure holds formatting information on how numeric values are to be written. Note that the order of

fields in this structure is not consistent between implementations, nor is it consistent between C89 and C99

standards.

The members decimal_point, grouping, and thousands_sep are controlled by LC_NUMERIC, the remainder by
LC_MONETARY.

The members int_n_cs_precedes, int_n_sep_by_space, int_n_sign_posn, int_p_cs_precedes,

int_p_sep_by_space. and int_p_sign_posn are added by the C99 standard.

We have standardized on the ordering specified by the ARM EABI for the base of this structure. This ordering is
neither that of C89 nor C99.

Member

currency_symbol

decimal_point

frac_digits

Description
Local currency symbol.

Decimal point separator.

Amount of fractional digits to the right of the decimal
point for monetary quantities in the local format.

755

CrossWorks for AVR Reference Manual

grouping

int_curr_symbol

int_frac_digits

mon_decimal_point

mon_grouping

mon_thousands_sep

negative_sign

n_cs_precedes

n_sep_by_space

n_sign_posn

positive_sign

p_cs_precedes

p_sep_by_space

p_sign_posn

thousands_sep

C Library User Guide

Specifies the amount of digits that form each of the
groups to be separated by thousands_sep separator
for non-monetary quantities.

International currency symbol.

Amount of fractional digits to the right of the decimal
point for monetary quantities in the international
format.

Decimal-point separator used for monetary quantities.

Specifies the amount of digits that form each of the
groups to be separated by mon_thousands_sep
separator for monetary quantities.

Separators used to delimit groups of digits to the left
of the decimal point for monetary quantities.

Sign to be used for negative monetary quantities.

Whether the currency symbol should precede negative
monetary quantities.

Whether a space should appear between the currency
symbol and negative monetary quantities.

Position of the sign for negative monetary quantities.

Sign to be used for nonnegative (positive or zero)
monetary quantities.

Whether the currency symbol should precede
nonnegative (positive or zero) monetary quantities.

Whether a space should appear between the currency
symbol and nonnegative (positive or zero) monetary
quantities.

Position of the sign for nonnegative (positive or zero)
monetary quantities.

Separators used to delimit groups of digits to the left
of the decimal point for non-monetary quantities.

756

CrossWorks for AVR Reference Manual

localeconv

Synopsis

| ocal econv(void);

Description

C Library User Guide

localeconv returns a pointer to a structure of type lconv with the corresponding values for the current locale

filled in.

757

CrossWorks for AVR Reference Manual C Library User Guide

setlocale

Synopsis

char *setlocal e(int category,
const char *locale);

Description

setlocale sets the current locale. The category parameter can have the following values:

Name Locale affected

LC_ALL Entire locale

LC_COLLATE Affects strcoll and strxfrm

LC_CTYPE Affects character handling

LC_MONETARY Affects monetary formatting information

LC_NUMERIC Affects decimal-point character in I/O and string
formatting operations

LC_TIME Affects strftime

The locale parameter contains the name of a C locale to set or if NULL is passed the current locale is not
changed.

setlocale returns the name of the current locale.

Note

CrossWorks only supports the minimal "C" locale.

758

CrossWorks for AVR Reference Manual

<math.h>

APl Summary

Type Generic Macros
fpclassify

isfinite

isinf

isnan

isnormal

signbit
Trigonometric functions
cos

cosf

sin

sinf

tan

tanf

Inverse trigonometric functions
acos

acosf

asin

asinf

atan

atan2

atan2f

atanf

Exponential and logarithmic functions
cbrt

cbrtf

exp

expf

frexp

frexpf

Idexp

C Library User Guide

Classify floating type
Test for a finite value
Test for infinity

Test for NaN

Test for a normal value

Test sign

Compute cosine of a double
Compute cosine of a float
Compute sine of a double
Compute sine of a float
Compute tangent of a double

Compute tangent of a double

Compute inverse cosine of a double

Compute inverse cosine of a float

Compute inverse sine of a double

Compute inverse sine of a float

Compute inverse tangent of a double
Compute inverse tangent of a ratio of doubles
Compute inverse tangent of a ratio of floats

Compute inverse tangent of a float

Compute cube root of a double
Compute cube root of a float
Compute exponential of a double
Compute exponential of a float
Set exponent of a double

Set exponent of a float

Adjust exponent of a double

759

CrossWorks for AVR Reference Manual

Idexpf

log

log10

log10f

logf

pow

powf

scalbn

scalbnf

sqrt

sqrtf

Remainder functions
fmod

fmodf

modf

modff

Nearest integer functions
ceil

ceilf

floor

floorf

Absolute value functions
fabs

fabsf

hypot

hypotf

C Library User Guide

Adjust exponent of a float

Compute natural logarithm of a double
Compute common logarithm of a double
Compute common logarithm of a float
Compute natural logarithm of a float
Raise a double to a power

Raise a float to a power

Scale a double

Scale a float

Compute square root of a double

Compute square root of a float

Compute remainder after division of two doubles
Compute remainder after division of two floats
Break a double into integer and fractional parts

Break a float into integer and fractional parts

Compute smallest integer not greater than a double
Compute smallest integer not greater than a float
Compute largest integer not greater than a float

Compute largest integer not greater than a float

Compute absolute value of a double
Compute absolute value of a float
Compute complex magnitude of two doubles

Compute complex magnitude of two floats

Maximum, minimum, and positive difference functions

fmax

fmaxf

fmin

fminf

Hyperbolic functions
cosh

coshf

sinh

Compute maximum of two doubles
Compute maximum of two floats
Compute minimum of two doubles

Compute minimum of two floats

Compute hyperbolic cosine of a double
Compute hyperbolic cosine of a float

Compute hyperbolic sine of a double

760

CrossWorks for AVR Reference Manual C Library User Guide

sinhf Compute hyperbolic sine of a float
tanh Compute hyperbolic tangent of a double
tanhf Compute hyperbolic tangent of a float

Inverse hyperbolic functions

acosh Compute inverse hyperbolic cosine of a double
acoshf Compute inverse hyperbolic cosine of a float
asinh Compute inverse hyperbolic sine of a double
asinhf Compute inverse hyperbolic sine of a float
atanh Compute inverse hyperbolic tangent of a double
atanhf Compute inverse hyperbolic tangent of a float

761

CrossWorks for AVR Reference Manual C Library User Guide

aCos

Synopsis

doubl e acos(doubl e x);

Description

acos returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the
interval [0, PI] radians.

If |x| > 1, errno is set to EDOM and acos returns HUGE_VAL.

If x is NaN, acos returns x. If [x| > 1, acos returns NaN.

762

CrossWorks for AVR Reference Manual C Library User Guide

acosf

Synopsis

float acosf(float x);

Description

acosf returns the principal value, in radians, of the inverse circular cosine of x. The principal value lies in the
interval [0, PI] radians.

If |a| 1, errno is set to EDOM and acosf returns HUGE_VAL.

If x is NaN, acosf returns x. If |x| > 1, acosf returns NaN.

763

CrossWorks for AVR Reference Manual

acosh

Synopsis

doubl e acosh(doubl e x);

Description

acosh returns the non-negative inverse hyperbolic cosine of x.
acosh(x) is defined as log(x + sqrt(xA2 — 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acosh returns HUGE_VAL.

If x < 1, acosh returns NaN.
If x is NaN, acosh returns NaN.

764

C Library User Guide

CrossWorks for AVR Reference Manual

acoshf

Synopsis

float acoshf(float x);

Description

acoshf returns the non-negative inverse hyperbolic cosine of x.
acosh(x) is defined as log(x + sqrt(xA2 — 1)), assuming completely accurate computation.

If x < 1, errno is set to EDOM and acoshf returns HUGE_VALF.

If x < 1, acoshf returns NaN.
If x is NaN, acoshf returns that NaN.

765

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

asin

Synopsis

doubl e asi n(doubl e x);

Description

asin returns the principal value, in radians, of the inverse circular sine of x. The principal value lies in the interval
[=Yam, +Y2m] radians.

If |x| > 1, errno is set to EDOM and asin returns HUGE_VAL.

If x is NaN, asin returns x. If [x| > 1, asin returns NaN.

766

CrossWorks for AVR Reference Manual C Library User Guide

asinf

Synopsis

float asinf(float x);

Description

asinf returns the principal value, in radians, of the inverse circular sine of val. The principal value lies in the
interval [='2m, +%2m] radians.

If |x| > 1, errno is set to EDOM and asinf returns HUGE_VALF.

If x is NaN, asinf returns x. I |x| > 1, asinf returns NaN.

767

CrossWorks for AVR Reference Manual C Library User Guide

asinh

Synopsis

doubl e asi nh(doubl e x);

Description
asinh calculates the hyperbolic sine of x.
If |x| > ~709.782, errno is set to EDOM and asinh returns HUGE_VAL.

If X is 400, —o0, or NaN, asinh returns |x|. If |x| > ~709.782, asinh returns +eo or —eo depending upon the sign of x.

768

CrossWorks for AVR Reference Manual C Library User Guide

asinhf

Synopsis

float asinhf(float x);

Description
asinhf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errnois set to EDOM and asinhf returns HUGE_VALF.

If X is +00, —oo, or NaN, asinhf returns |x|. If |x| > ~88.7228, asinhf returns 4o or —eo depending upon the sign of x.

769

CrossWorks for AVR Reference Manual

atan

Synopsis

doubl e at an(doubl e x);

Description

C Library User Guide

atan returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [='2m, +%2m] radians.

770

CrossWorks for AVR Reference Manual C Library User Guide

atan2

Synopsis

doubl e at an2(doubl e x,
doubl e y);

Description

atan2 returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of xand y to
compute the quadrant of the return value. The principal value lies in the interval [-'211/2, +V>m] radians. If x =y =
0, errno is set to EDOM and atan2 returns HUGE_VAL.

X, NaN) is NaN.

NaN, x) is NaN.

+0, +(anything but NaN)) is 0.

+0, —(anything but NaN)) is £m.
+(anything but 0 and NaN), 0) is £%m.
+(anything but co and NaN), +<0) is +0.
+(

atan2
atan2
atan2
atan2
atan2
atan2
atan2(t(anything but e and NaN), —eo) is £t
atan2(+oo, +o0) is +Vam.
+oo, —o0) i§ +34TT.

+oo, (anything but 0, NaN, and o)) is £'4m.

atan2

bbb - - D - - -

atan2

771

CrossWorks for AVR Reference Manual

atan2f

Synopsis

float atan2f(float x,
float y);

Description

C Library User Guide

atan2f returns the value, in radians, of the inverse circular tangent of y divided by x using the signs of x and y to

compute the quadrant of the return value. The principal value lies in the interval [-'2m, +%2m] radians.

If x=y =0, errno is set to EDOM and atan2f returns HUGE_VALF.

atan2f(x, NaN) is NaN.
atan2f(NaN, x) is NaN.

atan2f(+0, +(anything but NaN)) is £0.
atan2f(+0, —(anything but NaN)) is £m.
atan2f(+(anything but 0 and NaN), 0) is +%am.

atan2f(+
atan2f
atan2f(+oo, +o0) is £Vam.
atan2f(+
atan2f(+

(anything but ec and NaN), +<o) is 0.
(anything but cc and NaN), —eo) is .

00, —oo) iS +34TT.

(
(
(
(0
(*
(+
(
(
(oo
(oo

oo, (@anything but 0, NaN, and)) is £%m.

772

CrossWorks for AVR Reference Manual

atanf

Synopsis

float atanf(float x);

Description

C Library User Guide

atanf returns the principal value, in radians, of the inverse circular tangent of x. The principal value lies in the

interval [='2m, +%2m] radians.

773

CrossWorks for AVR Reference Manual C Library User Guide

atanh

Synopsis

doubl e at anh(doubl e x);

Description
atanh returns the inverse hyperbolic tangent of x.
If |x| = 1, errno is set to EDOM and atanh returns HUGE_VAL.

If |x] > 1 atanh returns NaN.
If x is NaN, atanh returns that NaN.
If x is 1, atanh returns oo.

If xis —1, atanh returns —oo.

774

CrossWorks for AVR Reference Manual C Library User Guide

atanhf

Synopsis

float atanhf(float x);

Description
atanhf returns the inverse hyperbolic tangent of val.
If |x| = 1, errno is set to EDOM and atanhf returns HUGE_VALF.

If |val| > 1 atanhf returns NaN. If val is NaN, atanhf returns that NaN. If val is 1, atanhf returns <. If val is —1,
atanhf returns —oo.

775

CrossWorks for AVR Reference Manual

cbrt

Synopsis

doubl e cbrt (doubl e x);

Description

cbrt computes the cube root of x.

776

C Library User Guide

CrossWorks for AVR Reference Manual

cbrtf

Synopsis

float cbrtf(float x);

Description

cbrtf computes the cube root of x.

777

C Library User Guide

CrossWorks for AVR Reference Manual

ceil

Synopsis

doubl e ceil (doubl e x);

Description

ceil computes the smallest integer value not less than x.

ceil (£0) is +0. ceil (£ o) is + oo.

778

C Library User Guide

CrossWorks for AVR Reference Manual

ceilf

Synopsis

float ceil f(float x);

Description

ceilf computes the smallest integer value not less than x.

ceilf (+0) is +0. ceilf (o) is + oo,

779

C Library User Guide

CrossWorks for AVR Reference Manual

CcosS

Synopsis

doubl e cos(doubl e x);

Description

cos returns the radian circular cosine of x.

If |x| > 1019, errno is set to EDOM and cos returns HUGE_VAL.

If x is NaN, cos returns x. If |x| is o, cos returns NaN.

780

C Library User Guide

CrossWorks for AVR Reference Manual

cosf

Synopsis

float cosf(float x);

Description

cosf returns the radian circular cosine of x.

If |x| > 1019, errno is set to EDOM and cosf returns HUGE_VALF.

If x is NaN, cosf returns x. If |x| is o, cosf returns NaN.

781

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

cosh

Synopsis

doubl e cosh(doubl e x);

Description
cosh calculates the hyperbolic cosine of x.
If |x| > ~709.782, errno is set to EDOM and cosh returns HUGE_VAL.

If X is 400, —oo, or NaN, cosh returns [x|.> If |x| > ~709.782, cosh returns +e or —eo depending upon the sign of x.

782

CrossWorks for AVR Reference Manual

coshf

Synopsis

float coshf(float x);

Description
coshf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errno is set to EDOM and coshf returns HUGE_VALF.

If X is +o0, —co, or NaN, coshf returns |x|.

If |x| > ~88.7228, coshf returns +co or —eo depending upon the sign of x.

783

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

exp

Synopsis

doubl e exp(doubl e x);

Description
exp computes the base-e exponential of x.
If |x| > ~709.782, errno is set to EDOM and exp returns HUGE_VAL.

If x is NaN, exp returns NaN.
If X is o, exp returns oo,

If X is —oo, @xp returns 0.

784

CrossWorks for AVR Reference Manual C Library User Guide

expf

Synopsis

float expf(float x);

Description
expf computes the base-e exponential of x.

If |x| > ~88.722, errno is set to EDOM and expf returns HUGE_VALF. If x is NaN, expf returns NaN.
If X is oo, expf returns oo,

If X is —oo, expf returns 0.

785

CrossWorks for AVR Reference Manual C Library User Guide

fabs

Synopsis

doubl e fabs(doubl e x);

786

CrossWorks for AVR Reference Manual

fabsf

Synopsis

float fabsf(float x);

Description

fabsf computes the absolute value of the floating-point number x.

787

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

floor

Synopsis
doubl e fl oor(double);

floor computes the largest integer value not greater than x.

floor (+0) is +0. floor (o) is *oo.

788

CrossWorks for AVR Reference Manual C Library User Guide

floorf

Synopsis
float floorf(float);

floorf computes the largest integer value not greater than x.

floorf(+0) is +0. floorf(+oo) is +oo,

789

CrossWorks for AVR Reference Manual C Library User Guide

fmax

Synopsis

doubl e fmax(doubl e x,
doubl e y);

Description
fmax determines the maximum of x and y.

fmax (NaN, y) is y. fmax (x, NaN) is x.

790

CrossWorks for AVR Reference Manual C Library User Guide

fmaxf

Synopsis

float fmaxf(float x,
float y);

Description
fmaxf determines the maximum of x and y.

fmaxf (NaN, y) is y. fmaxf(x, NaN) is x.

791

CrossWorks for AVR Reference Manual C Library User Guide

fmin

Synopsis

doubl e fm n(doubl e x,
doubl e y);

Description
fmin determines the minimum of x and y.

fmin (NaN, y) is y. fmin (x, NaN) is x.

792

CrossWorks for AVR Reference Manual C Library User Guide

fminf

Synopsis

float fmnf(float x,
float y);

Description
fminf determines the minimum of x and y.

fminf (NaN, y) is y. fminf (x, NaN) is x.

793

CrossWorks for AVR Reference Manual C Library User Guide

fmod

Synopsis

doubl e fnod(doubl e x,
doubl e y);

Description

fmod computes the floating-point remainder of x divided by y. #b #this returns the value x — n'y, for some

integer n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.
If y =0, fmod returns zero and errno is set to EDOM.

fmod (+ 0, y) is £ 0 for y not zero.

fmod (co, y) is NaN.
X, 0) is NaN.
+

o) is x for x not infinite.

fmod

— o~ e~ -~

fmod (x,

794

CrossWorks for AVR Reference Manual C Library User Guide

fmodf

Synopsis

float fnodf(float x,
float y);

Description

fmodf computes the floating-point remainder of x divided by y. fmodf returns the value x — n'y, for some

integer n such that, if y is nonzero, the result has the same sign as x and magnitude less than the magnitude of y.
If y = 0, fmodf returns zero and errno is set to EDOM.

fmodf
fmodf
fmodf
fmodf

+0,y)is + 0fory not zero.
oo, y) is NaN.
X, 0) is NaN.

+ o0) is X for x not infinite.

— o~ o~ o~

X,

795

CrossWorks for AVR Reference Manual C Library User Guide

fpclassify

Synopsis

#defi ne fpclassify(x) (sizeof(x) == sizeof(float) ? _ float32 classify(x) :
__float64_classify(x))

Description

fpclassify macro shall classify its argument value as NaN, infinite, normal, subnormal, zero, or into another
implementation-defined category. The fpclassify macro returns the value of the number classification macro one
of

* FP_ZERO

* FP_SUBNORMAL
* FP_NORMAL

* FP_INFINITE

* FP_NAN

796

CrossWorks for AVR Reference Manual C Library User Guide

frexp

Synopsis

doubl e frexp(double x,
int *exp);

Description
frexp breaks a floating-point number into a normalized fraction and an integral power of 2.

frexp stores power of two in the int object pointed to by exp and returns the value x, such that x has a
magnitude in the interval [1/2, 1) or zero, and value equals x * 2Aexp.

If x is zero, both parts of the result are zero.

If x is o or NaN, frexp returns x and stores zero into the int object pointed to by exp.

797

CrossWorks for AVR Reference Manual C Library User Guide

frexpf

Synopsis

float frexpf(float x,
int *exp);

Description
frexpf breaks a floating-point number into a normalized fraction and an integral power of 2.

frexpf stores power of two in the int object pointed to by frexpf and returns the value x, such that x has a

magnitude in the interval ['2, 1) or zero, and value equals x * 2Aexp.
If x is zero, both parts of the result are zero.

If x is oo or NaN, frexpf returns x and stores zero into the int object pointed to by exp.

798

CrossWorks for AVR Reference Manual

hypot
Synopsis
doubl e hypot (doubl e x,

doubl e y);

Description

C Library User Guide

hypot computes the square root of the sum of the squares of x and y, sqrt(x*x + y*y), without undue overflow or

underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypot computes the length of

the hypotenuse.

If x ory is +o0 Or —eo, hypot returns oo.
If x or y is NaN, hypot returns NaN.

799

CrossWorks for AVR Reference Manual

hypotf

Synopsis

float hypotf(float x,
float y);

Description

C Library User Guide

hypotf computes the square root of the sum of the squares of x and y, sqrtf(x*x + y*y), without undue overflow

or underflow. If x and y are the lengths of the sides of a right-angled triangle, then hypotf computes the length

of the hypotenuse.

If x ory is +e0 or —eo, hypotf returns . If x or y is NaN, hypotf returns NaN.

800

CrossWorks for AVR Reference Manual C Library User Guide
isfinite

Synopsis

#define isfinite(x) (sizeof(x) == sizeof(float) ? _ float32_ isfinite(x)

_ float64_isfinite(x))

Description

isfinite determines whether x is a finite value (zero, subnormal, or normal, and not infinite or NaN). The isfinite
macro returns a non-zero value if and only if its argument has a finite value.

801

CrossWorks for AVR Reference Manual C Library User Guide
isinf

Synopsis

#define isinf(x) (sizeof(x) == sizeof(float) ? _ float32_isinf(x) : _ float64_isinf(x))

Description

isinf determines whether x is an infinity (positive or negative). The determination is based on the type of the
argument.

802

CrossWorks for AVR Reference Manual C Library User Guide

isnan

Synopsis

#defi ne i snan(x) (sizeof(x) == sizeof(float) ? _ float32_isnan(x) : _ float64_isnan(x))

Description

isnan determines whether x is a NaN. The determination is based on the type of the argument.

803

CrossWorks for AVR Reference Manual C Library User Guide

isnormal

Synopsis

#define isnornal (x) (sizeof(x) == sizeof(float) ? _ float32_isnormal (x)
__float64_i snormal (x))

Description

isnormal determines whether x is a normal value (zero, subnormal, or normal, and not infinite or NaN). The

isnormal macro returns a non-zero value if and only if its argument has a normal value.

804

CrossWorks for AVR Reference Manual

Idexp

Synopsis

doubl e | dexp(doubl e x,
int exp);

Description

Idexp multiplies a floating-point number by an integral power of 2.

Idexp returns x * 2/ exp.

If the result overflows, errno is set to ERANGE and Idexp returns HUGE_VALF.

If x is oo or NaN, Idexp returns x. If the result overflows, Idexp returns oo,

805

C Library User Guide

CrossWorks for AVR Reference Manual

Idexpf

Synopsis

float |dexpf(float x,
int exp);

Description

Idexpf multiplies a floating-point number by an integral power of 2.

C Library User Guide

Idexpf returns x * 2Aexp. If the result overflows, errno is set to ERANGE and Idexpf returns HUGE_VALF.

If x is e or NaN, Idexpf returns x. If the result overflows, Idexpf returns oo.

806

CrossWorks for AVR Reference Manual C Library User Guide

log

Synopsis

doubl e | og(doubl e x);

Description
log computes the base-e logarithm of x.

If x =0, errno is set to ERANGE and log returns —-HUGE_VAL. If x < 0, errno is set to EDOM and log returns
—HUGE_VAL.

If x < 0 or x = —oo, log returns NaN.
If x =0, log returns —co.
If X = o0, log returns co.

If x = NaN, log returns x.

807

CrossWorks for AVR Reference Manual C Library User Guide

log10

Synopsis

doubl e 1 0g10(doubl e x);

Description
log10 computes the base-10 logarithm of x.

If x =0, errno is set to ERANGE and log10 returns —-HUGE_VAL. If x < 0, errno is set to EDOM and log10 returns
—HUGE_VAL.

If x <0 or x =—c, log10 returns NaN.
If x =0, log10 returns —eco.
If X =0, log10 returns e,

If x = NaN, log10 returns x.

808

CrossWorks for AVR Reference Manual C Library User Guide

log10f

Synopsis

float |0gl0f(float x);

Description
log10f computes the base-10 logarithm of x.

If x =0, errno is set to ERANGE and log10f returns —-HUGE_VALF. If x < 0, errno is set to EDOM and log10f
returns —-HUGE_VALF.

If x < 0 or x = —o, log10f returns NaN.
If x =0, log10f returns —co.
If X = o0, log10f returns oo,

If x = NaN, log10f returns x.

809

CrossWorks for AVR Reference Manual C Library User Guide

logf

Synopsis

float |ogf(float x);

Description
logf computes the base-e logarithm of x.

If x =0, errno is set to ERANGE and logf returns —-HUGE_VALF. If x < 0, errno is set to EDOM and logf returns
—HUGE_VALF.

If x < 0 or x = —oo, logf returns NaN.
If x =0, logf returns —cs.
If X = o0, logf returns oo,

If x = NaN, logf returns x.

810

CrossWorks for AVR Reference Manual

modf

Synopsis

doubl e nodf (doubl e x,
doubl e *iptr);

Description

C Library User Guide

modf breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modf returns the signed

fractional part of x.

811

CrossWorks for AVR Reference Manual

modff

Synopsis

float modff(float x,
float *iptr);

Description

C Library User Guide

modff breaks x into integral and fractional parts, each of which has the same type and sign as x.

The integral part (in floating-point format) is stored in the object pointed to by iptr and modff returns the signed

fractional part of x.

812

CrossWorks for AVR Reference Manual

pow

Synopsis

doubl e pow doubl e x,
doubl e y);

Description

pow computes x raised to the powery.

C Library User Guide

If x <0andy <0, errnois set to EDOM and pow returns —-HUGE_VAL. If x < 0 and y is not an integer value, errno

is set to EDOM and pow returns —-HUGE_VAL.

Ify =0, pow returns 1.

Ify =1, pow returns x.

If y = NaN, pow returns NaN.

If x=NaN andy is anything other than 0, pow returns NaN.
If x < —10r1<x, andy = +co, pow returns +oo.

If x<—10r1<x andy=—c, pow returns 0.

If -1 <x < 1andy =+, pow returns +0.

If -1 <x < 1andy =—co, pow returns +oo.

If x=+1o0rx=-1andy =+c ory=—c, pow returns NaN.
If x=+0andy > 0andy = NaN, pow returns +0.

If x=—-0andy>0andy = NaN ory not an odd integer, pow returns +0.

If x=+0and y and y = NaN, pow returns +co.

If x=—0andy>0andy #NaN ory not an odd integer, pow returns +co,

If x=—0andy is an odd integer, pow returns —0.
If x=+c0andy > 0andy = NaN, pow returns +oo.
If x=+o0 andy < 0 and y # NaN, pow returns +0.
If x = —o0, pow returns pow(-0, y)

If x < 0and x # « and y is a non-integer, pow returns NaN.

813

CrossWorks for AVR Reference Manual C Library User Guide

powf

Synopsis

float powf (fl oat,
float);

Description
powf computes x raised to the powery.

If x <0andy <0, errno.is set to EDOM and powf returns —-HUGE_VALF. If x < 0 and y is not an integer value,
errno is set to EDOM and pow returns —HUGE_VALF.

If y =0, powf returns 1.

Ify =1, powf returns x.

If y = NaN, powf returns NaN.

If x=NaN and y is anything other than 0, powf returns NaN.

If x <=10r1<x,andy =+, powf returns +co.

If x <—10r1<x, andy = —c, powf returns 0.

If -1 <x < 1andy = +eo, powf returns +0.

If -1 <x < 1andy =—co, powf returns +co.

If x=+1o0rx=-1andy =+c ory = —c, powf returns NaN.

If x=+0andy > 0andy # NaN, powf returns +0.

If x=—-0andy>0andy = NaN ory not an odd integer, powf returns +0.
If x=+0and y and y = NaN, powf returns +co.

If x=—0andy>0andy #NaN ory not an odd integer, powf returns +co.
If x=-0andyis an odd integer, powf returns —0.

If x=+c0andy > 0and y = NaN, powf returns +co.

If x=+o0 andy < 0 and y = NaN, powf returns +0.

If x = —oo, powf returns powf(-0, y)

If x < 0and x # o and y is a non-integer, powf returns NaN.

814

CrossWorks for AVR Reference Manual C Library User Guide

scalbn

Synopsis

doubl e scal bn(doubl e x,
int exp);

Description
scalbn multiplies a floating-point number by an integral power of DBL_RADIX.

As floating-point arithmetic conforms to IEC 60559, DBL_RADIX is 2 and scalbn is (in this implementation)
identical to Idexp.

scalbn returns x * DBL_RADIX/exp.
If the result overflows, errno is set to ERANGE and scalbn returns HUGE_VAL.

If x is o or NaN, scalbn returns x.

If the result overflows, scalbn returns oo.

See Also

Idexp

815

CrossWorks for AVR Reference Manual C Library User Guide

scalbnf

Synopsis

float scal bnf(float x,
int exp);

Description
scalbnf multiplies a floating-point number by an integral power of FLT_RADIX.

As floating-point arithmetic conforms to IEC 60559, FLT_RADIX is 2 and scalbnf is (in this implementation)
identical to Idexpf.

scalbnf returns x * FLT_RADIX Aexp.
If the result overflows, errno is set to ERANGE and scalbnf returns HUGE_VALF.

If x is =0 or NaN, scalbnf returns x. If the result overflows, scalbnf returns co.

See Also

Idexpf

816

CrossWorks for AVR Reference Manual C Library User Guide

signbit

Synopsis

#define signbit(x) (sizeof(x) == sizeof(float) ? _ float32_signbit(x) :
__float64_signbit(x))

Description

signbit macro shall determine whether the sign of its argument value is negative. The signbit macro returns a
non-zero value if and only if its argument value is negative.

817

CrossWorks for AVR Reference Manual C Library User Guide

Sin

Synopsis

doubl e sin(doubl e x);

Description
sin returns the radian circular sine of x.
If |x| > 1019, errno is set to EDOM and sin returns HUGE_VAL.

sin returns x if x is NaN. sin returns NaN if [x] is co.

818

CrossWorks for AVR Reference Manual C Library User Guide

sinf

Synopsis

float sinf(float x);

Description
sinf returns the radian circular sine of x.
If |x| > 1019, errno is set to EDOM and sinf returns HUGE_VALF.

sinf returns x if x is NaN. sinf returns NaN if |x| is c.

819

CrossWorks for AVR Reference Manual

sinh

Synopsis

doubl e si nh(doubl e x);

Description

sinh calculates the hyperbolic sine of x.

If |x| .782, errno is set to EDOM and sinh returns HUGE_VAL.

C Library User Guide

If X is 400, —co, or NaN, sinh returns |x|. If |x| > ~709.782, sinh returns +eo or —eo depending upon the sign of x.

820

CrossWorks for AVR Reference Manual C Library User Guide

sinhf

Synopsis

float sinhf(float x);

Description
sinhf calculates the hyperbolic sine of x.
If |x| > ~88.7228, errno is set to EDOM and sinhf returns HUGE_VALF.

If X is +00, —oo, or NaN, sinhf returns |x|. If x| > ~88.7228, sinhf returns +c or —eo depending upon the sign of x.

821

CrossWorks for AVR Reference Manual

sqrt

Synopsis

doubl e sqgrt(doubl e x);

Description

C Library User Guide

sqrt computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the argument

is less than zero. CrossWorks C deviates and always uses IEC 60559 semantics.

If x is +0, sqrt returns +0.

If xis —0, sqrt returns —0.

If x is oo, sqrt returns oo,

If x <0, sqrt returns NaN.

If x is NaN, sqrt returns that NaN.

822

CrossWorks for AVR Reference Manual

sqrtf

Synopsis

float sqrtf(float x);

Description

C Library User Guide

sqrtf computes the nonnegative square root of x. C90 and C99 require that a domain error occurs if the

argument is less than zero. CrossWorks C deviates and always uses IEC 60559 semantics.

If x is +0, sqrtf returns +0.

If xis —0, sqrtf returns —O0.

If x is oo, sqrtf returns oo,

If x < 0, sqrtf returns NaN.

If x is NaN, sqrtf returns that NaN.

823

CrossWorks for AVR Reference Manual

tan

Synopsis

doubl e tan(doubl e x);

Description

tan returns the radian circular tangent of x.

If |x| > 1019, errno is set to EDOM and tan returns HUGE_VAL.

If x is NaN, tan returns x. If |x| is o, tan returns NaN.

824

C Library User Guide

CrossWorks for AVR Reference Manual

tanf

Synopsis

float tanf(float x);

Description

tanf returns the radian circular tangent of x.

If |x| > 1019, errno is set to EDOM and tanf returns HUGE_VALF.

If x is NaN, tanf returns x. If |x| is oo, tanf returns NaN.

825

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

tanh

Synopsis

doubl e tanh(doubl e x);

Description
tanh calculates the hyperbolic tangent of x.

If x is NaN, tanh returns NaN.

826

CrossWorks for AVR Reference Manual C Library User Guide

tanhf

Synopsis

float tanhf(float x);

Description
tanhf calculates the hyperbolic tangent of x.

If x is NaN, tanhf returns NaN.

827

CrossWorks for AVR Reference Manual

<pgmspace.h>

APl Summary

Miscellaneous functions
strlen_P

Formatted output functions
printf_P

snprintf_P

sprintf_P
vprintf_P

vsnprintf_P
vsprintf_P

Copying functions
memcpy_P
strcat_P

strcpy_P
strncpy_P

Formatted input functions
scanf P
sscanf_P

vscanf_P
vsscanf_P

Character and string I/0 functions
puts_P

Comparison functions
memcmp_P

strcmp_P

strncmp_P

C Library User Guide

Calculate length of a code string

Write code string formatted text to standard output

Write code string formatted text to a string with
truncation

Write code string formatted text to a string

Write code string formatted text to standard output
using variable argument context

Write code string formatted text to a string with
truncation using variable argument context

Write code string formatted text to a string using
variable argument context

Copy code memory to data memory
Concatenate a code string to a data string
Copy code string to data string

Copy code string to data string up to a maximum
length

Read code string formatted text from standard input
Read code string formatted text from code string

Read code string formatted text from standard using
variable argument context

Read code string formatted text from a string using
variable argument context

Write a code string to standard output

Compare code memory with data memory
Compare a code string to a data string

Compare a code string to a data stringup to a
maximum length

828

CrossWorks for AVR Reference Manual

memcmp_P

Synopsis

#defi ne mencnp_P nencnp_c

Description

see memcmp

829

C Library User Guide

CrossWorks for AVR Reference Manual

memcpy_P

Synopsis

#defi ne mencpy_P nencpy_c

Description

see memcpy

830

C Library User Guide

CrossWorks for AVR Reference Manual

printf_P

Synopsis

#define printf_P printf_c

Description

See printf

831

C Library User Guide

CrossWorks for AVR Reference Manual

puts_P

Synopsis

#define puts_P puts_c

Description

See puts

832

C Library User Guide

CrossWorks for AVR Reference Manual

scanf P

Synopsis

#defi ne scanf_P scanf_c

Description

See scanf

833

C Library User Guide

CrossWorks for AVR Reference Manual

snprintf_P

Synopsis

#define snprintf_P snprintf_c

Description

See snprintf

834

C Library User Guide

CrossWorks for AVR Reference Manual

sprintf_P

Synopsis

#define sprintf_P sprintf_c

Description

See sprintf

835

C Library User Guide

CrossWorks for AVR Reference Manual

sscanf P

Synopsis

#defi ne sscanf P sscanf _c

Description

See sscanf

836

C Library User Guide

CrossWorks for AVR Reference Manual

strcat P

Synopsis

#define strcat _P strcat_c

Description

see strcat

837

C Library User Guide

CrossWorks for AVR Reference Manual

strcmp_P

Synopsis

#define strcnp_P strcnp_c

Description

see strcmp

838

C Library User Guide

CrossWorks for AVR Reference Manual

strcpy_P

Synopsis

#define strcpy_P strcpy_c

Description

see strcpy

839

C Library User Guide

CrossWorks for AVR Reference Manual

strlen_P

Synopsis

#define strlen_P strlen_c

Description

see strlen

840

C Library User Guide

CrossWorks for AVR Reference Manual

strncmp_P

Synopsis

#define strncnp_P strncnp_c

Description

see strncmp

841

C Library User Guide

CrossWorks for AVR Reference Manual

strncpy_P

Synopsis

#define strncpy_P strncpy_c

Description

see strncpy

842

C Library User Guide

CrossWorks for AVR Reference Manual

vprintf_P

Synopsis

#define vprintf P vprintf_c

Description

See vprintf

843

C Library User Guide

CrossWorks for AVR Reference Manual

vscanf P

Synopsis

#defi ne vscanf P vscanf _c

Description

See vscanf

844

C Library User Guide

CrossWorks for AVR Reference Manual

vsnprintf_P

Synopsis

#define vsnprintf_P vsnprintf_c

Description

See vsnprintf

845

C Library User Guide

CrossWorks for AVR Reference Manual

vsprintf_P

Synopsis

#define vsprintf_P vsprintf_c

Description

See vsprintf

846

C Library User Guide

CrossWorks for AVR Reference Manual

vsscanf P

Synopsis

#defi ne vsscanf P vsscanf_c

Description

See vsscanf

847

C Library User Guide

CrossWorks for AVR Reference Manual

<setjmp.h>

APl Summary

Functions
longjmp

setjmp

C Library User Guide

Restores the saved environment

Save calling environment for non-local jump

848

CrossWorks for AVR Reference Manual C Library User Guide

longjmp

Synopsis

voi d | ongj mp(j np_buf env,
int val);

Description

longjmp restores the environment saved by setjmp in the corresponding env argument. If there has been no
such invocation, or if the function containing the invocation of setjmp has terminated execution in the interim,

the behavior of longjmp is undefined.

After longjmp is completed, program execution continues as if the corresponding invocation of setjmp had just

returned the value specified by val.

Note
longjmp cannot cause setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Objects of automatic storage allocation that are local to the function containing the invocation of the
corresponding setjmp that do not have volatile qualified type and have been changed between the setjmp
invocation and this call are indeterminate.

849

CrossWorks for AVR Reference Manual C Library User Guide

setjmp

Synopsis

int setjnp(jnp_buf env);

Description
setjmp saves its calling environment in the env for later use by the longjmp function.

On return from a direct invocation setjmp returns the value zero. On return from a call to the longjmp function,

the setjmp returns a nonzero value determined by the call to longjmp.

The environment saved by a call to setjmp consists of information sufficient for a call to the longjmp function to

return execution to the correct block and invocation of that block, were it called recursively.

850

CrossWorks for AVR Reference Manual C Library User Guide

<stdarg.h>

APl Summary

Macros

va_arg Get variable argument value
va_copy Copy var args

va_end Finish access to variable arguments
va_start Start access to variable arguments

851

CrossWorks for AVR Reference Manual C Library User Guide

va_arg

Synopsis

type va_arg(va_list ap,
type);

Description

va_arg expands to an expression that has the specified type and the value of the type argument. The ap
parameter must have been initialized by va_start or va_copy, without an intervening invocation of va_end. You
can create a pointer to a va_list and pass that pointer to another function, in which case the original function

may make further use of the original list after the other function returns.

Each invocation of the va_arg macro modifies ap so that the values of successive arguments are returned in
turn. The parameter type must be a type name such that the type of a pointer to an object that has the specified

type can be obtained simply by postfixing a * to type.

If there is no actual next argument, or if type is not compatible with the type of the actual next argument (as
promoted according to the default argument promotions), the behavior of va_arg is undefined, except for the

following cases:

* onetypeis a signed integer type, the other type is the corresponding unsigned integer type, and the

value is representable in both types;
* one type is pointer to void and the other is a pointer to a character type.

The first invocation of the va_arg macro after that of the va_start macro returns the value of the argument after

that specified by parmN. Successive invocations return the values of the remaining arguments in succession.

852

CrossWorks for AVR Reference Manual

va_copy

Synopsis

voi d va_copy(va_list dest,
val _list src);

Description

C Library User Guide

va_copy initializes dest as a copy of src, as if the va_start macro had been applied to dest followed by the same

sequence of uses of the va_arg macro as had previously been used to reach the present state of src. Neither

the va_copy nor va_start macro shall be invoked to reinitialize dest without an intervening invocation of the

va_end macro for the same dest.

853

CrossWorks for AVR Reference Manual C Library User Guide

va_end

Synopsis

voi d va_end(va_list ap);

Description

va_end indicates a normal return from the function whose variable argument list ap was initialised by va_start
or va_copy. The va_end macro may modify ap so that it is no longer usable without being reinitialized by
va_start or va_copy. If there is no corresponding invocation of va_start or va_copy, or if va_end is not invoked

before the return, the behavior is undefined.

854

CrossWorks for AVR Reference Manual C Library User Guide

va_start

Synopsis

void va_start(va_list ap,

param\) ;

Description
va_start initializes ap for subsequent use by the va_arg and va_end macros.

The parameter parmN is the identifier of the last fixed parameter in the variable parameter list in the function
definition (the one just before the ', ...").

The behaviour of va_start and va_arg is undefined if the parameter parmN is declared with the register
storage class, with a function or array type, or with a type that is not compatible with the type that results after

application of the default argument promotions.
va_start must be invoked before any access to the unnamed arguments.

va_start and va_copy must not be invoked to reinitialize ap without an intervening invocation of the va_end

macro for the same ap.

855

CrossWorks for AVR Reference Manual C Library User Guide

<stddef.h>

APl Summary

Macros

NULL NULL pointer
offsetof offsetof

Types

ptrdiff_t ptrdiff_t type

size t size_t type

wchar_t Wide character type

856

CrossWorks for AVR Reference Manual

NULL

Synopsis

#define NULL O

Description

NULL is the null pointer constant.

857

C Library User Guide

CrossWorks for AVR Reference Manual

offsetof

Synopsis

#defi ne of fsetof (type, nenber)

Description

C Library User Guide

offsetof returns the offset in bytes to the structure member, from the beginning of its structure type.

858

CrossWorks for AVR Reference Manual

ptrdiff_t

Synopsis

typedef _ PTRDIFF_T ptrdiff_t;

Description

ptrdiff_t is the signed integral type of the result of subtracting two pointers.

859

C Library User Guide

CrossWorks for AVR Reference Manual

size t

Synopsis

typedef _ SIZE T size_ t;

Description

size_t is the unsigned integral type returned by the sizeof operator.

860

C Library User Guide

CrossWorks for AVR Reference Manual

wchar t

Synopsis

typedef unsi gned wchar _t;

Description

wchar_t holds a single wide character.

861

C Library User Guide

CrossWorks for AVR Reference Manual

<stdio.h>

APl Summary

Character and string 1/0 functions
getchar

gets

putchar

puts

Formatted output functions
printf

snprintf

sprintf

vprintf
vsnprintf
vsprintf

Formatted input functions
scanf
sscanf

vscanf

vsscanf

C Library User Guide

Read a character from standard input
Read a string from standard input
Write a character to standard output

Write a string to standard output

Write formatted text to standard output
Write formatted text to a string with truncation
Write formatted text to a string

Write formatted text to standard output using variable
argument context

Write formatted text to a string with truncation using
variable argument context

Write formatted text to a string using variable
argument context

Read formatted text from standard input
Read formatted text from string

Read formatted text from standard using variable
argument context

Read formatted text from a string using variable
argument context

862

CrossWorks for AVR Reference Manual

getchar

Synopsis

int getchar(void);

Description

getchar reads a single character from the standard input stream.

If the stream is at end-of-file or a read error occurs, getchar returns EOF.

863

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

gets

Synopsis

char *gets(char *s);

Description

gets reads characters from standard input into the array pointed to by s until end-of-file is encountered or a
new-line character is read. Any new-line character is discarded, and a null character is written immediately after

the last character read into the array.

gets returns s if successful. If end-of-file is encountered and no characters have been read into the array, the
contents of the array remain unchanged and gets returns a null pointer. If a read error occurs during the

operation, the array contents are indeterminate and gets returns a null pointer.

864

CrossWorks for AVR Reference Manual C Library User Guide

printf

Synopsis

int printf(const char *format,

2)

Description

printf writes to the standard output stream using putchar, under control of the string pointed to by format that
specifies how subsequent arguments are converted for output.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

printf returns the number of characters transmitted, or a negative value if an output or encoding error occurred.

Formatted output control strings

The format is composed of zero or more directives: ordinary characters (not ‘%’, which are copied unchanged
to the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments, converting them, if applicable, according to the corresponding conversion specifier, and then

writing the result to the output stream.
Each conversion specification is introduced by the character ‘%’. After the ‘%’ the following appear in sequence:

» Zero or more flags (in any order) that modify the meaning of the conversion specification.

* An optional minimum field width. If the converted value has fewer characters than the field width, it is
padded with spaces (by default) on the left (or right, if the left adjustment flag has been given) to the field
width. The field width takes the form of an asterisk ‘*’ or a decimal integer.

» An optional precision that gives the minimum number of digits to appear for the ‘d’, i', ‘o', ‘'v’, 'x’, and
‘X’ conversions, the number of digits to appear after the decimal-point character for ‘e’, 'E’, ‘f', and ‘'F’
conversions, the maximum number of significant digits for the ‘g’ and ‘G’ conversions, or the maximum
number of bytes to be written for ‘s’ conversions. The precision takes the form of a period .’ followed
either by an asterisk *" or by an optional decimal integer; if only the period is specified, the precision is
taken as zero. If a precision appears with any other conversion specifier, the behavior is undefined.

* An optional length modifier that specifies the size of the argument.

» A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In this case, an int argument
supplies the field width or precision. The arguments specifying field width, or precision, or both, must appear
(in that order) before the argument (if any) to be converted. A negative field width argument is taken as a -’ flag

followed by a positive field width. A negative precision argument is taken as if the precision were omitted.

865

CrossWorks for AVR Reference Manual C Library User Guide

Some CrossWorks library variants do not support width and precision specifiers in order to reduce code and
data space requirements; please ensure that you have selected the correct library in the Printf Width/Precision
Support property of the project if you use these.

Flag characters

The flag characters and their meanings are:
The result of the conversion is left-justified within the field. The default, if this flag is not specified, is that the
result of the conversion is left-justified within the field.

I+I
The result of a signed conversion always begins with a plus or minus sign. The default, if this flag is not

specified, is that it begins with a sign only when a negative value is converted.

space
If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a

space is prefixed to the result. If the space and ‘+' flags both appear, the space flag is ignored.

gy
The result is converted to an alternative form. For ‘o’ conversion, it increases the precision, if and only if
necessary, to force the first digit of the result to be a zero (if the value and precision are both zero, a single
‘0" is printed). For ‘x’ or ‘X’ conversion, a nonzero result has ‘Ox’ or ‘0X’ prefixed to it. For ‘e’, 'E’, 'f’, 'F’, 'g’, and
‘G’ conversions, the result of converting a floating-point number always contains a decimal-point character,
even if no digits follow it. (Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it.) For ‘g’ and ‘F’ conversions, trailing zeros are not removed from the result. As an
extension, when used in ‘p’ conversion, the results has ‘#’ prefixed to it. For other conversions, the behavior
is undefined.

0’
For'd’, ‘', 'o’, ‘U, X, X', ‘e, 'E', 'f', 'F', 'g’, and ‘G’ conversions, leading zeros (following any indication of
sign or base) are used to pad to the field width rather than performing space padding, except when
converting an infinity or NaN. If the ‘0’ and *-' flags both appear, the ‘0’ flag is ignored. For ‘d’, ‘i', ‘o', ‘u’, ',
and ‘X’ conversions, if a precision is specified, the ‘0’ flag is ignored. For other conversions, the behavior is

undefined.

Length modifiers

The length modifiers and their meanings are:

‘hh'
Specifies that a following ‘d’, i’, ‘0’, ‘U’, ‘X', or ‘X’ conversion specifier applies to a signed char or unsigned
char argument (the argument will have been promoted according to the integer promotions, but its value
will be converted to signed char or unsigned char before printing); or that a following 'n’ conversion

specifier applies to a pointer to a signed char argument.

866

CrossWorks for AVR Reference Manual C Library User Guide

lhl
Specifies that a following ‘d’, i’, ‘0’, ‘U’, ‘X', or ‘X’ conversion specifier applies to a short int or unsigned short
int argument (the argument will have been promoted according to the integer promotions, but its value
is converted to short int or unsigned short int before printing); or that a following ‘n’ conversion specifier

applies to a pointer to a short int argument.

"
Specifies that a following ‘d’, ‘', ‘0’, ‘U, ’X’, or ‘X’ conversion specifier applies to a long int or unsigned long
int argument; that a following ‘n’ conversion specifier applies to a pointer to a long int argument; or has
no effect on a following ‘e’, 'E’, 'f', ‘F, ‘g’, or ‘G’ conversion specifier. Some CrossWorks library variants do not
support the ‘I length modifier in order to reduce code and data space requirements; please ensure that you

have selected the correct library in the Printf Integer Support property of the project if you use this length
modifier.

"
Specifies that a following ‘d’, i’, ‘0’, ‘U’, ‘X', or ‘X’ conversion specifier applies to a long long int or unsigned
long long int argument; that a following 'n’ conversion specifier applies to a pointer to a long long int
argument. Some CrossWorks library variants do not support the ‘ll' length modifier in order to reduce code
and data space requirements; please ensure that you have selected the correct library in the Printf Integer
Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is
undefined. Note that the C99 length modifiers ', ‘Z', ‘t’, and ‘L’ are not supported.

Conversion specifiers

The conversion specifiers and their meanings are:

', i
The argument is converted to signed decimal in the style [-]dddd. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits, it is expanded
with leading spaces. The default precision is one. The result of converting a zero value with a precision of
zero is no characters.

lol lul IXI IXI

7 I 7
The unsigned argument is converted to unsigned octal for ‘o’, unsigned decimal for ‘u’, or unsigned
hexadecimal notation for 'x’ or ‘X’ in the style dddd the letters ‘abcdef’ are used for ‘x’ conversion and the
letters ‘ABCDEF’ for ‘X’ conversion. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it is expanded with leading spaces. The default
precision is one. The result of converting a zero value with a precision of zero is no characters.

lfI’ IFI
A double argument representing a floating-point number is converted to decimal notation in the
style [-]ddd.ddd, where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is zero and the ‘# flag is not specified,

867

CrossWorks for AVR Reference Manual C Library User Guide

no decimal-point character appears. If a decimal-point character appears, at least one digit appears before
it. The value is rounded to the appropriate number of digits. A double argument representing an infinity is
converted to ‘inf'. A double argument representing a NaN is converted to ‘nan’. The ‘F’ conversion specifier
produces ‘INF’ or ‘NAN' instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks library variants do not
support the ‘f and ‘F’ conversion specifiers in order to reduce code and data space requirements; please
ensure that you have selected the correct library in the Printf Floating Point Support property of the

project if you use these conversion specifiers.

o IE
A double argument representing a floating-point number is converted in the style [-]d.ddde+dd, where
there is one digit (which is nonzero if the argument is nonzero) before the decimal-point character and
the number of digits after it is equal to the precision; if the precision is missing, it is taken as 6; if the
precision is zero and the ‘#’ flag is not specified, no decimal-point character appears. The value is rounded
to the appropriate number of digits. The ‘E’ conversion specifier produces a number with ‘E’ instead of
‘e’ introducing the exponent. The exponent always contains at least two digits, and only as many more
digits as necessary to represent the exponent. If the value is zero, the exponent is zero. A double argument
representing an infinity is converted to ‘inf'. A double argument representing a NaN is converted to ‘nan’.
The ‘E’ conversion specifier produces ‘INF’ or ‘'NAN’ instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks
library variants do not support the ‘f’ and ‘F’ conversion specifiers in order to reduce code and data space
requirements; please ensure that you have selected the correct library in the Printf Floating Point Support}
property of the project if you use these conversion specifiers.

‘9, ‘G’

A double argument representing a floating-point number is converted in style ‘f or ‘e’ (or in style ‘F' or ‘e’

in the case of a ‘G’ conversion specifier), with the precision specifying the number of significant digits. If

the precision is zero, it is taken as one. The style used depends on the value converted; style ‘e’ (or 'E') is
used only if the exponent resulting from such a conversion is less than -4 or greater than or equal to the
precision. Trailing zeros are removed from the fractional portion of the result unless the ‘#' flag is specified;
a decimal-point character appears only if it is followed by a digit. A double argument representing an
infinity is converted to ‘inf'. A double argument representing a NaN is converted to ‘nan’. The ‘G’ conversion
specifier produces ‘INF' or ‘NAN' instead of ‘inf’ or ‘nan’, respectively. Some CrossWorks library variants

do not support the ‘f' and ‘F’ conversion specifiers in order to reduce code and data space requirements;
please ensure that you have selected the correct library in the Printf Floating Point Support property of the

project if you use these conversion specifiers.

The argument is converted to an unsigned char, and the resulting character is written.

The argument is be a pointer to the initial element of an array of character type. Characters from the array
are written up to (but not including) the terminating null character. If the precision is specified, no more
than that many characters are written. If the precision is not specified or is greater than the size of the array,
the array must contain a null character.

868

CrossWorks for AVR Reference Manual C Library User Guide

The argument is a pointer to void. The value of the pointer is converted in the same format as the ‘x’
conversion specifier with a fixed precision of 2*sizeof(void *).

The argument is a pointer to a signed integer into which is written the number of characters written to the
output stream so far by the call to the formatting function. No argument is converted, but one is consumed.
If the conversion specification includes any flags, a field width, or a precision, the behavior is undefined.

l(yol

A ‘%’ character is written. No argument is converted.

Note that the C99 width modifier ‘I’ used in conjunction with the ‘c’ and ‘s’ conversion specifiers is not supported
and nor are the conversion specifiers ‘a’ and ‘A’.

869

CrossWorks for AVR Reference Manual

putchar

Synopsis

int putchar(int c);

Description

putchar writes the character c to the standard output stream.

putchar returns the character written. If a write error occurs, putchar returns EOF.

870

C Library User Guide

CrossWorks for AVR Reference Manual

puts

Synopsis

int puts(const char *s);

Description

C Library User Guide

puts writes the string pointed to by s to the standard output stream using putchar and appends a new-line

character to the output. The terminating null character is not written.

puts returns EOF if a write error occurs; otherwise it returns a nonnegative value.

871

CrossWorks for AVR Reference Manual C Library User Guide

scanf

Synopsis

int scanf(const char *fornat,

2)5

Description

scanf reads input from the standard input stream under control of the string pointed to by format that specifies
the admissible input sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise ignored.

scanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, scanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Formatted input control strings

The format is composed of zero or more directives: one or more white-space characters, an ordinary character
(neither % nor a white-space character), or a conversion specification.

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

* An optional assignment-suppressing character *.
» An optional nonzero decimal integer that specifies the maximum field width (in characters).
* An optional length modifier that specifies the size of the receiving object.

A conversion specifier character that specifies the type of conversion to be applied.

The formatted input function executes each directive of the format in turn. If a directive fails, the function
returns. Failures are described as input failures (because of the occurrence of an encoding error or the
unavailability of input characters), or matching failures (because of inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the first non-white-space
character (which remains unread), or until no more characters can be read.

A directive that is an ordinary character is executed by reading the next characters of the stream. If any of those
characters differ from the ones composing the directive, the directive fails and the differing and subsequent
characters remain unread. Similarly, if end-of-file, an encoding error, or a read error prevents a character from

being read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as described below for

each specifier. A conversion specification is executed in the following steps:

872

CrossWorks for AVR Reference Manual C Library User Guide

* Input white-space characters (as specified by the isspace function) are skipped, unless the specification
includes a [, ¢, or n specifier.

* Aninputitem is read from the stream, unless the specification includes an n specifier. An input item is
defined as the longest sequence of input characters which does not exceed any specified field width
and which is, or is a prefix of, a matching input sequence. The first character, if any, after the input item
remains unread. If the length of the input item is zero, the execution of the directive fails; this condition is
a matching failure unless end-of-file, an encoding error, or a read error prevented input from the stream,
in which case it is an input failure.

» Exceptin the case of a % specifier, the input item (or, in the case of a %n directive, the count of input
characters) is converted to a type appropriate to the conversion specifier. If the input item is not a
matching sequence, the execution of the directive fails: this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in the object pointed
to by the first argument following the format argument that has not already received a conversion result.
If this object does not have an appropriate type, or if the result of the conversion cannot be represented

in the object, the behavior is undefined.

Length modifiers
The length modifiers and their meanings are:

IEIEII
Specifies that a following ‘d’, ‘i’, ‘0’, ‘U’, X', X', or 'n’ conversion specifier applies to an argument with type

pointer to signed char or pointer to unsigned char.

lr\’
Specifies that a following ‘d’, i’, ‘0’, ‘U’, X', X', or 'n’ conversion specifier applies to an argument with type

pointer to short int or unsigned short int.

"
Specifies that a following ‘d’, i’, ‘0’, ‘U’, X', X', or 'n’ conversion specifier applies to an argument with type
pointer to long int or unsigned long int; that a following ‘e’, 'E’, /', ‘'F’, 'g’, or ‘G’ conversion specifier applies
to an argument with type pointer to double. Some CrossWorks library variants do not support the ‘I’ length
modifier in order to reduce code and data space requirements; please ensure that you have selected the
correct library in the Printf Integer Support property of the project if you use this length modifier.

IIII
Specifies that a following ‘d’, ‘i’, ‘0’, ‘U’, X', X', or 'n’ conversion specifier applies to an argument with type
pointer to long long int or unsigned long long int. Some CrossWorks library variants do not support the ‘Il
length modifier in order to reduce code and data space requirements; please ensure that you have selected
the correct library in the Printf Integer Support property of the project if you use this length modifier.

If a length modifier appears with any conversion specifier other than as specified above, the behavior is
undefined. Note that the C99 length modifiers ‘', 'z', ‘t’, and ‘L’ are not supported.

873

CrossWorks for AVR Reference Manual C Library User Guide

Conversion specifiers

ldl

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 10 for the base argument. The corresponding argument

must be a pointer to signed integer.

Matches an optionally signed integer, whose format is the same as expected for the subject sequence of the
strtol function with the value zero for the base argument. The corresponding argument must be a pointer

to signed integer.

Matches an optionally signed octal integer, whose format is the same as expected for the subject sequence
of the strtol function with the value 18 for the base argument. The corresponding argument must be a

pointer to signed integer.

Matches an optionally signed decimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 10 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same as expected for the subject
sequence of the strtoul function with the value 16 for the base argument. The corresponding argument

must be a pointer to unsigned integer.

leI, lfl, lgl

Matches an optionally signed floating-point number whose format is the same as expected for the

subject sequence of the strtod function. The corresponding argument shall be a pointer to floating. Some
CrossWorks library variants do not support the ‘e’, ‘f' and ‘F’ conversion specifiers in order to reduce code
and data space requirements; please ensure that you have selected the correct library in the Scanf Floating

Point Support property of the project if you use these conversion specifiers.

Matches a sequence of characters of exactly the number specified by the field width (one if no field width
is present in the directive). The corresponding argument must be a pointer to the initial element of a

character array large enough to accept the sequence. No null character is added.

Matches a sequence of non-white-space characters The corresponding argument must be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating null character,

which will be added automatically.

874

CrossWorks for AVR Reference Manual C Library User Guide

l[l

l%l

Note that the C99 width modifier ‘I’ used in conjunction with the ‘c’,

Matches a nonempty sequence of characters from a set of expected characters (the scanset). The
corresponding argument must be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and including the matching right
bracket ‘I'. The characters between the brackets (the scanlist) compose the scanset, unless the character
after the left bracket is a circumflex ‘A’, in which case the scanset contains all characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion specifier begins
with ‘[I' or'[A]’, the right bracket character is in the scanlist and the next following right bracket character
is the matching right bracket that ends the specification; otherwise the first following right bracket
character is the one that ends the specification. If a ‘-’ character is in the scanlist and is not the first, nor
the second where the first character is a ‘A’, nor the last character, it is treated as a member of the scanset.
Some CrossWorks library variants do not support the ‘[' conversion specifier in order to reduce code and
data space requirements; please ensure that you have selected the correct library in the Scanf Classes

Supported property of the project if you use this conversion specifier.

Reads a sequence output by the corresponding ‘%p’ formatted output conversion. The corresponding

argument must be a pointer to a pointer to void.

No input is consumed. The corresponding argument shall be a pointer to signed integer into which is to

be written the number of characters read from the input stream so far by this call to the formatted input
function. Execution of a ‘%n’ directive does not increment the assignment count returned at the completion
of execution of the fscanf function. No argument is converted, but one is consumed. If the conversion

specification includes an assignment-suppressing character or a field width, the behavior is undefined.

Matches a single ‘%’ character; no conversion or assignment occurs.

/Py

s’,and ‘[’ conversion specifiers is not

supported and nor are the conversion specifiers ‘a’ and ‘A’.

875

CrossWorks for AVR Reference Manual C Library User Guide

snprintf

Synopsis

int snprintf(char *s,
size_ t n,
const char *format,

o)5

Description

snprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how

subsequent arguments are converted for output.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n—1 tare
discarded rather than being written to the array, and a null character is written at the end of the characters
actually written into the array. A null character is written at the end of the conversion; it is not counted as part of

the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

snprintf returns the number of characters that would have been written had n been sufficiently large, not
counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n>.

876

CrossWorks for AVR Reference Manual C Library User Guide

sprintf

Synopsis

int sprintf(char *s,
const char *format,
0)¢

Description

sprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. A null character is written at the end of the characters written;

it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

sprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

877

CrossWorks for AVR Reference Manual C Library User Guide

sscanf

Synopsis

int sscanf(const char *s,
const char *fornmat,

DE

Description

sscanf reads input from the string s under control of the string pointed to by format that specifies the
admissible input sequences and how they are to be converted for assignment, using subsequent arguments as

pointers to the objects to receive the converted input.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.

sscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, sscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

878

CrossWorks for AVR Reference Manual C Library User Guide

vprintf

Synopsis

int vprintf(const char *fornmat,
va list arg);

Description

vprintf writes to the standard output stream using putchar under control of the string pointed to by format that
specifies how subsequent arguments are converted for output. Before calling vprintf, arg must be initialized by

the va_start macro (and possibly subsequent va_arg calls). vprintf does not invoke the va_end macro.

vprintf returns the number of characters transmitted, or a negative value if an output or encoding error
occurred.

Note

vprintf is equivalent to printf with the variable argument list replaced by arg.

879

CrossWorks for AVR Reference Manual C Library User Guide

vscanf

Synopsis

int vscanf(const char *format,
_va list arg);

Description

vscanf reads input from the standard input stream under control of the string pointed to by format that
specifies the admissible input sequences and how they are to be converted for assignment, using subsequent
arguments as pointers to the objects to receive the converted input. Before calling vscanf, arg must be
initialized by the va_start macro (and possibly subsequent va_arg calls). vscanf does not invoke the va_end

macro.
If there are insufficient arguments for the format, the behavior is undefined.

vscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of
an early matching failure.

Note

vscanf is equivalent to scanf with the variable argument list replaced arg.

880

CrossWorks for AVR Reference Manual C Library User Guide

vsnprintf

Synopsis

int vsnprintf(char *s,
size t n,
const char *format,
_va_list arg);

Description

vsnprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. Before calling vsnprintf, arg must be initialized by the va_start

macro (and possibly subsequent va_arg calls). vsnprintf does not invoke the va_end macro.

If n is zero, nothing is written, and s can be a null pointer. Otherwise, output characters beyond the n—1 tare
discarded rather than being written to the array, and a null character is written at the end of the characters
actually written into the array. A null character is written at the end of the conversion; it is not counted as part of
the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

vsnprintf returns the number of characters that would have been written had n been sufficiently large, not
counting the terminating null character, or a negative value if an encoding error occurred. Thus, the null-

terminated output has been completely written if and only if the returned value is nonnegative and less than n.

Note

vsnprintf is equivalent to snprintf with the variable argument list replaced by arg.

881

CrossWorks for AVR Reference Manual C Library User Guide

vsprintf

Synopsis

int vsprintf(char *s,
const char *fornat,
__va_list arg);

Description

vsprintf writes to the string pointed to by s under control of the string pointed to by format that specifies how
subsequent arguments are converted for output. Before calling vsprintf, arg> must be initialized by the va_start
macro (and possibly subsequent va_arg calls). vsprintf does not invoke the va_end macro.

A null character is written at the end of the characters written; it is not counted as part of the returned value.

If there are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while

arguments remain, the excess arguments are evaluated but are otherwise ignored.
If copying takes place between objects that overlap, the behavior is undefined.

vsprintf returns number of characters transmitted (not counting the terminating null), or a negative value if an

output or encoding error occurred.

Note

vsprintf is equivalent to sprintf with the variable argument list replaced by arg.

882

CrossWorks for AVR Reference Manual C Library User Guide

vsscanf

Synopsis

int vsscanf(const char *s,
const char *format,
va list arg);

Description

vsscanf reads input from the string s under control of the string pointed to by format that specifies the
admissible input sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input. Before calling vsscanf, arg must be initialized by the

va_start macro (and possibly subsequent va_arg calls). vsscanf does not invoke the va_end macro.
If there are insufficient arguments for the format, the behavior is undefined.

vsscanf returns the value of the macro EOF if an input failure occurs before any conversion. Otherwise, vsscanf
returns the number of input items assigned, which can be fewer than provided for, or even zero, in the event of

an early matching failure.

Note

vsscanf is equivalent to sscanf with the variable argument list replaced by arg.

883

CrossWorks for AVR Reference Manual

<stdio _c.h>

APl Summary

Character and string 1/0 functions
puts_c

Formatted output functions
printf_c

snprintf_c

sprintf_c

vprintf_c
vsnprintf_c
vsprintf_c

Formatted input functions
scanf_c
sscanf_c

vscanf _c

vsscanf_c

C Library User Guide

Write a code string to standard output

Write code string formatted text to standard output

Write code string formatted text to a string with
truncation

Write code string formatted text to a string

Write code string formatted text to standard output
using variable argument context

Write code string formatted text to a string with
truncation using variable argument context

Write code string formatted text to a string using
variable argument context

Read code string formatted text from standard input
Read code string formatted text from code string

Read code string formatted text from standard using
variable argument context

Read code string formatted text from a string using
variable argument context

884

CrossWorks for AVR Reference Manual C Library User Guide

printf_c
Synopsis
int printf_c(const _ _code char *format,

o)

Description

See printf

885

CrossWorks for AVR Reference Manual C Library User Guide

puts_c

Synopsis

int puts_c(const _ code char *s);

Description

See puts

886

CrossWorks for AVR Reference Manual C Library User Guide

scanf ¢

Synopsis

int scanf_c(const _ code char *fornmat,

o)

Description

See scanf

887

CrossWorks for AVR Reference Manual C Library User Guide

snprintf_c

Synopsis
int snprintf_c(char *s,
size t n,
const _ code char *format,
)i

Description

See snprintf

888

CrossWorks for AVR Reference Manual C Library User Guide

sprintf_c

Synopsis

int sprintf_c(char *s,
const _ code char *fornmat,

E

Description

See sprintf

889

CrossWorks for AVR Reference Manual C Library User Guide

sscanf ¢

Synopsis

int sscanf_c(const char *s,
const _ code char *fornat,

TE

Description

See sscanf

890

CrossWorks for AVR Reference Manual C Library User Guide

vprintf_c
Synopsis
int vprintf_c(const _ _code char *fornmat,

_va_list arg);

Description

See vprintf

891

CrossWorks for AVR Reference Manual C Library User Guide

vscanf ¢

Synopsis

int vscanf_c(const _ _code char *format,
_va_list arg);

Description

See vscanf

892

CrossWorks for AVR Reference Manual C Library User Guide

vsnprintf_c

Synopsis

int vsnprintf_c(char *s,
size t n,
const _ code char *fornmat,
__va_list arg);

Description

See vsnprintf

893

CrossWorks for AVR Reference Manual C Library User Guide

vsprintf_c

Synopsis

int vsprintf_c(char *s,
const _ code char *format,
_va list arg);

Description

See vsprintf

894

CrossWorks for AVR Reference Manual C Library User Guide

vsscanf ¢

Synopsis

int vsscanf_c(const char *s,
const _ code char *fornmat,
__va_list arg);

Description

See vsscanf

895

CrossWorks for AVR Reference Manual

<stdlib.h>

APl Summary

Macros
EXIT_FAILURE
EXIT_SUCCESS
RAND_MAX
Integer arithmetic functions
abs

div

labs

Idiv

llabs

lidiv

Memory allocation functions

calloc

free
malloc

realloc

String to number conversions
atof

atoi

atol

atoll

strtod

strtof

strtol

strtoll

strtoul

strtoull

Pseudo-random sequence generation functions

rand

C Library User Guide

EXIT_FAILURE
EXIT_SUCCESS
RAND_MAX

Return an integer absolute value

Divide two ints returning quotient and remainder
Return a long integer absolute value

Divide two longs returning quotient and remainder
Return a long long integer absolute value

Divide two long longs returning quotient and
remainder

Allocate space for an array of objects and initialize
them to zero

Frees allocated memory for reuse
Allocate space for a single object

Resizes allocated memory space or allocates memory
space

Convert string to double
Convert string to int

Convert string to long

Convert string to long long
Convert string to double
Convert string to float

Convert string to long

Convert string to long long
Convert string to unsigned long

Convert string to unsigned long long

Return next random number in sequence

896

CrossWorks for AVR Reference Manual

srand

Search and sort functions
bsearch

gsort

Environment

atexit

exit

Number to string conversions
itoa

litoa

Itoa

ulltoa

ultoa

utoa

Types

div_t

Idiv_t

lidiv_t

C Library User Guide

Set seed of random number sequence

Search a sorted array

Sort an array

Set function to be execute on exit

Terminates the calling process

Convert int to string

Convert long long to string

Convert long to string

Convert unsigned long long to string
Convert unsigned long to string

Convert unsigned to string

Structure containing quotient and remainder after
division of an int

Structure containing quotient and remainder after
division of a long

Structure containing quotient and remainder after
division of a long long

897

CrossWorks for AVR Reference Manual

EXIT_FAILURE

Synopsis

#def i ne EXI T_FAlI LURE 1

Description

EXIT_FAILURE pass to exit on unsuccessful termination.

898

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

EXIT_SUCCESS

Synopsis

#def i ne EXI T_SUCCESS 0

Description

EXIT_SUCCESS pass to exit on successful termination.

899

CrossWorks for AVR Reference Manual

RAND_MAX

Synopsis

#def i ne RAND_MAX 32767

Description

C Library User Guide

RAND_MAX expands to an integer constant expression that is the maximum value returned by rand.

900

CrossWorks for AVR Reference Manual

abs

Synopsis

int abs(int j);

Description

abs returns the absolute value of the integer argument j.

901

C Library User Guide

CrossWorks for AVR Reference Manual

atexit

Synopsis

int atexit(void (*func)(void));

Description

C Library User Guide

atexit registers function to be called when the application has exited. The functions registered with atexit are

executed in reverse order of their registration. atexit returns 0 on success and non-zero on failure.

902

CrossWorks for AVR Reference Manual

atof

Synopsis

doubl e at of (const char *nptr);

Description

C Library User Guide

atof converts the initial portion of the string pointed to by nptr to a double representation. atof does not affect

the value of errno on an error. If the value of the result cannot be represented, the behavior is undefined.

Except for the behavior on error, atof is equivalenttost rt od(nptr,

atof returns the converted value.

See Also

strtod

903

(char **)NULL).

CrossWorks for AVR Reference Manual

atoi

Synopsis

int atoi(const char *nptr);

Description

atoi converts the initial portion of the string pointed to by nptr to an int representation.

C Library User Guide

atoi does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atoi is equivalentto (i nt) strtol (nptr,

atoi returns the converted value.

See Also

strtol

904

(char **)NULL, 10).

CrossWorks for AVR Reference Manual

atol

Synopsis

long int atol (const char *nptr);

Description

atol converts the initial portion of the string pointed to by nptr to a long int representation.

C Library User Guide

atol does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior

is undefined.

Except for the behavior on error, atol is equivalenttost rt ol (nptr,

atol returns the converted value.

See Also

strtol

905

(char **)NULL, 10).

CrossWorks for AVR Reference Manual C Library User Guide

atoll

Synopsis

long long int atoll (const char *nptr);

Description
atoll converts the initial portion of the string pointed to by nptr to a long long int representation.

atoll does not affect the value of errno on an error. If the value of the result cannot be represented, the behavior
is undefined.

Except for the behavior on error, atoll is equivalenttostrt ol | (nptr, (char **)NULL, 10).atoll
returns the converted value.

See Also

strtoll

906

CrossWorks for AVR Reference Manual C Library User Guide

bsearch

Synopsis

voi d *bsearch(const void *key,
const void *buf,
size_t num
size_t size,
int (*compare)(const void *, const void *));

Description

bsearch searches the array *base for the specified {¥*key} and returns a pointer to the first entry that matches or
null if no match. The array should have num elements of size bytes and be sorted by the same algorithm as the

compare function

The compare function should return a negative value if the first parameter is less than second parameter, zero if

the parameters are equal, and a positive value if the first parameter is greater than the second parameter.

907

CrossWorks for AVR Reference Manual

calloc

Synopsis

voi d *cal | oc(size_t nobj,
size_t size);

Description

C Library User Guide

calloc allocates space for an array of nmemb objects, each of whose size is size. The space is initialized to all zero

bits.

calloc returns a null pointer if the space for the array of object cannot be allocated from free memory; if space for

the array can be allocated, calloc returns a pointer to the start of the allocated space.

908

CrossWorks for AVR Reference Manual C Library User Guide

div

Synopsis

div_t div(int nuner,
int denom;

Description
div computes numer / denom and numer % denom in a single operation.

div returns a structure of type div_t comprising both the quotient and the remainder. The structures contain
the members quot (the quotient) and rem (the remainder), each of which has the same type as the arguments
numer and denom. If either part of the result cannot be represented, the behavior is undefined.

See Also

div_t

909

CrossWorks for AVR Reference Manual C Library User Guide

div_t

Description

div_t stores the quotient and remainder returned by div.

910

CrossWorks for AVR Reference Manual

exit

Synopsis

void exit(int exit_code);

Description

exit returns to the startup code and performs the appropriate cleanup process.

911

C Library User Guide

CrossWorks for AVR Reference Manual C Library User Guide

free

Synopsis

void free(void *p);

Description

free causes the space pointed to by ptr to be deallocated, that is, made available for further allocation. If ptr is a
null pointer, no action occurs.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated
by a call to free or realloc, the behavior is undefined.

912

CrossWorks for AVR Reference Manual C Library User Guide

itoa

Synopsis

char *itoa(int val,
char *buf,
int radix);

Description

itoa converts val to a string in base radix and places the result in buf.
itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is

considered unsigned and never has a leading minus sign.

See Also

Itoa, lltoa, ultoa, ulltoa, utoa

913

CrossWorks for AVR Reference Manual

labs

Synopsis

long int labs(long int j);

Description

labs returns the absolute value of the long integer argument j.

914

C Library User Guide

CrossWorks for AVR Reference Manual

Idiv
Synopsis
Idiv_t lIdiv(long int nuner,

long int denon;

Description

C Library User Guide

Idiv computes numer / denom and numer % denom in a single operation. Idiv returns a structure of type Idiv_t

comprising both the quotient and the remainder. The structures contain the members quot (the quotient) and

rem (the remainder), each of which has the same type as the arguments numer and denom. If either part of the

result cannot be represented, the behavior is undefined.

See Also

Idiv_t

915

CrossWorks for AVR Reference Manual C Library User Guide

Idiv_t

Description

Idiv_t stores the quotient and remainder returned by Idiv.

916

CrossWorks for AVR Reference Manual C Library User Guide

llabs

Synopsis

long long int Ilabs(long long int j);

Description

llabs returns the absolute value of the long long integer argument j.

917

CrossWorks for AVR Reference Manual C Library User Guide

lldiv

Synopsis

Ildiv_t Ildiv(long long int nuner,
long long int denom;

lldiv computes numer / denom and numer % denom in a single operation. lldiv returns a structure of type
lidiv_t comprising both the quotient and the remainder. The structures contain the members quot (the
quotient) and rem (the remainder), each of which has the same type as the arguments numer and denom. If
either part of the result cannot be represented, the behavior is undefined.

See Also

lidiv_t

918

CrossWorks for AVR Reference Manual C Library User Guide

lidiv_t

Description

lldiv_t stores the quotient and remainder returned by lidiv.

919

CrossWorks for AVR Reference Manual C Library User Guide

litoa
Synopsis
char *lltoa(long |l ong val,
char *buf,
int radix);
Description

litoa converts val to a string in base radix and places the result in buf.
litoa returns buf as the result.
If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is
considered unsigned and never has a leading minus sign.

See Also

itoa, Itoa, ultoa, ulltoa, utoa

920

CrossWorks for AVR Reference Manual C Library User Guide

Itoa

Synopsis

char *ltoa(long val,
char *buf,
int radix);

Description

Itoa converts val to a string in base radix and places the result in buf.
Itoa returns buf as the result.

If radix is greater than 36, the result is undefined.

If val is negative and radix is 10, the string has a leading minus sign (-); for all other values of radix, value is
considered unsigned and never has a leading minus sign.

See Also

itoa, lItoa, ultoa, ulltoa, utoa

921

CrossWorks for AVR Reference Manual

malloc

Synopsis

void *mal | oc(size_t size);

Description

C Library User Guide

malloc allocates space for an object whose size is specified by 'b size and whose value is indeterminate.

malloc returns a null pointer if the space for the object cannot be allocated from free memory; if space for the

object can be allocated, malloc returns a pointer to the start of the allocated space.

922

CrossWorks for AVR Reference Manual C Library User Guide

gsort

Synopsis

voi d gsort(void *buf,
size_t num
size t size,
int (*conpare)(const void *, const void *));

gsort sorts the array *base using the compare algorithm. The array should have num elements of size bytes. The
compare function should return a negative value if the first parameter is less than second parameter, zero if the

parameters are equal and a positive value if the first parameter is greater than the second parameter.

923

CrossWorks for AVR Reference Manual C Library User Guide

rand

Synopsis

int rand(void);

Description
rand computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.

rand returns the computed pseudo-random integer.

924

CrossWorks for AVR Reference Manual C Library User Guide

realloc

Synopsis

void *realloc(void *p,
size_t size);

Description

realloc deallocates the old object pointed to by ptr and returns a pointer to a new object that has the size
specified by size. The contents of the new object is identical to that of the old object prior to deallocation,
up to the lesser of the new and old sizes. Any bytes in the new object beyond the size of the old object have
indeterminate values.

If ptr is a null pointer, realloc behaves like realloc for the specified size. If memory for the new object cannot be

allocated, the old object is not deallocated and its value is unchanged.

realloc returns a pointer to the new object (which may have the same value as a pointer to the old object), or a

null pointer if the new object could not be allocated.

If ptr does not match a pointer earlier returned by calloc, malloc, or realloc, or if the space has been deallocated

by a call to free or realloc, the behavior is undefined.

925

CrossWorks for AVR Reference Manual

srand

Synopsis

voi d srand(unsigned int seed);

Description

C Library User Guide

srand uses the argument seed as a seed for a new sequence of pseudo-random numbers to be returned by

subsequent calls to rand. If srand is called with the same seed value, the same sequence of pseudo-random

numbers is generated.

If rand is called before any calls to srand have been made, a sequence is generated as if srand is first called with

a seed value of 1.

See Also

rand or 'ref rand_max

926

CrossWorks for AVR Reference Manual C Library User Guide

strtod

Synopsis

doubl e strtod(const char *nptr,
char **endptr);

Description
strtod converts the initial portion of the string pointed to by nptr to a double representation.

First, strtod decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string
of one or more unrecognized characters, including the terminating null character of the input string. strtod then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence

of decimal digits optionally containing a decimal-point character, then an optional exponent part.
If the subject sequence begins with a minus sign, the value resulting from the conversion is negated.

A pointer to the final string is stored in the object pointed to by strtod, provided that endptr is not a null

pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of

nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtod returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, HUGE_VAL is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

927

CrossWorks for AVR Reference Manual C Library User Guide

strtof

Synopsis

float strtof(const char *nptr,
char **endptr);

Description
strtof converts the initial portion of the string pointed to by nptr to a double representation.

First, strtof decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling a floating-point constant, and a final string
of one or more unrecognized characters, including the terminating null character of the input string. strtof then

attempts to convert the subject sequence to a floating-point number, and return the result.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or

a permissible letter or digit.

The expected form of the subject sequence is an optional plus or minus sign followed by a nonempty sequence
of decimal digits optionally containing a decimal-point character, then an optional exponent part. If the subject
sequence begins with a minus sign, the value resulting from the conversion is negated. A pointer to the final
string is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

If the subject sequence is empty or does not have the expected form, no conversion is performed, the value of
nptr is stored in the object pointed to by endptr, provided that endptr is not a null pointer.

strtof returns the converted value, if any. If no conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, HUGE_VALF is returned according to the sign of the value, if

any, and the value of the macro errno is stored in errno.

928

CrossWorks for AVR Reference Manual C Library User Guide

strtol

Synopsis

long int strtol (const char *nptr,
char **endptr,
i nt base);

Description
strtol converts the initial portion of the string pointed to by nptr to a long int representation.

First, strtol decomposes the input string into three parts: an initial, possibly empty, sequence of white-space
characters (as specified by isspace), a subject sequence resembling an integer represented in some radix
determined by the value of base, and a final string of one or more unrecognized characters, including the
terminating null character of the input string. strtol then attempts to convert the subject sequence to an integer,
and return the result.

When converting, no integer suffix (such as U, L, UL, LL, ULL) is allowed.

If the value of base is zero, the expected form of the subject sequence is an optional plus or minus sign followed

by an integer constant.

If the value of base is between 2 and 36 (inclusive), the expected form of the subject sequence is an optional
plus or minus sign followed by a sequence of letters and digits representing an integer with the radix specified
by base. The letters from a (or A) through z (or Z) represent the values 10 through 35; only letters and digits

whose ascribed values are less than that of base are permitted.

If the value of base is 16, the characters ‘0x’ or ‘0X’ may optionally precede the sequence of letters and digits,

following the optional sign.

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first non-
white-space character, that is of the expected form. The subject sequence contains no characters if the input
string is empty or consists entirely of white space, or if the first non-white-space character is other than a sign or
a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of characters starting
with the first digit is interpreted as an integer constant. If the subject sequence has the expected form and the
value of base is between 2 and 36,